1
|
Li Y, Figueirêdo de Alcântara Morais S, Han M, Phan TA, Creste G, Jouffroy M, Matt D, Djukic JP, Cornaton Y, Braunstein P, Pelzer K, Armspach D. Cis-Chelating Diphosphanes for Intracavity Nickel(II)-Catalyzed Ethylene Oligomerization. Chemistry 2025:e202501188. [PMID: 40345968 DOI: 10.1002/chem.202501188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Four cis-chelating diphosphanes derived from cyclodextrins (CDs), each featuring a distinct intracavity environment, compel NiII or PdII metal centers to reside within α- or β-CD cavities. Nickel(II) complexes of these metal-confining ligands act as active catalysts in ethylene oligomerization upon activation with modified methylaluminoxane (MMAO). The size of the cavity and the position of the P2Ni fragment relative to the cavity affect both the activity and selectivity of the reaction. In all instances, 1-butene is the major product (up to 98% C4 products and 90% 1-butene within the C4 fraction). Extensive theoretical studies with state-of-the-art methods carried out on the most selective system suggest that the CD cavity restricts isomerization pathways by limiting the mobility of the coordinated olefin in this constrained supramolecular environment, thereby enhancing α-olefin formation.
Collapse
Affiliation(s)
- Yang Li
- Équipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS90032, 67081 Strasbourg cedex, France
| | - Sara Figueirêdo de Alcântara Morais
- Laboratoire de Chimie et Systémique Organo-Métalliques, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS90032, 67081 Strasbourg cedex, France
| | - Mingyang Han
- Équipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS90032, 67081 Strasbourg cedex, France
| | - Tuan-Anh Phan
- Équipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS90032, 67081 Strasbourg cedex, France
| | - Geordie Creste
- Équipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS90032, 67081 Strasbourg cedex, France
| | - Matthieu Jouffroy
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS90032, 67081 Strasbourg cedex, France
| | - Dominique Matt
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS90032, 67081 Strasbourg cedex, France
| | - Jean-Pierre Djukic
- Laboratoire de Chimie et Systémique Organo-Métalliques, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS90032, 67081 Strasbourg cedex, France
| | - Yann Cornaton
- Laboratoire de Chimie et Systémique Organo-Métalliques, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS90032, 67081 Strasbourg cedex, France
| | - Pierre Braunstein
- Équipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS90032, 67081 Strasbourg cedex, France
| | - Katrin Pelzer
- Équipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS90032, 67081 Strasbourg cedex, France
| | - Dominique Armspach
- Équipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS90032, 67081 Strasbourg cedex, France
| |
Collapse
|
2
|
Wang L, Ke J, Chai Y, Wu G, Wang C, Li L. Additive-Free Ethylene Dimerization Over Well-Defined Nickel-Zeolite Catalysts. Angew Chem Int Ed Engl 2025; 64:e202502563. [PMID: 40016924 DOI: 10.1002/anie.202502563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/01/2025]
Abstract
Ethylene dimerization is a crucial chemical process, which currently relies on organo-metallic catalysis with the assistance of overdosed additives as cocatalysts. Heterogeneous nickel catalysts have been investigated as alternatives for ethylene dimerization, however suffer from low catalytic activity and/or poor 1-butene selectivity. Herein, we report a simple two-step ion-exchange strategy for the preparation of Ni-Mg-Y zeolite containing well-defined coordinatively-unsaturated nickel centers as a promising catalyst for ethylene dimerization. Ni-Mg-Y shows unprecedent performance with 1-butene formation rate of 3.8 × 105 h-1 and 1-butene selectivity of 91.2 %, without the assistance of any cocatalysts. With the combination of advanced characterization techniques and comprehensive theoretical simulations, it has been demonstrated for the first time that the in-situ generated Ni-alkyl motif is the intrinsic active site and ethylene dimerization proceeds dominantly via the Cossee-Arlman pathway. The dynamic hydrogen transfer between ethylene/alkyl ligand and zeolite framework dedicates to the observed catalytic performance.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Ke
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai, 201208, P. R. China
| | - Yuchao Chai
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Guangjun Wu
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chuanming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai, 201208, P. R. China
| | - Landong Li
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Gupta P, Rana B, Maurya R, Kalita R, Chauhan M, Manna K. Copper catalyzed selective methane oxidation to acetic acid using O 2. Chem Sci 2025; 16:2785-2795. [PMID: 39811007 PMCID: PMC11726234 DOI: 10.1039/d4sc06281g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
The direct transformation of methane into C2 oxygenates such as acetic acid selectively using molecular oxygen (O2) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O2. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmolCH3CO2H molCu -1 h-1 in 9.3% methane conversion with 95% selectivity in the liquid phase and can be reused at least 6 times. Our experiments, along with computational studies and spectroscopic analyses, suggest a catalytic cycle involving the formation of a methyl radical (˙CH3). The confinement of Cu-active sites within the porous MIL-53(Al) MOF facilitates C-C bond coupling, resulting in the efficient formation of acetic acid with excellent selectivity due to the internal mass transfer limitations. This work advances the development of efficient and chemoselective earth-abundant metal catalysts using MOFs for the direct transformation of methane into value-added products under mild and eco-friendly conditions.
