1
|
Zhang J, Liang J, Ji D, Shu B, Huang ZS, Li D. Development of a Fluorescent Probe for Specific Visualization of Intracellular DNA i-Motif Participating in Key Biological Function. ACS Sens 2025. [PMID: 40289913 DOI: 10.1021/acssensors.5c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The i-motif structure has received increasing interest due to its significant biological function discovered in recent years. However, the absence of a handy and efficient method for visualizing the i-motif limited its intracellular study. Herein, we report an innovative coumarin-carbazole-based fluorescent probe, IMCC-6, for intracellular detection of i-motif. IMCC-6 exhibited excellent i-motif recognition ability and selectivity. By using IMCC-6, we successfully visualized the ribosome DNA (rDNA) i-motif within the nucleoli. Our results revealed the colocalization of rDNA i-motif with RNA polymerase I, and their separation under drug-induced nucleolar stress, suggesting that rDNA i-motif could play a regulatory role in rDNA transcription. IMCC-6 was also well applied for the detection of the i-motif in live cells and zebrafish juveniles, which could become an important tool for studying its biological function. As we know, this is the first discovery and development of a small-molecule fluorescent probe for specific visualization of i-motif in cells and in vivo, providing its direct evidence of participating in key biological function.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai Huan East Road, Guangzhou 510006, P. R. China
| | - Jihai Liang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai Huan East Road, Guangzhou 510006, P. R. China
| | - Dongsheng Ji
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai Huan East Road, Guangzhou 510006, P. R. China
| | - Bing Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai Huan East Road, Guangzhou 510006, P. R. China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai Huan East Road, Guangzhou 510006, P. R. China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai Huan East Road, Guangzhou 510006, P. R. China
| |
Collapse
|
2
|
Travagliante G, Gaeta M, Purrello R, D’Urso A. Porphyrins as Chiroptical Conformational Probes for Biomolecules. Molecules 2025; 30:1512. [PMID: 40286092 PMCID: PMC11990877 DOI: 10.3390/molecules30071512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Porphyrins are highly conjugated macrocyclic compounds that possess exceptional photophysical and chemical properties, progressively establishing themselves as versatile tools in the structural investigation of biomolecules. This review explores their role as chiroptical conformational probes, focusing on their interactions with DNA and RNA. The planar electron rich structure of porphyrin macrocycle that promote π-π interactions, their easy functionalization at the meso positions, and their capacity to coordinate metal ions enable their use in probing nucleic acid structures with high sensitivity. Emphasis is placed on their induced circular dichroism (ICD) signals in the Soret region, which provide precise diagnostic insights into binding mechanisms and molecular interactions. The review examines the interactions of porphyrins with various DNA structures, including B-, Z-, and A-DNA, single-stranded DNA, and G-quadruplex DNA, as well as less common structures like I-motif and E-motif DNA. The last part highlights recent advancements in the use of porphyrins to probe RNA structures, emphasizing binding behaviors and chiroptical signals observed with RNA G-quadruplexes, as well as the challenges in interpreting ICD signals with other RNA motifs due to their inherent structural complexity.
Collapse
Affiliation(s)
| | | | | | - Alessandro D’Urso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria, 6, 95125 Catania, Italy; (G.T.); (M.G.); (R.P.)
| |
Collapse
|
3
|
Deep A, Bhat A, Perumal V, Kumar S. i-Motifs as regulatory switches: Mechanisms and implications for gene expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102474. [PMID: 40034208 PMCID: PMC11875178 DOI: 10.1016/j.omtn.2025.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
i-Motifs, cytosine-tetrads, or C-quadruplexes are intercalated structures formed by base pairing between cytosine and protonated cytosine. These structures demonstrate increased stability in acidic environments due to the presence of the latter cytosinium group (i.e., the protonated cytosine). Research has shown that i-motifs are typically disrupted or destabilized at physiological pH levels (7.0-7.4), which makes their potential formation in the nucleus and their biological relevance uncertain. However, in 2018, it was demonstrated that i-motifs exist within the nucleus under physiological conditions, with various intracellular factors contributing to their stability. Identification of i-motifs in the nucleus and their association with gene promoters-particularly with those of proto-oncogenes-has generated significant interest in their potential regulatory functions. Additionally, recent studies suggest that i-motifs may function as switches for gene expression, influencing gene regulation through their folding and stabilization or unfolding and destabilization. This review aims to delve into these mechanisms to improve our understanding of the physiological significance of i-motifs.
Collapse
Affiliation(s)
- Auroni Deep
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | - Anjali Bhat
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | - Vivekanandan Perumal
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | - Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| |
Collapse
|
4
|
Moraca F, Arciuolo V, Marzano S, Napolitano F, Castellano G, D'Aria F, Di Porzio A, Landolfi L, Catalanotti B, Randazzo A, Pagano B, Malfitano AM, Amato J. Repurposing FDA-approved drugs to target G-quadruplexes in breast cancer. Eur J Med Chem 2025; 285:117245. [PMID: 39793440 DOI: 10.1016/j.ejmech.2025.117245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Breast cancer, a leading cause of cancer-related mortality in women, is characterized by genomic instability and aberrant gene expression, often influenced by noncanonical nucleic acid structures such as G-quadruplexes (G4s). These structures, commonly found in the promoter regions and 5'-untranslated RNA sequences of several oncogenes, play crucial roles in regulating transcription and translation. Stabilizing these G4 structures offers a promising therapeutic strategy for targeting key oncogenic pathways. In this study, we employed a drug repurposing approach to identify FDA-approved drugs capable of binding and stabilizing G4s in breast cancer-related genes. Using ligand-based virtual screening and biophysical methods, we identified several promising compounds, such as azelastine, belotecan, and irinotecan, as effective G4 binders, with significant antiproliferative effects in breast cancer cell lines. Notably, belotecan and irinotecan exhibited a synergistic mechanism, combining G4 stabilization with their established topoisomerase I inhibition activity to enhance cytotoxicity in cancer cells. Our findings support the therapeutic potential of G4 stabilization in breast cancer, validate drug repurposing as an efficient strategy to identify G4-targeting drugs, and highlight how combining G4 stabilization with other established drug activities may improve anticancer efficacy.
Collapse
Affiliation(s)
- Federica Moraca
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Valentina Arciuolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Fabiana Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Giuliano Castellano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Laura Landolfi
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80131 Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
5
|
Stockert JC, Horobin RW. Prebiotic RNA self-assembling and the origin of life: Mechanistic and molecular modeling rationale for explaining the prebiotic origin and replication of RNA. Acta Histochem 2025; 127:152226. [PMID: 39788859 DOI: 10.1016/j.acthis.2024.152226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
In recent years, a great interest has been focused on the prebiotic origin of nucleic acids and life on Earth. An attractive idea is that life was initially based on an autocatalytic and autoreplicative RNA (the RNA-world). RNA duplexes are right-handed helical chains with antiparallel orientation, but the rationale for these features is not yet known. An antiparallel (inverted) stacking of purine nucleosides was reported in crystallographic studies. Molecular modeling also supports the inverted orientation of nucleosides. This preferential stacking can also appear when nucleosides are included in a montmorillonite clay matrix. Free-energy values and geometrical parameters show that D-ribose chirality is preferred for the formation of right-handed RNA molecules. Thus, a "zipper" model with antiparallel and auto-intercalated nucleosides linked by phosphate groups can be proposed to form single RNA chains. Unstacking with strand separation and base pairing by H-bonding, results in shortening and inclination of ribose-phosphate chains, leading to right-handed helicity and antiparallel duplexes. Incorporation of complementary precursors on the major groove template by a self-assembly mechanism provides a prebiotic (non-enzymatic) "tetris" replication model by formation of a transient RNA tetrad and tetraplex. Original hairpin motifs appear as simple building units that form typical RNA structures such as hammerheads, cloverleaves and dumbbells. They occur today in the circular viroids and virusoids, as well as in highly branched and complex rRNA molecules.
Collapse
Affiliation(s)
- Juan C Stockert
- Institute of Health and Environmental Sciences, Prosama Foundation, Paysandú 752, Buenos Aires, CABA CP1405, Argentina; Integrative Center of Biology and Applied Chemistry, University Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile.
| | | |
Collapse
|
6
|
Roxo C, Pasternak A. Switching off cancer - An overview of G-quadruplex and i-motif functional role in oncogene expression. Bioorg Med Chem Lett 2025; 116:130038. [PMID: 39577601 DOI: 10.1016/j.bmcl.2024.130038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
DNA can self-assemble into G-quadruplexes and i-motifs non-canonical secondary structures that are formed by guanine-rich sequences and the cytosine-rich sequences, respectively. G-quadruplexes and i-motifs have been closely linked to cancer development since they can regulate genes expression in various promoter regions. Moreover, these structures have gained attention as viable targets for anticancer treatments because of their physicochemical properties and gene-regulatory functions. As a result, they are attractive molecular targets for innovative cancer therapies. Herein, we review the G-quadruplex and i-motif structures, their dynamic relationship in biological systems, as well as their significance in cancer biology and the potential therapeutic approaches. Furthermore, we also address the simultaneous and mutually exclusive formation of G-quadruplex and i-motif structures in cellular environment.
Collapse
Affiliation(s)
- Carolina Roxo
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
7
|
Minasyan AS, Peacey M, Allen T, Nesterova IV. Sequence Context in DNA i-Motifs Can Nurture Very Stable and Persistent Kinetic Traps. Chembiochem 2024; 25:e202400647. [PMID: 39370401 DOI: 10.1002/cbic.202400647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
I-motifs are non-canonical DNA structures with recognized biological significance and a proven utility in material engineering. Consequently, understanding and control of i-motif properties is essential to sustain progress across both disciplines. In this work, we systematically investigate how proximity to the most common form of DNA, a double-stranded duplex, influences the thermodynamic and kinetic properties of adjacent i-motifs. We demonstrate that double-stranded stems in i-motif loops promote kinetic trapping of very stable and persistent partially folded conformations. Further, we investigate pathways toward rational control over a folding topology makeup.
