1
|
Xiong H, Lin Q, Lu Y, Zheng D, Li Y, Wang S, Xie W, Li C, Zhang X, Lin Y, Wang ZX, Shi Q, Marks TJ, Huang H. General room-temperature Suzuki-Miyaura polymerization for organic electronics. NATURE MATERIALS 2024; 23:695-702. [PMID: 38287128 DOI: 10.1038/s41563-023-01794-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
π-Conjugated polymers (CPs) have broad applications in high-performance optoelectronics, energy storage, sensors and biomedicine. However, developing green and efficient methods to precisely synthesize alternating CP structures on a large scale remains challenging and critical for their industrialization. Here a room-temperature, scalable and homogeneous Suzuki-Miyaura-type polymerization reaction is developed with broad generality validated for 24 CPs including donor-donor, donor-acceptor and acceptor-acceptor connectivities, yielding device-quality polymers with high molecular masses. Furthermore, the polymerization protocol significantly reduces homocoupling structural defects, yielding more structurally regular and higher-performance electronic materials and optoelectronic devices than conventional thermally activated polymerizations. Experimental and theoretical studies reveal that a borate transmetalation process plays a key role in suppressing protodeboronation, which is critical for large-scale structural regularity. Thus, these results provide a general polymerization tool for the scalable production of device-quality CPs with alternating structural regularity.
Collapse
Affiliation(s)
- Haigen Xiong
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qijie Lin
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yu Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ding Zheng
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Yawen Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Song Wang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wenbin Xie
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Congqi Li
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuze Lin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qinqin Shi
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA.
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Wen X, Xie W, Li Y, Ma X, Liu Z, Han X, Wen K, Zhang F, Lin Y, Shi Q, Peng A, Huang H. Room Temperature Anhydrous Suzuki-Miyaura Polymerization Enabled by C-S Bond Activation. Angew Chem Int Ed Engl 2023; 62:e202309922. [PMID: 37578857 DOI: 10.1002/anie.202309922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
The Suzuki-Miyaura cross-coupling is one of the most important and powerful methods for constructing C-C bonds. However, the protodeboronation of arylboronic acids hinder the development of Suzuki-Miyaura coupling in the precise synthesis of conjugated polymers (CPs). Here, an anhydrous room temperature Suzuki-Miyaura cross-coupling reaction between (hetero)aryl boronic esters and aryl sulfides was explored, of which universality was exemplified by thirty small molecules and twelve CPs. Meanwhile, the mechanistic studies involving with capturing four coordinated borate intermediate revealed the direct transmetalation of boronic esters in the absence of H2 O suppressing the protodeboronation. Additionally, the room temperature reaction significantly reduced the homocoupling defects and enhanced the optoelectronic properties of the CPs. In all, this work provides a green protocol to synthesize alternating CPs.
Collapse
Affiliation(s)
- Xuan Wen
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenbin Xie
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yawen Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaoying Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaoying Liu
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Dermatology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, P. R. China
| | - Xiao Han
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaikai Wen
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuze Lin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qinqin Shi
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Aidong Peng
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Diketopyrrolopyrrole-based Conjugated Polymers as Representative Semiconductors for High-Performance Organic Thin-Film Transistors and Circuits. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
4
|
He C, Dong J, Xu C, Pan X. N-Coordinated Organoboron in Polymer Synthesis and Material Science. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Congze He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Chaoran Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
5
|
Chen PJ, Kelly AM, Blair DJ, Burke MD. Preparation of MIDA Anhydride and Reaction with Boronic Acids. ORGANIC SYNTHESES; AN ANNUAL PUBLICATION OF SATISFACTORY METHODS FOR THE PREPARATION OF ORGANIC CHEMICALS 2022; 99:92-112. [PMID: 37587918 PMCID: PMC10428519 DOI: 10.15227/orgsyn.099.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Affiliation(s)
- Peng-Jui Chen
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL 61801, USA
| | - Aidan M. Kelly
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL 61801, USA
| | - Daniel J. Blair
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL 61801, USA
| | - Martin D. Burke
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Rech JJ, Neu J, Qin Y, Samson S, Shanahan J, Josey RF, Ade H, You W. Designing Simple Conjugated Polymers for Scalable and Efficient Organic Solar Cells. CHEMSUSCHEM 2021; 14:3561-3568. [PMID: 34008311 DOI: 10.1002/cssc.202100910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Conjugated polymers have a long history of exploration and use in organic solar cells, and over the last twenty-five years, marked increases in the solar cell efficiency have been achieved. However, the synthetic complexity of these materials has also drastically increased, which makes the scalability of the highest-efficiency materials difficult. If conjugated polymers could be designed to exhibit both high efficiency and straightforward synthesis, the road to commercial reality would be more achievable. For that reason, a new synthetic approach was designed towards PTQ10 (=poly[(thiophene)-alt-(6,7-difluoro-2-(2-hexyldecyloxy)quinoxaline)]). The new synthetic approach to make PTQ10 brought a significant reduction in cost (1/7th the original) and could also easily accommodate different side chains to move towards green processing solvents. Furthermore, high-efficiency organic solar cells were demonstrated with a PTQ10:Y6 blend exhibiting approximately 15 % efficiency.