Collapse
Affiliation(s)
- Poorvi Gupta
- Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
| | - Bharti Rana
- Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
| | - Rishabh Maurya
- Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
| | - Rahul Kalita
- Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
| |
Collapse
|
4
|
Bunzen H, Sertcan Gökmen B, Kalytta-Mewes A, Grzywa M, Wojciechowski J, Hutter J, Hehn AS, Volkmer D. Experimental and Theoretical Insights on Gas Trapping of Noble Gases in MFU-4-Type Metal-Organic Frameworks. Chemistry 2025; 31:e202403574. [PMID: 39570680 DOI: 10.1002/chem.202403574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Isostructural metal-organic frameworks (MOFs), namely MFU-4 and MFU-4-Br, in which the pore apertures are defined by anionic side ligands (Cl- and Br-, respectively), were synthesized and loaded with noble gases. By selecting the type of side ligand, one can fine-tune the pore aperture size, allowing for precise regulation of the entry and release of gas guests. In this study, we conducted experiments to examine gas loading and release using krypton and xenon as model gases, and we complemented our findings with computational modeling. Remarkably, the loaded gas guests remained trapped inside the pores even after being exposed to air under ambient conditions for extended periods, in some cases for up to several weeks. Therefore, we focused on determining the energy barrier preventing gas release using both theoretical and experimental methods. The results were compared in relation to the types of hosts and guests, providing valuable insights into the gas trapping process in MOFs, as well as programmed gas release in air under ambient conditions. Furthermore, the crystal structure of MFU-4-Br was elucidated using the three-dimensional electron diffraction (3DED) technique, and the bulk purity of the sample was subsequently verified through Rietveld refinement.
Collapse
Affiliation(s)
- Hana Bunzen
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159, Augsburg, Germany
| | - Beliz Sertcan Gökmen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Andreas Kalytta-Mewes
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159, Augsburg, Germany
| | - Maciej Grzywa
- Rigaku Europe SE, Hugenottenallee 167, 63263, Neu-Isenburg, Germany
| | | | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anna-Sophia Hehn
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Strasse 1, 24118, Kiel, Germany
| | - Dirk Volkmer
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159, Augsburg, Germany
| |
Collapse
|
5
|
Liu S, Dun C, Yang F, Tung KL, Wierzbicki D, Ghose S, Chen K, Chen L, Ciora R, Khan MA, Xuan Z, Yu M, Urban JJ, Swihart MT. A general flame aerosol route to kinetically stabilized metal-organic frameworks. Nat Commun 2024; 15:9365. [PMID: 39477932 PMCID: PMC11525546 DOI: 10.1038/s41467-024-53678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Metal-organic frameworks (MOFs) are highly attractive porous materials with applications spanning the fields of chemistry, physics, biology, and engineering. Their exceptional porosity and structural flexibility have led to widespread use in catalysis, separation, biomedicine, and electrochemistry. Currently, most MOFs are synthesized under equilibrium liquid-phase reaction conditions. Here we show a general and versatile non-equilibrium flame aerosol synthesis of MOFs, in which rapid kinetics of MOF formation yields two distinct classes of MOFs, nano-crystalline MOFs and amorphous MOFs. A key advantage of this far-from-equilibrium synthesis is integration of different metal cations within a single MOF phase, even when this is thermodynamically unfavorable. This can, for example, produce single-atom catalysts and bimetallic MOFs of arbitrary metal pairs. Moreover, we demonstrate that dopant metals (e.g., Pt, Pd) can be exsolved from the MOF framework by reduction, forming nanoclusters anchored on the MOF. A prototypical example of such a material exhibited outstanding performance as a CO oxidation catalyst. This general synthesis route opens new opportunities in MOF design and applications across diverse fields and is inherently scalable for continuous production at industrial scales.