Collapse
Affiliation(s)
- Alexander S Minasyan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Merlin Peacey
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Te'Kara Allen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
8
|
Ban Y, Ando Y, Terai Y, Matsumura R, Nakane K, Iwai S, Sato S, Yamamoto J. Profiling of i-motif-binding proteins reveals functional roles of nucleolin in regulation of high-order DNA structures. Nucleic Acids Res 2024; 52:13530-13543. [PMID: 39557413 DOI: 10.1093/nar/gkae1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Non-canonical DNA structures, such as the G-quadruplex (G4) and i-motif (iM), are formed at guanine- and cytosine-rich sequences, respectively, in living cells and involved in regulating various biological processes during the cell cycle. Therefore, the formation and resolution of these non-canonical structures must be dynamically regulated by physiological conditions or factors that can bind G4 and iM structures. Although many G4 binding proteins responsible for tuning the G4 structure have been discovered, the structural regulation of iM by iM-binding proteins remains enigmatic. In this study, we developed a protein-labeling DNA probe bearing an alkyne moiety through a reactive linker, for proximity-labeling of nucleic acid-binding proteins, and searched for new iM-binding proteins. Alkyne-modified proteins in the nuclear extract of HeLa cells were labeled with biotin via a click reaction and then captured with streptavidin-coated magnetic beads. This fingerprint-targeting enrichment, followed by proteome analyses, identified new candidate proteins that potentially bind to the iM structure, in addition to the reported iM-binding proteins. Among the newly identified candidates, we characterized a nucleolar protein, nucleolin, that binds to the iM structure and relaxes it, while nucleolin stabilizes the G4 structure.
Collapse
Affiliation(s)
- Yuki Ban
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yuka Ando
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yuma Terai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Risa Matsumura
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Keita Nakane
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
9
|
Völker J, Gindikin V, Breslauer KJ. Higher-Order DNA Secondary Structures and Their Transformations: The Hidden Complexities of Tetrad and Quadruplex DNA Structures, Complexes, and Modulatory Interactions Induced by Strand Invasion Events. Biomolecules 2024; 14:1532. [PMID: 39766239 PMCID: PMC11673204 DOI: 10.3390/biom14121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
We demonstrate that a short oligonucleotide complementary to a G-quadruplex domain can invade this iconic, noncanonical DNA secondary structure in ways that profoundly influence the properties and differential occupancies of the resulting DNA polymorphic products. Our spectroscopic mapping of the conformational space of the associated reactants and products, both before and after strand invasion, yield unanticipated outcomes which reveal several overarching features. First, strand invasion induces the disruption of DNA secondary structural elements in both the invading strand (which can assume an iDNA tetrad structure) and the invaded species (a G-quadruplex). The resultant cascade of coupled alterations represents a potential pathway for the controlled unfolding of kinetically trapped DNA states, a feature that may be characteristic of biological regulatory mechanisms. Furthermore, the addition of selectively designed, exogenous invading oligonucleotides can enable the manipulation of noncanonical DNA conformations for biomedical applications. Secondly, our results highlight the importance of metastability, including the interplay between slower and faster kinetic processes in determining preferentially populated DNA states. Collectively, our data reveal the importance of sample history in defining state populations, which, in turn, determine preferred pathways for further folding steps, irrespective of the position of the thermodynamic equilibrium. Finally, our spectroscopic data reveal the impact of topological constraints on the differential stabilities of base-paired domains. We discuss how our collective observations yield insights into the coupled and uncoupled cascade of strand-invasion-induced transformations between noncanonical DNA forms, potentially as components of molecular wiring diagrams that regulate biological processes.
Collapse
Affiliation(s)
- Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
| | - Vera Gindikin
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
| | - Kenneth J. Breslauer
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
- The Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Sun F, Liu J, Su Z, Wu D, Qu S, Wu Y, Li L, Li G. Encodable DNA Hairpin Probes for Nanopore Multiplexed Target Detection. Anal Chem 2024; 96:17612-17619. [PMID: 39431921 DOI: 10.1021/acs.analchem.4c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Owing to the co-occurrence of hazardous compounds, it is crucial to build multiple highly discriminative probe libraries for simultaneous determination. Drawing inspiration from nucleic acid barcodes, we developed a probe system that is exclusively based on the nucleic acid secondary structure's hairpin structure, which can be directly read by nanopores. The highly distinguishable hairpin probes were constructed, and a detailed explanation of the possible patterns in their design was provided. These probe-representative events measured through the α-hemolysin (α-HL) nanopores were both distinguished, either through visual observation or comparison of the nanopore parameters. Besides, the potential design pattern for probes with unique telegraphic switching between the two levels was also unveiled. Finally, these probes were utilized to realize simultaneous, ultrasensitive mycotoxin multiple-detection, and their prospective applications for the detection of proteins and microRNAs were presented, indicating their suitability for a wide range of sensing applications.
Collapse
Affiliation(s)
- Feifei Sun
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100017, China
| | - Jinde Liu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhuoqun Su
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100017, China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
11
|
Refael T, Sudman M, Golan G, Pnueli L, Naik S, Preger-Ben Noon E, Henn A, Kaplan A, Melamed P. An i-motif-regulated enhancer, eRNA and adjacent lncRNA affect Lhb expression through distinct mechanisms in a sex-specific context. Cell Mol Life Sci 2024; 81:361. [PMID: 39158745 PMCID: PMC11335282 DOI: 10.1007/s00018-024-05398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Genome-wide studies have demonstrated regulatory roles for diverse non-coding elements, but their precise and interrelated functions have often remained enigmatic. Addressing the need for mechanistic insight, we studied their roles in expression of Lhb which encodes the pituitary gonadotropic hormone that controls reproduction. We identified a bi-directional enhancer in gonadotrope-specific open chromatin, whose functional eRNA (eRNA2) supports permissive chromatin at the Lhb locus. The central untranscribed region of the enhancer contains an iMotif (iM), and is bound by Hmgb2 which stabilizes the iM and directs transcription specifically towards the functional eRNA2. A distinct downstream lncRNA, associated with an inducible G-quadruplex (G4) and iM, also facilitates Lhb expression, following its splicing in situ. GnRH activates Lhb transcription and increased levels of all three RNAs, eRNA2 showing the highest response, while estradiol, which inhibits Lhb, repressed levels of eRNA2 and the lncRNA. The levels of these regulatory RNAs and Lhb mRNA correlate highly in female mice, though strikingly not in males, suggesting a female-specific function. Our findings, which shed new light on the workings of non-coding elements and non-canonical DNA structures, reveal novel mechanisms regulating transcription which have implications not only in the central control of reproduction but also for other inducible genes.
Collapse
Affiliation(s)
- Tal Refael
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Sudman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Gil Golan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sujay Naik
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Ella Preger-Ben Noon
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Arnon Henn
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
12
|
Víšková P, Ištvánková E, Ryneš J, Džatko Š, Loja T, Živković ML, Rigo R, El-Khoury R, Serrano-Chacón I, Damha MJ, González C, Mergny JL, Foldynová-Trantírková S, Trantírek L. In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells. Nat Commun 2024; 15:1992. [PMID: 38443388 PMCID: PMC10914786 DOI: 10.1038/s41467-024-46221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
I-Motifs (iM) are non-canonical DNA structures potentially forming in the accessible, single-stranded, cytosine-rich genomic regions with regulatory roles. Chromatin, protein interactions, and intracellular properties seem to govern iM formation at sites with i-motif formation propensity (iMFPS) in human cells, yet their specific contributions remain unclear. Using in-cell NMR with oligonucleotide iMFPS models, we monitor iM-associated structural equilibria in asynchronous and cell cycle-synchronized HeLa cells at 37 °C. Our findings show that iMFPS displaying pHT < 7 under reference in vitro conditions occur predominantly in unfolded states in cells, while those with pHT > 7 appear as a mix of folded and unfolded states depending on the cell cycle phase. Comparing these results with previous data obtained using an iM-specific antibody (iMab) reveals that cell cycle-dependent iM formation has a dual origin, and iM formation concerns only a tiny fraction (possibly 1%) of genomic sites with iM formation propensity. We propose a comprehensive model aligning observations from iMab and in-cell NMR and enabling the identification of iMFPS capable of adopting iM structures under physiological conditions in living human cells. Our results suggest that many iMFPS may have biological roles linked to their unfolded states.
Collapse
Affiliation(s)
- Pavlína Víšková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Jan Ryneš
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Šimon Džatko
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Centre for Advanced Materials Application, Slovak Academy of Sciences, 845 11, Bratislava, Slovakia
| | - Tomáš Loja
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Martina Lenarčič Živković
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Riccardo Rigo
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35131, Padova, Italy
| | - Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, QC, H3A0B8, Canada
| | - Israel Serrano-Chacón
- Instituto de Química Física 'Blas Cabrera', CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC, H3A0B8, Canada
| | - Carlos González
- Instituto de Química Física 'Blas Cabrera', CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Jean-Louis Mergny
- Institute of Biophysics, Czech Academy of Sciences, Brno, 612 00, Czech Republic
- Laboratoire d'Optique & Biosciences, Institut Polytechnique de Paris, Inserm, CNRS, Ecole Polytechnique, Palaiseau, 91120, France
| | - Silvie Foldynová-Trantírková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
- Institute of Biophysics, Czech Academy of Sciences, Brno, 612 00, Czech Republic.