Collapse
Affiliation(s)
- Jeromy James Rech
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510, USA
| | - Justin Neu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510, USA
| | - Yunpeng Qin
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Stephanie Samson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510, USA
| | - Jordan Shanahan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510, USA
| | - Richard F Josey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510, USA
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510, USA
| |
Collapse
|
7
|
Bautista MV, Varni AJ, Ayuso-Carrillo J, Tsai CH, Noonan KJT. Chain-Growth Polymerization of Benzotriazole Using Suzuki-Miyaura Cross-Coupling and Dialkylbiarylphosphine Palladium Catalysts. ACS Macro Lett 2020; 9:1357-1362. [PMID: 35638632 DOI: 10.1021/acsmacrolett.0c00580] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Electron-deficient (n-type) conjugated materials are commonly prepared via step-growth methods with limited control over the molecular weight and molecular weight distribution of the resulting polymers. In this communication, we demonstrate that Pd-dialkylbiarylphosphine catalysts enable the chain-growth polymerization of benzo[1,2,3]triazole using Suzuki-Miyaura coupling with molecular weight control and modest molecular weight distributions (Đ ∼ 1.2-1.6). The importance of a free ligand in the reaction mixture during polymerization was established by analysis of polymer samples using GPC and MALDI-TOF mass spectrometry. A block copolymer with poly(3-hexylthiophene) was also synthesized by sequential monomer addition. The success of these commercially available catalysts for polymerization of benzotriazole highlights their potential for chain-growth reactions with other bicyclic arenes in the future.
Collapse
Affiliation(s)
- Michael V. Bautista
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2567, United States
| | - Anthony J. Varni
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2567, United States
| | - Josué Ayuso-Carrillo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2567, United States
| | - Chia-Hua Tsai
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2567, United States
| | - Kevin J. T. Noonan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-2567, United States
| |
Collapse
|
8
|
Kelly AM, Chen PJ, Klubnick J, Blair DJ, Burke MD. A Mild Method for Making MIDA Boronates. Org Lett 2020; 22:9408-9414. [DOI: 10.1021/acs.orglett.0c02449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aidan M. Kelly
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
| | - Peng-Jui Chen
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jenna Klubnick
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
| | - Daniel J. Blair
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
| | - Martin D. Burke
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S, Mathews Avenue, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, 807 South Wright Street, Urbana, Illinois 61820, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 West Gregory Dr., Urbana, Illinois 61801, United States
- Arnold and Mabel Beckman Institute, University of Illinois at Urbana−Champaign, 405 North Mathews Ave., Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana−Champaign, 600 S Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Cyclopentadithiophene polymers synthesised via Suzuki-Miyaura polymerisation of MIDA boronate esters. EXPERIMENTAL RESULTS 2020. [DOI: 10.1017/exp.2020.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractCyclopentadithiophene (CPDT), a Csp3-bridged bithiophene heteroaromatic unit, displays interesting properties when it is embedded in the repeating units of π-conjugated polymers, and they are applied in organic electronics devices. Common synthetic routes to CPDT-derived polymers rely on toxic methodologies whilst alternative non-toxic strategies such as the Suzuki-Miyaura reaction have been less studied. In this report we demonstrate that the use of a N-methyliminodiacetic acid (MIDA) boronate ester-derived CPDT monomer allows the efficient formation of poly(cyclopentadithiophene) homopolymer under Suzuki-Miyaura cross-coupling reaction conditions. Thus, the use of MIDA boronate esters might be extended to other organic units to design and construct a plethora of π-conjugated polymers.
Collapse
|
10
|
Lee J, Park H, Hwang SH, Lee IH, Choi TL. RuPhos Pd Precatalyst and MIDA Boronate as an Effective Combination for the Precision Synthesis of Poly(3-hexylthiophene): Systematic Investigation of the Effects of Boronates, Halides, and Ligands. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jaeho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunwoo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Soon-Hyeok Hwang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - In-Hwan Lee
- Department of Chemistry, Ajou University, Suwon16499, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Seo KB, Lee IH, Lee J, Choi I, Choi TL. A Rational Design of Highly Controlled Suzuki–Miyaura Catalyst-Transfer Polycondensation for Precision Synthesis of Polythiophenes and Their Block Copolymers: Marriage of Palladacycle Precatalysts with MIDA-Boronates. J Am Chem Soc 2018. [DOI: 10.1021/jacs.7b13701] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyeong-Bae Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - In-Hwan Lee
- Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Jaeho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Inho Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
12
|
Abstract
Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the "building block approach", i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach.