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
13
|
Esain-Garcia I, Kirchner A, Melidis L, Tavares RDCA, Dhir S, Simeone A, Yu Z, Madden SK, Hermann R, Tannahill D, Balasubramanian S. G-quadruplex DNA structure is a positive regulator of MYC transcription. Proc Natl Acad Sci U S A 2024; 121:e2320240121. [PMID: 38315865 PMCID: PMC10873556 DOI: 10.1073/pnas.2320240121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
DNA structure can regulate genome function. Four-stranded DNA G-quadruplex (G4) structures have been implicated in transcriptional regulation; however, previous studies have not directly addressed the role of an individual G4 within its endogenous cellular context. Using CRISPR to genetically abrogate endogenous G4 structure folding, we directly interrogate the G4 found within the upstream regulatory region of the critical human MYC oncogene. G4 loss leads to suppression of MYC transcription from the P1 promoter that is mediated by the deposition of a de novo nucleosome alongside alterations in RNA polymerase recruitment. We also show that replacement of the endogenous MYC G4 with a different G4 structure from the KRAS oncogene restores G4 folding and MYC transcription. Moreover, we demonstrate that the MYC G4 structure itself, rather than its sequence, recruits transcription factors and histone modifiers. Overall, our work establishes that G4 structures are important features of transcriptional regulation that coordinate recruitment of key chromatin proteins and the transcriptional machinery through interactions with DNA secondary structure, rather than primary sequence.
Collapse
Affiliation(s)
- Isabel Esain-Garcia
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Angie Kirchner
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Larry Melidis
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | | | - Somdutta Dhir
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Angela Simeone
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Zutao Yu
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Sarah K. Madden
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Regina Hermann
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - David Tannahill
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- School of Clinical Medicine, University of Cambridge, CambridgeCB2 0SP, United Kingdom
| |
Collapse
|
14
|
Bose D, Banerjee N, Roy A, Sengupta P, Chatterjee S. Switchable tetraplex elements in the heterogeneous nuclear ribonucleoprotein K promoter: micro-environment dictated structural transitions of G/C rich elements. J Biomol Struct Dyn 2024:1-18. [PMID: 38235706 DOI: 10.1080/07391102.2024.2303378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
We have elucidated the hnRNP K promoter as a hotspot for tetraplex-based molecular switches receptive to micro-environmental stimuli. We have characterised the structural features of four tetraplex-forming loci and identified them as binding sites of transcription factors. These segments form either G-quadruplex or i-motif structures, the structural dynamicity of which has been studied in depth via several biophysical techniques. The tetraplexes display high dynamicity and are influenced by both pH and KCl concentrations in vitro. The loci complementary to these sequences form additional non-canonical secondary structures. In the cellular context, the most eminent observation of this study is the binding of hnRNP K to the i-motif forming sequences in its own promoter. We are the first to report a probable transcriptional autoregulatory function of hnRNP K in coordination with higher-order DNA structures. Herein, we also report the positive interaction of the endogenous tetraplexes with Sp1, a well-known transcriptional regulator. Treatment with tetraplex-specific small molecule ligands further uncovered G-quadruplexes' functioning as repressors and i-motifs as activators in this context. Together, our findings strongly indicate the critical regulatory role of the identified tetraplex elements in the hnRNP K promoter.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debopriya Bose
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Ananya Roy
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Pallabi Sengupta
- Department of Medical Biochemistry and Biophysics, Kemihuset (K), Campus, Umeå, Umeå universitet, Umeå, Sweden
| | | |
Collapse
|
15
|
Sengupta P, Dutta A, Suseela YV, Roychowdhury T, Banerjee N, Dutta A, Halder S, Jana K, Mukherjee G, Chattopadhyay S, Govindaraju T, Chatterjee S. G-quadruplex structural dynamics at MAPK12 promoter dictates transcriptional switch to determine stemness in breast cancer. Cell Mol Life Sci 2024; 81:33. [PMID: 38214819 PMCID: PMC11073236 DOI: 10.1007/s00018-023-05046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 01/13/2024]
Abstract
P38γ (MAPK12) is predominantly expressed in triple negative breast cancer cells (TNBC) and induces stem cell (CSC) expansion resulting in decreased survival of the patients due to metastasis. Abundance of G-rich sequences at MAPK12 promoter implied the functional probability to reverse tumorigenesis, though the formation of G-Quadruplex (G4) structures at MAPK12 promoter is elusive. Here, we identified two evolutionary consensus adjacent G4 motifs upstream of the MAPK12 promoter, forming parallel G4 structures. They exist in an equilibria between G4 and duplex, regulated by the binding turnover of Sp1 and Nucleolin that bind to these G4 motifs and regulate MAPK12 transcriptional homeostasis. To underscore the gene-regulatory functions of G4 motifs, we employed CRISPR-Cas9 system to eliminate G4s from TNBC cells and synthesized a naphthalene diimide (NDI) derivative (TGS24) which shows high-affinity binding to MAPK12-G4 and inhibits MAPK12 transcription. Deletion of G4 motifs and NDI compound interfere with the recruitment of the transcription factors, inhibiting MAPK12 expression in cancer cells. The molecular basis of NDI-induced G4 transcriptional regulation was analysed by RNA-seq analyses, which revealed that MAPK12-G4 inhibits oncogenic RAS transformation and trans-activation of NANOG. MAPK12-G4 also reduces CD44High/CD24Low population in TNBC cells and downregulates internal stem cell markers, arresting the stemness properties of cancer cells.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Anindya Dutta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Y V Suseela
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka, 560064, India
| | - Tanaya Roychowdhury
- Department of Cancer Biology and Inflammatory Disorder, IICB, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Ananya Dutta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Satyajit Halder
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Kuladip Jana
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Gopeswar Mukherjee
- Barasat Cancer Research and Welfare Centre, Barasat, Kolkata, West Bengal, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka, 560064, India.
| | - Subhrangsu Chatterjee
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
16
|
Sengupta P, Jamroskovic J, Sabouri N. A beginner's handbook to identify and characterize i-motif DNA. Methods Enzymol 2023; 695:45-70. [PMID: 38521590 DOI: 10.1016/bs.mie.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Genomic DNA exhibits an innate ability to manifest diverse sequence-dependent secondary structures, serving crucial functions in gene regulation and cellular equilibrium. While extensive research has confirmed the formation of G-quadruplex structures by guanine-rich sequences in vitro and in cells, recent investigations have turned the quadruplex community's attention to the cytosine (C)-rich complementary strands that can adopt unique tetra-stranded conformation, termed as intercalated motif or i-motif. I-motifs are stabilized by hemi-protonated C:CH+ base pairs under acidic conditions. Initially, the in vivo occurrence of i-motifs was underestimated because their formation is favored at non-physiological pH. However, groundbreaking research utilizing the structure-specific iMab antibody and high-throughput sequencing have recently detected their conserved dispersion throughout the genome, challenging previous assumptions. Given the evolving nature of this research field, it becomes imperative to conduct independent in vitro experiments aimed at identifying potential i-motif formation in C-rich sequences and consolidating the findings to address the properties of i-motifs. This chapter serves as an introductory guide for the swift identification of novel i-motifs, where we present an experimental framework for investigating and characterizing i-motif sequences in vitro. In this chapter, we selected a synthetic oligonucleotide (C7T3) sequence and outlined appropriate methodologies for annealing the i-motif structure into suitable buffers. Then, we validated its formation by CD (Circular Dichroism) and NMR (Nuclear Magnetic Resonance) spectroscopy. Finally, we provided a thorough account of the step-by-step procedures to investigate the effect of i-motif formation on the stalling or retardation of DNA replication using high resolution primer extension assays.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jan Jamroskovic
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
| |
Collapse
|
17
|
Smirnov E, Molínová P, Chmúrčiaková N, Vacík T, Cmarko D. Non-canonical DNA structures in the human ribosomal DNA. Histochem Cell Biol 2023; 160:499-515. [PMID: 37750997 DOI: 10.1007/s00418-023-02233-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
Non-canonical structures (NCS) refer to the various forms of DNA that differ from the B-conformation described by Watson and Crick. It has been found that these structures are usual components of the genome, actively participating in its essential functions. The present review is focused on the nine kinds of NCS appearing or likely to appear in human ribosomal DNA (rDNA): supercoiling structures, R-loops, G-quadruplexes, i-motifs, DNA triplexes, cruciform structures, DNA bubbles, and A and Z DNA conformations. We discuss the conditions of their generation, including their sequence specificity, distribution within the locus, dynamics, and beneficial and detrimental role in the cell.
Collapse
Affiliation(s)
- Evgeny Smirnov
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic.
| | - Pavla Molínová
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic
| | - Nikola Chmúrčiaková
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic
| | - Tomáš Vacík
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic
| | - Dušan Cmarko
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic
| |
Collapse
|
18
|
El-Khoury R, Roman M, Assi HA, Moye AL, Bryan T, Damha M. Telomeric i-motifs and C-strands inhibit parallel G-quadruplex extension by telomerase. Nucleic Acids Res 2023; 51:10395-10410. [PMID: 37742080 PMCID: PMC10602923 DOI: 10.1093/nar/gkad764] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
Telomeric C-rich repeated DNA sequences fold into tetrahelical i-motif structures in vitro at acidic pH. While studies have suggested that i-motifs may form in cells, little is known about their potential role in human telomere biology. In this study, we explore the effect of telomeric C-strands and i-motifs on the ability of human telomerase to extend G-rich substrates. To promote i-motif formation at neutral pH, we use telomeric sequences where the cytidines have been substituted with 2'-fluoroarabinocytidine. Using FRET-based studies, we show that the stabilized i-motifs resist hybridization to concomitant parallel G-quadruplexes, implying that both structures could exist simultaneously at telomeric termini. Moreover, through telomerase activity assays, we show that both unstructured telomeric C-strands and telomeric i-motifs can inhibit the activity and processivity of telomerase extension of parallel G-quadruplexes and linear telomeric DNA. The data suggest at least three modes of inhibition by C-strands and i-motifs: direct hybridization to the substrate DNA, hybridization to nascent product DNA resulting in early telomerase dissociation, and interference with the unique mechanism of telomerase unwinding and extension of a G-quadruplex. Overall, this study highlights a potential inhibitory role for the telomeric C-strand in telomere maintenance.
Collapse
Affiliation(s)
- Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Morgane Roman
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Aaron L Moye
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
19
|
Xiao CD, Zhong MQ, Gao Y, Yang ZL, Jia MH, Hu XH, Xu Y, Shen XC. A Unique G-Quadruplex Aptamer: A Novel Approach for Cancer Cell Recognition, Cell Membrane Visualization, and RSV Infection Detection. Int J Mol Sci 2023; 24:14344. [PMID: 37762645 PMCID: PMC10531985 DOI: 10.3390/ijms241814344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Surface staining has emerged as a rapid technique for applying external stains to trace cellular identities in diverse populations. In this study, we developed a distinctive aptamer with selective binding to cell surface nucleolin (NCL), bypassing cytoplasmic internalization. Conjugation of the aptamer with a FAM group facilitated NCL visualization on live cell surfaces with laser confocal microscopy. To validate the aptamer-NCL interaction, we employed various methods, including the surface plasmon resonance, IHC-based flow cytometry, and electrophoretic mobility shift assay. The G-quadruplex formations created by aptamers were confirmed with a nuclear magnetic resonance and an electrophoretic mobility shift assay utilizing BG4, a G-quadruplex-specific antibody. Furthermore, the aptamer exhibited discriminatory potential in distinguishing between cancerous and normal cells using flow cytometry. Notably, it functioned as a dynamic probe, allowing real-time monitoring of heightened NCL expression triggered by a respiratory syncytial virus (RSV) on normal cell surfaces. This effect was subsequently counteracted with dsRNA transfection and suppressed the NCL expression; thus, emphasizing the dynamic attributes of the probe. These collective findings highlight the robust versatility of our aptamer as a powerful tool for imaging cell surfaces, holding promising implications for cancer cell identification and the detection of RSV infections.
Collapse
Affiliation(s)
- Chao-Da Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ming-Qing Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yue Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
| | - Zheng-Lin Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
| | - Meng-Hao Jia
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
| | - Xiao-Hui Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
20
|
Pandey A, Roy S, Srivatsan SG. Probing the Competition between Duplex, G-Quadruplex and i-Motif Structures of the Oncogenic c-Myc DNA Promoter Region. Chem Asian J 2023; 18:e202300510. [PMID: 37541298 DOI: 10.1002/asia.202300510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Indexed: 08/06/2023]
Abstract
Development of probe systems that provide unique spectral signatures for duplex, G-quadruplex (GQ) and i-motif (iM) structures is very important to understand the relative propensity of a G-rich-C-rich promoter region to form these structures. Here, we devise a platform using a combination of two environment-sensitive nucleoside analogs namely, 5-fluorobenzofuran-modified 2'-deoxyuridine (FBF-dU) and 5-fluoro-2'-deoxyuridine (F-dU) to study the structures adopted by a promoter region of the c-Myc oncogene. FBF-dU serves as a dual-purpose probe containing a fluorescent and 19 F NMR label. When incorporated into the C-rich sequence, it reports the formation of different iMs via changes in its fluorescence properties and 19 F signal. F-dU incorporated into the G-rich ON reports the formation of a GQ structure whose 19 F signal is clearly different from the signals obtained for iMs. Rewardingly, the labeled ONs when mixed with respective complementary strands allows us to determine the relative population of different structures formed by the c-Myc promoter by the virtue of the probe's ability to produce distinct and resolved 19 F signatures for different structures. Our results indicate that at physiological pH and temperature the c-Myc promoter forms duplex, random coil and GQ structures, and does not form an iM. Whereas at acidic pH, the mixture largely forms iM and GQ structures. Taken together, our system will complement existing tools and provide unprecedented insights on the population equilibrium and dynamics of nucleic acid structures under different conditions.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sarupa Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
21
|
El-Khoury R, Damha MJ. End-ligation can dramatically stabilize i-motifs at neutral pH. Chem Commun (Camb) 2023; 59:3715-3718. [PMID: 36883338 DOI: 10.1039/d2cc07063d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Stabilizing i-motif structures at neutral pH and physiological temperature remains a major challenge. Here, we demonstrate the use of chemical end-ligation to stabilize intramolecular i-motifs at both acidic and neutral pH. We also demonstrate that combining 2'-deoxy-2'-fluoroarabinocytidine substitutions and end-ligation results in an i-motif with an unparalleled thermal stability of 54 °C at neutral pH. Overall, the ligated i-motifs presented herein may be used in screens for selective i-motif ligands and proteins and could find important applications in nanotechnology.
Collapse
Affiliation(s)
- Roberto El-Khoury
- Department of Chemistry, McGill University, Montréal, H3A0B8, Canada.
| | - Masad J Damha
- Department of Chemistry, McGill University, Montréal, H3A0B8, Canada.
| |
Collapse
|
22
|
Luo X, Zhang J, Gao Y, Pan W, Yang Y, Li X, Chen L, Wang C, Wang Y. Emerging roles of i-motif in gene expression and disease treatment. Front Pharmacol 2023; 14:1136251. [PMID: 37021044 PMCID: PMC10067743 DOI: 10.3389/fphar.2023.1136251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
As non-canonical nucleic acid secondary structures consisting of cytosine-rich nucleic acids, i-motifs can form under certain conditions. Several i-motif sequences have been identified in the human genome and play important roles in biological regulatory functions. Due to their physicochemical properties, these i-motif structures have attracted attention and are new targets for drug development. Herein, we reviewed the characteristics and mechanisms of i-motifs located in gene promoters (including c-myc, Bcl-2, VEGF, and telomeres), summarized various small molecule ligands that interact with them, and the possible binding modes between ligands and i-motifs, and described their effects on gene expression. Furthermore, we discussed diseases closely associated with i-motifs. Among these, cancer is closely associated with i-motifs since i-motifs can form in some regions of most oncogenes. Finally, we introduced recent advances in the applications of i-motifs in multiple areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chang Wang
- *Correspondence: Chang Wang, ; Yuqing Wang,
| | | |
Collapse
|
23
|
Lu S, Dai Z, Cui Y, Kong DM. Recent Development of Advanced Fluorescent Molecular Probes for Organelle-Targeted Cell Imaging. BIOSENSORS 2023; 13:360. [PMID: 36979572 PMCID: PMC10046058 DOI: 10.3390/bios13030360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Fluorescent molecular probes are very powerful tools that have been generally applied in cell imaging in the research fields of biology, pathology, pharmacology, biochemistry, and medical science. In the last couple of decades, numerous molecular probes endowed with high specificity to particular organelles have been designed to illustrate intracellular images in more detail at the subcellular level. Nowadays, the development of cell biology has enabled the investigation process to go deeply into cells, even at the molecular level. Therefore, probes that can sketch a particular organelle's location while responding to certain parameters to evaluate intracellular bioprocesses are under urgent demand. It is significant to understand the basic ideas of organelle properties, as well as the vital substances related to each unique organelle, for the design of probes with high specificity and efficiency. In this review, we summarize representative multifunctional fluorescent molecular probes developed in the last decade. We focus on probes that can specially target nuclei, mitochondria, endoplasmic reticulums, and lysosomes. In each section, we first briefly introduce the significance and properties of different organelles. We then discuss how probes are designed to make them highly organelle-specific. Finally, we also consider how probes are constructed to endow them with additional functions to recognize particular physical/chemical signals of targeted organelles. Moreover, a perspective on the challenges in future applications of highly specific molecular probes in cell imaging is also proposed. We hope that this review can provide researchers with additional conceptual information about developing probes for cell imaging, assisting scientists interested in molecular biology, cell biology, and biochemistry to accelerate their scientific studies.
Collapse
Affiliation(s)
- Sha Lu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiqi Dai
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunxi Cui
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Fang J, Xie C, Tao Y, Wei D. An overview of single-molecule techniques and applications in the study of nucleic acid structure and function. Biochimie 2023; 206:1-11. [PMID: 36179939 DOI: 10.1016/j.biochi.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Nucleic acids are an indispensable component in all known life forms. The biological processes are regulated by Nucleic acids, which associate to form special high-order structures. since the high-level structures of nucleic acids are related to gene expression in cancer cells or viruses, it is very likely to become a potential drug target. Traditional biochemical methods are limited to distinguish the conformational distribution and dynamic transition process of single nucleic acid structure. The ligands based on the intermediate and transition states between different conformations are not designed by traditional biochemical methods. The single-molecule techniques enable real-time observation of the individual nucleic acid behavior due to its high resolution. Here, we introduce the application of single-molecule techniques in the study of small molecules to recognize nucleic acid structures, such as single-molecule FRET, magnetic tweezers, optical tweezers and atomic force microscopy. At the same time, we also introduce the specific advantages of single-molecule technology compared with traditional biochemical methods and some problems arisen in current research.
Collapse
Affiliation(s)
- Junkang Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Congbao Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yanfei Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
25
|
Jing H, Song Y, Li H, Duan E, Liu J, Ke W, Tao R, Li Y, Zhao P, Wang J, Cao S, Wang H, Sun Y, Zhang Y. HnRNP K reduces viral gene expression by targeting cytosine-rich sequences in porcine reproductive and respiratory syndrome virus-2 genome to dampen the viral growth. Virology 2023; 581:15-25. [PMID: 36842269 DOI: 10.1016/j.virol.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
HnRNP K is a well-known member of HnRNP family proteins that has been implicated in the regulation of protein expression. Currently, the impact of HnRNP K on the reproduction cycle of a broad range of virus were reported, while the precise function for PRRSV was lacking. In this study, we determined that both PRRSV infection and ectopic expression of N protein induced an enrichment of HnRNP K in the cytoplasm. Using RNA pulldown and RNA immunoprecipitation, we described the interactions between the KH2 domain of HnRNP K and cytosine-rich sequences (CRS) in PRRSV genomic RNA corresponding to Nsp7α coding region. Meanwhile, overexpression of HnRNP K inhibited viral gene expression and PRRSV replication, while silencing of HnRNP K resulted in an increased in virus yield. Taken together, this study assists in the understanding of PRRSV-host interactions, and the development of vaccines based on viral genome engineering.