Collapse
Affiliation(s)
- Jonathan W Lehmann
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel J Blair
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin D Burke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
13
|
Foster AB, Bagutski V, Ayuso‐Carrillo JI, Humphries MJ, Ingleson MJ, Turner ML. Use of N-methyliminodiacetic acid boronate esters in suzuki-miyaura cross-coupling polymerizations of triarylamine and fluorene monomers. ACTA ACUST UNITED AC 2017; 55:2798-2806. [PMID: 28979067 PMCID: PMC5600090 DOI: 10.1002/pola.28682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022]
Abstract
Polytriarylamine copolymers can be prepared by Suzuki‐Miyaura cross‐coupling reactions of bis N‐methyliminodiacetic acid (MIDA) boronate ester substituted arylamines with dibromo arenes. The roles of solvent composition, temperature, reaction time, and co‐monomer structure were examined and (co)polymers prepared containing 9, 9‐dioctylfluorene (F8), 4‐sec‐butyl or 4‐octylphenyl diphenyl amine (TFB), and N, N′‐bis(4‐octylphenyl)‐N, N′‐diphenyl phenylenediamine (PTB) units, using a Pd(OAc)2/2‐dicyclohexylphosphino‐2′,6′‐dimethoxybiphenyl (SPhos) catalyst system. The performance of a di‐functionalized MIDA boronate ester monomer was compared with that of an equivalent pinacol boronate ester. Higher molar mass polymers were produced from reactions starting with a difunctionalized pinacol boronate ester monomer than the equivalent difunctionalized MIDA boronate ester monomer in biphase solvent mixtures (toluene/dioxane/water). Matrix‐assisted laser desorption/ionization mass spectroscopic analysis revealed that polymeric structures rich in residues associated with the starting MIDA monomer were present, suggesting that homo‐coupling of the boronate ester must be occurring to the detriment of cross‐coupling in the step‐growth polymerization. However, when comparable reactions of the two boronate monomers with a dibromo fluorene monomer were completed in a single phase solvent mixture (dioxane + water), high molar mass polymers with relatively narrow distribution ranges were obtained after only 4 h of reaction. © 2017 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2798–2806
Collapse
Affiliation(s)
- Andrew B. Foster
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - Viktor Bagutski
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | | | - Martin J. Humphries
- Cambridge Display Technology LtdUnit 12 Cardinal Park, Cardinal Way, GodmanchesterCambridgeshirePE29 2XGUnited Kingdom
| | - Michael J. Ingleson
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - Michael L. Turner
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| |
Collapse
|
14
|
Kaldas SJ, O'Keefe KTV, Mendoza-Sanchez R, Yudin AK. Amphoteric Borylketenimines: Versatile Intermediates in the Synthesis of Borylated Heterocycles. Chemistry 2017; 23:9711-9715. [PMID: 28475819 DOI: 10.1002/chem.201702008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Sherif J. Kaldas
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Kowan T. V. O'Keefe
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Rodrigo Mendoza-Sanchez
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
15
|
Mellerup SK, Li C, Peng T, Wang S. Regioselective Photoisomerization/C−C Bond Formation of Asymmetric B(ppy)(Mes)(Ar): The Role of the Aryl Groups on Boron. Angew Chem Int Ed Engl 2017; 56:6093-6097. [DOI: 10.1002/anie.201700096] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Soren K. Mellerup
- Department of Chemistry; Queen's University; Kingston Ontario K7L 3N6 Canada
| | - Cally Li
- Department of Chemistry; Queen's University; Kingston Ontario K7L 3N6 Canada
| | - Tai Peng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry; Beijing Institute of Technology; 5 South Zhongguancun Street Beijing P.R. China
| | - Suning Wang
- Department of Chemistry; Queen's University; Kingston Ontario K7L 3N6 Canada
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry; Beijing Institute of Technology; 5 South Zhongguancun Street Beijing P.R. China
| |
Collapse
|
16
|
Mellerup SK, Li C, Peng T, Wang S. Regioselektive Photoisomerisierung/C-C-Bindungsbildung von asymmetrischem B(ppy)(Mes)(Ar): die Rolle von Arylgruppen am Boratom. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700096] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Soren K. Mellerup
- Department of Chemistry; Queen's University; Kingston Ontario K7L 3N6 Kanada
| | - Cally Li
- Department of Chemistry; Queen's University; Kingston Ontario K7L 3N6 Kanada
| | - Tai Peng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry; Beijing Institute of Technology; 5 South Zhongguancun Street Peking P.R. China
| | - Suning Wang
- Department of Chemistry; Queen's University; Kingston Ontario K7L 3N6 Kanada
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry; Beijing Institute of Technology; 5 South Zhongguancun Street Peking P.R. China
| |
Collapse
|