Collapse
Affiliation(s)
- Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| | - Yuzhen Song
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Huawei Li
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Erzhen Duan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jie Liu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ran Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pandeng Zhao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Jinhe Wang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Sufang Cao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Haihua Wang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yanting Sun
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yan Zhang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| |
Collapse
|
26
|
Gong X, Lin X, Wang S, Ji D, Shu B, Huang ZS, Li D. Regulation of c-Kit gene transcription selectively by bisacridine derivative through promoter dual i-motif structures. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194912. [PMID: 36754277 DOI: 10.1016/j.bbagrm.2023.194912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND c-Kit protein is a signal transduction protein involved in multiple signal pathways, which play an important role in a variety of cellular events such as cell proliferation, apoptosis and differentiation. Special DNA secondary structures on the promoter of c-Kit gene, including G-quadruplex and i-motif structures, could act as "molecular switch" for gene transcriptional regulation, which are potentially important target for development of new anti-cancer drugs. METHODS We screened and evaluated the effect of compounds on c-Kit through several experiments, including SPR, FRET, CD, MST, NMR, dual-luciferase reporter assay, Western blot, qPCR, immunofluorescence, MTT assay, colony formation, cell scrape, cell apoptosis, cell cycle analysis, and transwell assay. RESULTS After extensive screening, we found that bisacridine derivative B05 had selective binding and stabilization to dual i-motif structures on c-Kit gene promoter, which could down-regulate c-Kit gene transcription and translation, resulting in inhibition of cell proliferation and metastasis. B05 exhibited potent anti-tumor activity on HGC-27 cells, and strongly suppressed tumor growth in HGC-27 xenograft mice model. CONCLUSIONS B05 could interact with c-Kit promoter dual i-motif structures with excellent selectivity, which make it possible for selective regulation of gene transcription and translation. B05 could be further developed for selective anti-cancer agent targeting c-Kit promoter i-motifs. GENERAL SIGNIFICANCE i-Motifs on different proto-oncogene promoters are diversified, and especially binding of dual i-motifs on the same promoter simultaneously could significantly down-regulate gene transcription with decreased dosage, and therefore increasing the selectivity. This new strategy shed bight light on development of selective DNA-targeting ligands.
Collapse
Affiliation(s)
- Xue Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Xiaomin Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Siyi Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Dongsheng Ji
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Bing Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China.
| |
Collapse
|
27
|
Roy A, Chatterjee O, Banerjee N, Roychowdhury T, Dhar G, Mukherjee G, Chatterjee S. Curcumin arrests G-quadruplex in the nuclear hyper-sensitive III 1 element of c-MYC oncogene leading to apoptosis in metastatic breast cancer cells. J Biomol Struct Dyn 2022; 40:10203-10219. [PMID: 34192476 DOI: 10.1080/07391102.2021.1940284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
c-MYC is deregulated in triple negative breast cancer (TNBC) pointing to be a promising biomarker for breast cancer treatment. Precise level of MYC expression is important in the control of cellular growth and proliferation. Designing of c-MYC-targeted antidotes to restore its basal level of cellular expression holds an optimistic approach towards anti-cancer treatment. MYC transcription is dominantly controlled by Nuclear Hypersensitive Element III-1 (NHEIII1) upstream of the promoter region possessing G-Quadruplex silencer element (Pu-27). We have investigated the selective binding-interaction profile of a natural phytophenolic compound Curcumin with native MYC G-quadruplex by conducting an array of biophysical experiments and in silico based Molecular Docking and Molecular Dynamic (MDs) simulation studies. Curcumin possesses immense anti-cancerous properties. We have observed significantly increased stability of MYC-G Quadruplex and thermodynamic spontaneity of Curcumin-MYC GQ binding with negative ΔG value. Transcription of MYC is tightly regulated by a complex mechanism involving promoters, enhancers and multiple transcription factors. We have used Curcumin as a model drug to understand the innate mechanism of controlling deregulated MYC back to its basal expression level. We have checked MYC-expression at transcriptional and translational level and proceeded for Chromatin Immuno-Precipitation assay (ChIP) to study the occupancy level of SP1, Heterogeneous nuclear ribonucleoprotein K (hnRNPK), Nucleoside Diphosphate Kinase 2 (NM23-H2) and Nucleolin at NHEIII1 upon Curcumin treatment of MDA-MB-231 cells. We have concluded that Curcumin binding tends to drive the equilibrium towards stable G-quadruplex formation repressing MYC back to its threshold-level. On retrospection of the synergistic effect of upregulated c-MYC and BCL-2 in cancer, we have also reported a new pathway [MYC-E2F-1-BCL-2-axis] through which Curcumin trigger apoptosis in cancer cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Biophysics, Bose Institute, Kolkata, India
| | | | | | - Tanaya Roychowdhury
- Department of Cancer Biology and Inflammatory Disorder, IICB, Kolkata, India
| | - Gopa Dhar
- Department of Biophysics, Bose Institute, Kolkata, India
| | | | | |
Collapse
|
28
|
Xu Q, Yang M, Chang Y, Peng S, Wang D, Zhou X, Shao Y. Switching G-quadruplex to parallel duplex by molecular rotor clustering. Nucleic Acids Res 2022; 50:10249-10263. [PMID: 36130267 PMCID: PMC9561263 DOI: 10.1093/nar/gkac811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 11/12/2022] Open
Abstract
Switching of G-quadruplex (G4) structures between variant types of folding has been proved to be a versatile tool for regulation of genomic expression and development of nucleic acid-based constructs. Various specific ligands have been developed to target G4s in K+ solution with therapeutic prospects. Although G4 structures have been reported to be converted by sequence modification or a unimolecular ligand binding event in K+-deficient conditions, switching G4s towards non-G4 folding continues to be a great challenge due to the stability of G4 in physiological K+ conditions. Herein, we first observed the G4 switching towards parallel-stranded duplex (psDNA) by multimolecular ligand binding (namely ligand clustering) to overcome the switching barrier in K+. Purine-rich sequences (e.g. those from the KRAS promoter region) can be converted from G4 structures to dimeric psDNAs using molecular rotors (e.g. thioflavin T and thiazole orange) as initiators. The formed psDNAs provided multiple binding sites for molecular rotor clustering to favor subsequent structures with stability higher than the corresponding G4 folding. Our finding provides a clue to designing ligands with the competency of molecular rotor clustering to implement an efficient G4 switching.
Collapse
Affiliation(s)
- Qiuda Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Mujing Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yun Chang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
29
|
Miglietta G, Marinello J, Russo M, Capranico G. Ligands stimulating antitumour immunity as the next G-quadruplex challenge. Mol Cancer 2022; 21:180. [PMID: 36114513 PMCID: PMC9482198 DOI: 10.1186/s12943-022-01649-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractG-quadruplex (G4) binders have been investigated to discover new anticancer drugs worldwide in past decades. As these ligands are generally not highly cytotoxic, the discovery rational was mainly based on increasing the cell-killing potency. Nevertheless, no G4 binder has been shown yet to be effective in cancer patients. Here, G4 binder activity at low dosages will be discussed as a critical feature to discover ligands with therapeutic effects in cancer patients. Specific effects of G4 binders al low doses have been reported to occur in cancer and normal cells. Among them, genome instability and the stimulation of cytoplasmic processes related to autophagy and innate immune response open to the use of G4 binders as immune-stimulating agents. Thus, we propose a new rational of drug discovery, which is not based on cytotoxic potency but rather on immune gene activation at non-cytotoxic dosage.
Collapse
|
30
|
Liu L, Zhu L, Tong H, Su C, Wells JW, Chalikian TV. Distribution of Conformational States Adopted by DNA from the Promoter Regions of the VEGF and Bcl-2 Oncogenes. J Phys Chem B 2022; 126:6654-6670. [PMID: 36001297 DOI: 10.1021/acs.jpcb.2c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employed a previously described procedure, based on circular dichroism (CD) spectroscopy, to quantify the distribution of conformational states adopted by equimolar mixtures of complementary G-rich and C-rich DNA strands from the promoter regions of the VEGF and Bcl-2 oncogenes. Spectra were recorded at different pHs, concentrations of KCl, and temperatures. The temperature dependences of the fractional populations of the duplex, G-quadruplex, i-motif, and coiled conformations of each promoter were then analyzed within the framework of a thermodynamic model to obtain the enthalpy and melting temperature of each folded-to-unfolded transition involved in the equilibrium. A comparison of the conformational data on the VEGF and Bcl-2 DNA with similar results on the c-MYC DNA, which we reported previously, reveals that the distribution of conformational states depends on the specific DNA sequence and is modulated by environmental factors. Under the physiological conditions of room temperature, neutral pH, and elevated concentrations of potassium ions, the duplex conformation coexists with the G-quadruplex conformation in proportions that depend on the sequence. This observed conformational diversity has biological implications, and it further supports our previously proposed thermodynamic hypothesis of gene regulation. In that hypothesis, a specific distribution of duplex and tetraplex conformations in a promoter region is fine-tuned to maintain the healthy level of gene expression. Any deviation from a healthy distribution of conformational states may result in pathology stemming from up- or downregulation of the gene.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Legeng Zhu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Haoyuan Tong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chongyu Su
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
31
|
Khatik SY, Srivatsan SG. Environment-Sensitive Nucleoside Probe Unravels the Complex Structural Dynamics of i-Motif DNAs. Bioconjug Chem 2022; 33:1515-1526. [PMID: 35819865 DOI: 10.1021/acs.bioconjchem.2c00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although evidence for the existence and biological role of i-motif (iM) DNA structures in cells is emerging, probing their structural polymorphism and identifying physiologically active conformations using currently available tools remain a major challenge. Here, we describe the development of an innovative device to investigate the conformation equilibrium of different iMs formed by C-rich telomeric repeat and oncogenic B-raf promoter sequences using a new conformation-sensitive dual-purpose nucleoside probe. The nucleoside is composed of a trifluoromethyl-benzofuran-2-yl moiety at the C5 position of 2'-deoxyuridine, which functions as a responsive fluorescent and 19F NMR probe. While the fluorescent component is useful in monitoring and estimating the folding process, the 19F label provides spectral signatures for various iMs, thereby enabling a systematic analysis of their complex population equilibrium under different conditions (e.g., pH, temperature, metal ions, and cell lysate). Distinct 19F signals exhibited by the iMs formed by the human telomeric repeat helped in calculating their relative population. A battery of fluorescence and 19F NMR studies using native and mutated B-raf oligonucleotides gave valuable insights into the iM structure landscape and its dependence on environmental conditions and also helped in predicting the structure of the major iM conformation. Overall, our findings indicate that the probe is highly suitable for studying complex nucleic acid systems.
Collapse
Affiliation(s)
- Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
32
|
Venkata Suseela Y, Sengupta P, Roychowdhury T, Panda S, Talukdar S, Chattopadhyay S, Chatterjee S, Govindaraju T. Targeting Oncogene Promoters and Ribosomal RNA Biogenesis by G-Quadruplex Binding Ligands Translate to Anticancer Activity. ACS BIO & MED CHEM AU 2022; 2:125-139. [PMID: 37101746 PMCID: PMC10114666 DOI: 10.1021/acsbiomedchemau.1c00039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
G-Quadruplex (GQ) nucleic acids are promising therapeutic targets in anticancer research due to their structural robustness, polymorphism, and gene-regulatory functions. Here, we presented the structure-activity relationship of carbazole-based monocyanine ligands using region-specific functionalization with benzothiazole (TCA and TCZ), lepidine (LCA and LCZ), and quinaldine (QCA and QCZ) acceptor moieties and evaluated their binding profiles with different oncogenic GQs. Their differential turn-on fluorescence emission upon GQ binding confirmed the GQ-to-duplex selectivity of all carbazole ligands, while the isothermal titration calorimetry results showed selective interactions of TCZ and TCA to c-MYC and BCL-2 GQs, respectively. The aldehyde group in TCA favors stacking interactions with the tetrad of BCL-2 GQ, whereas TCZ provides selective groove interactions with c-MYC GQ. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) showed that these molecules interfere with the recruitment of specific transcription factors at c-MYC and BCL-2 promoters and stabilize the promoter GQ structures to inhibit their constitutive transcription in cancer cells. Their intrinsic turn-on fluorescence response with longer lifetimes upon GQ binding allowed real-time visualization of GQ structures at subcellular compartments. Confocal microscopy revealed the uptake of these ligands in the nucleoli, resulting in nucleolar stress. ChIP studies further confirmed the inhibition of Nucleolin occupancy at multiple GQ-enriched regions of ribosomal DNA (rDNA) promoters, which arrested rRNA biogenesis. Therefore, carbazole ligands act as the "double-edged swords" to arrest c-MYC and BCL-2 overexpression as well as rRNA biogenesis, triggering synergistic inhibition of multiple oncogenic pathways and apoptosis in cancer cells.
Collapse
Affiliation(s)
- Yelisetty Venkata Suseela
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| | - Pallabi Sengupta
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Tanaya Roychowdhury
- Cancer
Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Suman Panda
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Sangita Talukdar
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| | - Samit Chattopadhyay
- Cancer
Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Subhrangsu Chatterjee
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Thimmaiah Govindaraju
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
33
|
Jamroskovic J, Deiana M, Sabouri N. Probing the folding pathways of four-stranded intercalated cytosine-rich motifs at single base-pair resolution. Biochimie 2022; 199:81-91. [PMID: 35452743 DOI: 10.1016/j.biochi.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
Abstract
Cytosine-rich DNA can fold into four-stranded intercalated structures called i-motifs (iMs) under acidic conditions through the formation of hemi-protonated C:C+ base pairs. However, the folding and stability of iMs rely on many other factors that are not yet fully understood. Here, we combined biochemical and biophysical approaches to determine the factors influencing iM stability under a wide range of experimental conditions. By using high-resolution primer extension assays, circular dichroism, and absorption spectroscopies, we demonstrate that the stabilities of three different biologically relevant iMs are not dependent on molecular crowding agents. Instead, some of the crowding agents affected overall DNA synthesis. We also tested a range of small molecules to determine their effect on iM stabilization at physiological temperature and demonstrated that the G-quadruplex-specific molecule CX-5461 is also a promising candidate for selective iM stabilization. This work provides important insights into the requirements needed for different assays to accurately study iM stabilization, which will serve as important tools for understanding the contribution of iMs in cell regulation and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jan Jamroskovic
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden.
| | - Marco Deiana
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
34
|
Stability and context of intercalated motifs (i-motifs) for biological applications. Biochimie 2022; 198:33-47. [PMID: 35259471 DOI: 10.1016/j.biochi.2022.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022]
Abstract
DNA is naturally dynamic and can self-assemble into alternative secondary structures including the intercalated motif (i-motif), a four-stranded structure formed in cytosine-rich DNA sequences. Until recently, i-motifs were thought to be unstable in physiological cellular environments. Studies demonstrating their existence in the human genome and role in gene regulation are now shining light on their biological relevance. Herein, we review the effects of epigenetic modifications on i-motif structure and stability, and biological factors that affect i-motif formation within cells. Furthermore, we highlight recent progress in targeting i-motifs with structure-specific ligands for biotechnology and therapeutic purposes.
Collapse
|
35
|
Gao B, Zheng YT, Su AM, Sun B, Xi XG, Hou XM. Remodeling the conformational dynamics of I-motif DNA by helicases in ATP-independent mode at acidic environment. iScience 2022; 25:103575. [PMID: 34988409 PMCID: PMC8704484 DOI: 10.1016/j.isci.2021.103575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/09/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023] Open
Abstract
I-motifs are noncanonical four-stranded DNA structures formed by C-rich sequences at acidic environment with critical biofunctions. The particular pH sensitivity has inspired the development of i-motifs as pH sensors and DNA motors in nanotechnology. However, the folding and regulation mechanisms of i-motifs remain elusive. Here, using single-molecule FRET, we first show that i-motifs are more dynamic than G4s. Impressively, i-motifs display a high diversity of six folding species with slow interconversion. Further results indicate that i-motifs can be linearized by Replication protein A. More importantly, we identified a number of helicases with high specificity to i-motifs at low pH. All these helicases directly act on and efficiently resolve i-motifs into intermediates independent of ATP, although they poorly unwind G4 or duplex at low pH. Owing to the extreme sensitivity to helicases and no need for ATP, i-motif may be applied as a probe for helicase sensing both in vitro and in vivo.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ya-Ting Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ai-Min Su
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
- LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Gif-sur-Yvette, France
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Corresponding author
| |
Collapse
|
36
|
Kretzmann JA, Irving KL, Smith NM, Evans CW. Modulating gene expression in breast cancer via DNA secondary structure and the CRISPR toolbox. NAR Cancer 2022; 3:zcab048. [PMID: 34988459 PMCID: PMC8693572 DOI: 10.1093/narcan/zcab048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most commonly diagnosed malignancy in women, and while the survival prognosis of patients with early-stage, non-metastatic disease is ∼75%, recurrence poses a significant risk and advanced and/or metastatic breast cancer is incurable. A distinctive feature of advanced breast cancer is an unstable genome and altered gene expression patterns that result in disease heterogeneity. Transcription factors represent a unique therapeutic opportunity in breast cancer, since they are known regulators of gene expression, including gene expression involved in differentiation and cell death, which are themselves often mutated or dysregulated in cancer. While transcription factors have traditionally been viewed as 'undruggable', progress has been made in the development of small-molecule therapeutics to target relevant protein-protein, protein-DNA and enzymatic active sites, with varying levels of success. However, non-traditional approaches such as epigenetic editing, transcriptional control via CRISPR/dCas9 systems, and gene regulation through non-canonical nucleic acid secondary structures represent new directions yet to be fully explored. Here, we discuss these new approaches and current limitations in light of new therapeutic opportunities for breast cancers.
Collapse
Affiliation(s)
- Jessica A Kretzmann
- Laboratory for Biomolecular Nanotechnology, Department of Physics, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany
| | - Kelly L Irving
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Nicole M Smith
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
37
|
Cheng Y, Zhang Y, You H. Characterization of G-Quadruplexes Folding/Unfolding Dynamics and Interactions with Proteins from Single-Molecule Force Spectroscopy. Biomolecules 2021; 11:1579. [PMID: 34827577 PMCID: PMC8615981 DOI: 10.3390/biom11111579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
G-quadruplexes (G4s) are stable secondary nucleic acid structures that play crucial roles in many fundamental biological processes. The folding/unfolding dynamics of G4 structures are associated with the replication and transcription regulation functions of G4s. However, many DNA G4 sequences can adopt a variety of topologies and have complex folding/unfolding dynamics. Determining the dynamics of G4s and their regulation by proteins remains challenging due to the coexistence of multiple structures in a heterogeneous sample. Here, in this mini-review, we introduce the application of single-molecule force-spectroscopy methods, such as magnetic tweezers, optical tweezers, and atomic force microscopy, to characterize the polymorphism and folding/unfolding dynamics of G4s. We also briefly introduce recent studies using single-molecule force spectroscopy to study the molecular mechanisms of G4-interacting proteins.
Collapse
Affiliation(s)
| | | | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.Z.)
| |
Collapse
|
38
|
Yaşar P, Kars G, Yavuz K, Ayaz G, Oğuztüzün Ç, Bilgen E, Suvacı Z, Çetinkol ÖP, Can T, Muyan M. A CpG island promoter drives the CXXC5 gene expression. Sci Rep 2021; 11:15655. [PMID: 34341443 PMCID: PMC8329181 DOI: 10.1038/s41598-021-95165-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
CXXC5 is a member of the zinc-finger CXXC family that binds to unmethylated CpG dinucleotides. CXXC5 modulates gene expressions resulting in diverse cellular events mediated by distinct signaling pathways. However, the mechanism responsible for CXXC5 expression remains largely unknown. We found here that of the 14 annotated CXXC5 transcripts with distinct 5' untranslated regions encoding the same protein, transcript variant 2 with the highest expression level among variants represents the main transcript in cell models. The DNA segment in and at the immediate 5'-sequences of the first exon of variant 2 contains a core promoter within which multiple transcription start sites are present. Residing in a region with high G-C nucleotide content and CpG repeats, the core promoter is unmethylated, deficient in nucleosomes, and associated with active RNA polymerase-II. These findings suggest that a CpG island promoter drives CXXC5 expression. Promoter pull-down revealed the association of various transcription factors (TFs) and transcription co-regulatory proteins, as well as proteins involved in histone/chromatin, DNA, and RNA processing with the core promoter. Of the TFs, we verified that ELF1 and MAZ contribute to CXXC5 expression. Moreover, the first exon of variant 2 may contain a G-quadruplex forming region that could modulate CXXC5 expression.
Collapse
Affiliation(s)
- Pelin Yaşar
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.
- Epigenetics and Stem Cell Biology Laboratory, Single Cell Dynamics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | - Gizem Kars
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Kerim Yavuz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Gamze Ayaz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Çerağ Oğuztüzün
- Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey
| | - Ecenaz Bilgen
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Zeynep Suvacı
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | | | - Tolga Can
- Department of Computer Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Mesut Muyan
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.
- Cansyl Laboratories, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
39
|
Xi D, Cui M, Zhou X, Zhuge X, Ge Y, Wang Y, Zhang S. Nanopore-Based Single-Molecule Investigation of DNA Sequences with Potential to Form i-Motif Structures. ACS Sens 2021; 6:2691-2699. [PMID: 34237940 DOI: 10.1021/acssensors.1c00712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
i-Motifs are DNA secondary structures present in cytosine-rich sequences. These structures are formed in regulatory regions of the human genome and play key regulatory roles. The investigation of sequences capable of forming i-motif structures at the single-molecule level is highly important. In this study, we used α-hemolysin nanopores to systematically study a series of DNA sequences at the nanometer scale by providing structure-dependent signature current signals to gain in-sights into the i-motif DNA sequence and structural stability. Increasing the length of the cytosine tract in a range of 3-10 nucleobases resulted in a longer translocation time through the pore, indicating improved stability. Changing the loop sequence and length in the sequences did not affect the formation of the i-motif structure but changed its stability. Importantly, the application of all-atom molecular dynamics simulations revealed the structural morphology of all sequences. Based on these results, we postulated a folding rule for i-motif formation, suggesting that thousands of cytosine-rich sequences in the human genome might fold into i-motif structures. Many of these were found in locations where structure formation is likely to play regulatory roles. These findings provide insights into the application of nanopores as a powerful tool for discovering potential i-motif-forming sequences and lay a foundation for future studies exploring the biological roles of i-motifs.
Collapse
Affiliation(s)
- Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Sciences, Linyi University, Linyi 276005, P. R. China
| | - Mengjie Cui
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Xin Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Xiao Zhuge
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Yaxian Ge
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Ying Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Sciences, Linyi University, Linyi 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
40
|
Cave JW, Willis DE. G-quadruplex regulation of neural gene expression. FEBS J 2021; 289:3284-3303. [PMID: 33905176 DOI: 10.1111/febs.15900] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures characterized by stacked tetrads of guanosine bases. These structures are widespread throughout mammalian genomic DNA and RNA transcriptomes, and prevalent across all tissues. The role of G-quadruplexes in cancer is well-established, but there has been a growing exploration of these structures in the development and homeostasis of normal tissue. In this review, we focus on the roles of G-quadruplexes in directing gene expression in the nervous system, including the regulation of gene transcription, mRNA processing, and trafficking, as well as protein translation. The role of G-quadruplexes and their molecular interactions in the pathology of neurological diseases is also examined. Outside of cancer, there has been only limited exploration of G-quadruplexes as potential intervention targets to treat disease or injury. We discuss studies that have used small-molecule ligands to manipulate G-quadruplex stability in order to treat disease or direct neural stem/progenitor cell proliferation and differentiation into therapeutically relevant cell types. Understanding the many roles that G-quadruplexes have in the nervous system not only provides critical insight into fundamental molecular mechanisms that control neurological function, but also provides opportunities to identify novel therapeutic targets to treat injury and disease.
Collapse
Affiliation(s)
- John W Cave
- InVitro Cell Research LLC, Englewood, NJ, USA
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, USA.,Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
41
|
Spiegel J, Cuesta SM, Adhikari S, Hänsel-Hertsch R, Tannahill D, Balasubramanian S. G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol 2021; 22:117. [PMID: 33892767 PMCID: PMC8063395 DOI: 10.1186/s13059-021-02324-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The binding of transcription factors (TF) to genomic targets is critical in the regulation of gene expression. Short, double-stranded DNA sequence motifs are routinely implicated in TF recruitment, but many questions remain on how binding site specificity is governed. RESULTS Herein, we reveal a previously unappreciated role for DNA secondary structures as key features for TF recruitment. In a systematic, genome-wide study, we discover that endogenous G-quadruplex secondary structures (G4s) are prevalent TF binding sites in human chromatin. Certain TFs bind G4s with affinities comparable to double-stranded DNA targets. We demonstrate that, in a chromatin context, this binding interaction is competed out with a small molecule. Notably, endogenous G4s are prominent binding sites for a large number of TFs, particularly at promoters of highly expressed genes. CONCLUSIONS Our results reveal a novel non-canonical mechanism for TF binding whereby G4s operate as common binding hubs for many different TFs to promote increased transcription.
Collapse
Affiliation(s)
- Jochen Spiegel
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Sergio Martínez Cuesta
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Present Address: Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca, Cambridge, UK
| | - Santosh Adhikari
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Robert Hänsel-Hertsch
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Present Address: Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - David Tannahill
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK.
| |
Collapse
|
42
|
Gao B, Hou XM. Opposite Effects of Potassium Ions on the Thermal Stability of i-Motif DNA in Different Buffer Systems. ACS OMEGA 2021; 6:8976-8985. [PMID: 33842768 PMCID: PMC8028132 DOI: 10.1021/acsomega.0c06350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/11/2021] [Indexed: 05/12/2023]
Abstract
i-motifs are noncanonical DNA structures formed via the stack of intercalating hemi-protonated C+: C base pairs in C-rich DNA strands and play essential roles in the regulation of gene expression. Here, we systematically investigated the impacts of K+ on i-motif DNA folding using different buffer systems. We found that i-motif structures display very different T m values at the same pH and ion strength in different buffer systems. More importantly, K+ disrupts the i-motif formed in the MES and Bis-Tris buffer; however, K+ stabilizes the i-motif in phosphate, citrate, and sodium cacodylate buffers. Next, we selected phosphate buffer and confirmed by single-molecule fluorescence resonance energy transfer that K+ indeed has the stabilizing effect on the folding of i-motif DNA from pH 5.8 to 8.0. Nonetheless, circular dichroism spectra further indicate that the structures formed by i-motif sequences at high K+ concentrations at neutral and alkaline pH are not i-motif but other types of higher-order structures and most likely C-hairpins. We finally proposed the mechanisms of how K+ plays the opposite roles in different buffer systems. The present study may provide new insights into our understanding of the formation and stability of i-motif DNA.
Collapse
Affiliation(s)
| | - Xi-Miao Hou
- . Phone: +86 29 8708 1664. Fax: +86 29 8708 1664
| |
Collapse
|
43
|
Sengupta P, Bose D, Chatterjee S. The Molecular Tête-à-Tête between G-Quadruplexes and the i-motif in the Human Genome. Chembiochem 2021; 22:1517-1537. [PMID: 33355980 DOI: 10.1002/cbic.202000703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/16/2020] [Indexed: 12/22/2022]
Abstract
G-Quadruplex (GQ) and i-motif structures are the paradigmatic examples of nonclassical tetrastranded nucleic acids having multifarious biological functions and widespread applications in therapeutics and material science. Recently, tetraplexes emerged as promising anticancer targets due to their structural robustness, gene-regulatory roles, and predominant distribution at specific loci of oncogenes. However, it is arguable whether the i-motif evolves in the complementary single-stranded region after GQ formation in its opposite strand and vice versa. In this review, we address the prerequisites and significance of the simultaneous and/or mutually exclusive formation of GQ and i-motif structures at complementary and sequential positions in duplexes in the cellular milieu. We discussed how their dynamic interplay Sets up cellular homeostasis and exacerbates carcinogenesis. The review gives insights into the spatiotemporal formation of GQ and i-motifs that could be harnessed to design different types of reporter systems and diagnostic platforms for potential bioanalytical and therapeutic intervention.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Debopriya Bose
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| |
Collapse
|
44
|
Brown SL, Kendrick S. The i-Motif as a Molecular Target: More Than a Complementary DNA Secondary Structure. Pharmaceuticals (Basel) 2021; 14:ph14020096. [PMID: 33513764 PMCID: PMC7911047 DOI: 10.3390/ph14020096] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/25/2022] Open
Abstract
Stretches of cytosine-rich DNA are capable of adopting a dynamic secondary structure, the i-motif. When within promoter regions, the i-motif has the potential to act as a molecular switch for controlling gene expression. However, i-motif structures in genomic areas of repetitive nucleotide sequences may play a role in facilitating or hindering expansion of these DNA elements. Despite research on the i-motif trailing behind the complementary G-quadruplex structure, recent discoveries including the identification of a specific i-motif antibody are pushing this field forward. This perspective reviews initial and current work characterizing the i-motif and providing insight into the biological function of this DNA structure, with a focus on how the i-motif can serve as a molecular target for developing new therapeutic approaches to modulate gene expression and extension of repetitive DNA.
Collapse
|
45
|
King JJ, Irving KL, Evans CW, Chikhale RV, Becker R, Morris CJ, Peña Martinez CD, Schofield P, Christ D, Hurley LH, Waller ZAE, Iyer KS, Smith NM. DNA G-Quadruplex and i-Motif Structure Formation Is Interdependent in Human Cells. J Am Chem Soc 2020; 142:20600-20604. [PMID: 33253551 DOI: 10.1021/jacs.0c11708] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Guanine- and cytosine-rich nucleic acid sequences have the potential to form secondary structures such as G-quadruplexes and i-motifs, respectively. We show that stabilization of G-quadruplexes using small molecules destabilizes the i-motifs, and vice versa, indicating these gene regulatory controllers are interdependent in human cells. This has important implications as these structures are predominately considered as isolated structural targets for therapy, but their interdependency highlights the interplay of both structures as an important gene regulatory switch.
Collapse
Affiliation(s)
- Jessica J King
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Kelly L Irving
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Cameron W Evans
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Rupesh V Chikhale
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.,UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Rouven Becker
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Christopher J Morris
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Cristian D Peña Martinez
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney New South Wales 2010, Australia
| | - Peter Schofield
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Daniel Christ
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Laurence H Hurley
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.,UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - K Swaminathan Iyer
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nicole M Smith
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
46
|
Zhang X, Zhang Y, Zhang W. Dynamic topology of double-stranded telomeric DNA studied by single-molecule manipulation in vitro. Nucleic Acids Res 2020; 48:6458-6470. [PMID: 32496520 PMCID: PMC7337930 DOI: 10.1093/nar/gkaa479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
The dynamic topological structure of telomeric DNA is closely related to its biological function; however, no such structural information on full-length telomeric DNA has been reported due to difficulties synthesizing long double-stranded telomeric DNA. Herein, we developed an EM-PCR and TA cloning-based approach to synthesize long-chain double-stranded tandem repeats of telomeric DNA. Using mechanical manipulation assays based on single-molecule atomic force microscopy, we found that mechanical force can trigger the melting of double-stranded telomeric DNA and the formation of higher-order structures (G-quadruplexes or i-motifs). Our results show that only when both the G-strand and C-strand of double-stranded telomeric DNA form higher-order structures (G-quadruplexes or i-motifs) at the same time (e.g. in the presence of 100 mM KCl under pH 4.7), that the higher-order structure(s) can remain after the external force is removed. The presence of monovalent K+, single-wall carbon nanotubes (SWCNTs), acidic conditions, or short G-rich fragments (∼30 nt) can shift the transition from dsDNA to higher-order structures. Our results provide a new way to regulate the topology of telomeric DNA.
Collapse
Affiliation(s)
- Xiaonong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Yingqi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
47
|
Školáková P, Badri Z, Foldynová-Trantírková S, Ryneš J, Šponer J, Fojtová M, Fajkus J, Marek R, Vorlíčková M, Mergny JL, Trantírek L. Composite 5-methylations of cytosines modulate i-motif stability in a sequence-specific manner: Implications for DNA nanotechnology and epigenetic regulation of plant telomeric DNA. Biochim Biophys Acta Gen Subj 2020; 1864:129651. [DOI: 10.1016/j.bbagen.2020.129651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
|
48
|
Kuang G, Zhang M, Kang S, Hu D, Li X, Wei Z, Gong X, An LK, Huang ZS, Shu B, Li D. Syntheses and Evaluation of New Bisacridine Derivatives for Dual Binding of G-Quadruplex and i-Motif in Regulating Oncogene c-myc Expression. J Med Chem 2020; 63:9136-9153. [PMID: 32787078 DOI: 10.1021/acs.jmedchem.9b01917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The c-myc oncogene is an important regulator for cell growth and differentiation, and its aberrant overexpression is closely related to the occurrence and development of various cancers. Thus, the suppression of c-myc transcription and expression has been investigated for cancer treatment. In this study, various new bisacridine derivatives were synthesized and evaluated for their binding with c-myc promoter G-quadruplex and i-motif. We found that a9 could bind to and stabilize both G-quadruplex and i-motif, resulting in the downregulation of c-myc gene transcription. a9 could inhibit cancer cell proliferation and induce SiHa cell apoptosis and cycle arrest. a9 exhibited tumor growth inhibition activity in a SiHa xenograft tumor model, which might be related to its binding with c-myc promoter G-quadruplex and i-motif. Our results suggested that a9 as a dual G-quadruplex/i-motif binder could be effective in both oncogene replication and transcription and become a promising lead compound for further development with improved potency and selectivity.
Collapse
Affiliation(s)
- Guotao Kuang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Shuangshuang Kang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Dexuan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Xiaoya Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Zuzhuang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Xue Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Bing Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| |
Collapse
|
49
|
Sengupta P, Chatterjee S. Inosine 5'-diphosphate, a molecular decoy rescues Nucleoside diphosphate kinase from c-MYC G-Quadruplex unfolding. Biochim Biophys Acta Gen Subj 2020; 1864:129649. [PMID: 32492501 DOI: 10.1016/j.bbagen.2020.129649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/02/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The transcription-inhibitory G-Quadruplex(Pu27-GQ) at c-MYC promoter is challenging to target due to structural heterogeneity. Nucleoside diphosphate kinase (NM23-H2) specifically binds and unfolds Pu27-GQ to increase c-MYC transcription. Here, we used Inosine 5'-diphosphate (IDP) to disrupt NM23-H2-Pu27-GQ interactions and arrest c-MYC transcription without compromising NM23-H2-mediated kinase properties. METHODS Site-directed mutagenesis,31P-NMR and STD-NMR studies delineate the epitope of NM23-H2-IDP complex and characterize specific amino acids in NM23-H2 involved in Pu27-GQ and IDP interactions. Immunoprecipitations and phosphohistidine-immunoblots reveal how IDP blocks NM23-H2-Pu27 association to downregulate c-MYC transcription in MDAMB-231 cells exempting NM23-H2-mediated kinase properties. RESULTS NMR studies show that IDP binds to the Guanosine diphosphate-binding pocket of NM23-H2 (KD = 5.0 ± 0.276 μM). Arg88-driven hydrogen bonds to the terminal phosphate of IDP restricts P-O-P bond-rotation increasing its pKa (∆pKa = 0.85 ± 0.0025).9-inosinyl moiety of IDP is stacked over Phe60 phenyl ring driving trans-conformation of inosine and axial geometry of pyrophosphates. Chromatin immunoprecipitations revealed that these interactions rescue NM23-H2-driven Pu27-GQ unfolding, which triggers Nucleolin recruitment and lowers Sp1 occupancy at c-MYC promoter stabilizing Pu27-GQ. This silences c-MYC transcription that reduces c-MYC-Sp1 association amplifying Sp1 recruitment across P21 promoter stimulating P21 transcription and G2/M arrest. CONCLUSIONS IDP synergizes the effects of Pu27-GQ-interacting compounds to abrogate c-MYC transcription and induce apoptosis in MDAMB-231 cells by disrupting NM23-H2-Pu27-GQ interactions without affecting NM23-H2-mediated kinase properties. GENERAL SIGNIFICANCE Our study provides a pragmatic approach for developing NM23-H2-targeting regulators to rescue NM23-H2 binding at structurally ambiguous Pu27-GQ that synergizes the anti-tumorigenic effects of GQ-based therapeutics with minimized off-target effects.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata 700054, India.
| |
Collapse
|
50
|
Navarro A, Benabou S, Eritja R, Gargallo R. Influence of pH and a porphyrin ligand on the stability of a G-quadruplex structure within a duplex segment near the promoter region of the SMARCA4 gene. Int J Biol Macromol 2020; 159:383-393. [PMID: 32416304 DOI: 10.1016/j.ijbiomac.2020.05.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 05/09/2020] [Indexed: 12/20/2022]
Abstract
In a previous work, the formation of G-quadruplex structures in a 44-nucleotide long sequence found near the promoter region of the SMARCA4 gene was reported. The central 25 nucleotides were able to fold into an antiparallel G-quadruplex structure, the stability of which was pH-dependent. In the present work, the effect of the presence of lateral nucleotides and the complementary cytosine-rich strand on the stability of this G-quadruplex has been characterized. Moreover, the role of the model ligand TMPyP4 has been studied. Spectroscopic and separation techniques, as well as multivariate data analysis methods, have been used with these purposes. The results have shown that stability of the G-quadruplex as a function of pH or temperature is greatly reduced in the presence of the lateral nucleotides. The influence of the complementary strand does not prevent the formation of the G-quadruplex. Moreover, attempts to modulate the equilibria by an external ligand led us to determine the influence of the TMPyP4 porphyrin on these complex equilibria. This study could eventually help to understand the regulation of SMARCA4 expression.
Collapse
Affiliation(s)
- Alba Navarro
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Spain
| | - Sanae Benabou
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Spain; Université de Bordeaux, CNRS, Inserm, Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Spain.
| |
Collapse
|