Collapse
Affiliation(s)
- Shuo Liu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Feipeng Yang
- National Synchrotron Light Source ǁ, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Kang-Lan Tung
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Dominik Wierzbicki
- National Synchrotron Light Source ǁ, Brookhaven National Laboratory, Upton, NY, 11973, USA
- AGH University of Science and Technology, Faculty of Energy and Fuels, Al. A. Mickiewicza 30, 30-059, Cracow, Poland
| | - Sanjit Ghose
- National Synchrotron Light Source ǁ, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Linfeng Chen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Richard Ciora
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Mohd A Khan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Zhengxi Xuan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- RENEW Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Miao Yu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- RENEW Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
- RENEW Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
6
|
Liu Q, Hilliard JS, Cai Z, Wade CR. Comparative study of metal-organic frameworks synthesized via imide condensation and coordination assembly. RSC Adv 2024; 14:27634-27643. [PMID: 39221129 PMCID: PMC11363248 DOI: 10.1039/d4ra05563b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
A series of metal-organic frameworks (1-XDI) have been synthesized by imide condensation reactions between an amine-functionalized pentanuclear zinc cluster, Zn4Cl5(bt-NH2)6, (bt-NH2 = 5-aminobenzotriazolate), and organic dianhydrides (pyromellitic dianhydride (PMDA), naphthalenetetracarboxylic dianhydride (NDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (HFIPA)). The properties of the 1-XDI MOFs have been compared with analogues (2-XDI) prepared using traditional coordination assembly. The resulting materials have been characterized by ATR-IR spectroscopy, acid-digested 1H NMR spectroscopy, elemental analysis, and gas adsorption measurements. N2 adsorption isotherm data reveal modest porosities and BET surface areas (30-552 m2 g-1). All of the new 1-XDI and 2-XDI MOFs show selective adsorption of C2H2 over CO2 while 2-PMDI and 2-BPDI exhibit high selectivity toward C3H6/C3H8 separation. This study establishes imide condensation of preformed metal-organic clusters with organic linkers as a viable route for MOF design.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| | - Jordon S Hilliard
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| | - Zhongzheng Cai
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| | - Casey R Wade
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| |
Collapse
|
7
|
Gupta P, Akhtar N, Begum W, Rana B, Kalita R, Chauhan M, Thadhani C, Manna K. Metal-Organic Framework-Supported Mono Bipyridyl-Iron Hydroxyl Catalyst for Selective Benzene Hydroxylation into Phenol. Inorg Chem 2024; 63:11907-11916. [PMID: 38850244 DOI: 10.1021/acs.inorgchem.4c01825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Direct hydroxylation of benzene to phenol is more appealing in the industry for the economic and environmentally friendly phenol synthesis than the conventional cumene process. We have developed a UiO-metal-organic framework (MOF)-supported mono bipyridyl-Iron(II) hydroxyl catalyst [bpy-UiO-Fe(OH)2] for the selective benzene hydroxylation into phenol using H2O2 as the oxidant. The heterogeneous bpy-UiO-Fe(OH)2 catalyst showed high activity and remarkable phenol selectivity of 99%, giving the phenol mass-specific activity up to 1261 mmolPhOHgFe-1 h-1 at 60 °C. Bpy-UiO-Fe(OH)2 is significantly more active and selective than its homogeneous counterpart, bipyridine-Fe(OH)2. This enhanced catalytic activity of bpy-UiO-Fe(OH)2 over its homogeneous control is attributed to the active site isolation of the bpy-Fe(OH)2 moiety by the solid MOF that prevents intermolecular decomposition. Moreover, the exceptional selectivity of bpy-UiO-Fe(OH)2 in benzene to phenol conversion is originated via shape-selective catalysis, where the confined reaction space within the porous UiO-MOF prevents the formation of larger overoxidized products such as hydroquinone or benzoquinone, leading to the formation of only smaller-sized phenol after monohydroxylation of benzene. Spectroscopic and controlled experiments and theoretical calculations elucidated the reaction pathway, in which the in situ generated •OH radical mediated by bpy-UiO-FeII(OH)2 is the key species for benzene hydroxylation. This work underscores the significance of MOF-supported earth-abundant metal catalysts for sustainable production of fine chemicals.
Collapse
Affiliation(s)
- Poorvi Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bharti Rana
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rahul Kalita
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chhaya Thadhani
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
8
|
Akhtar N, Chauhan M, Rana B, Thadhani C, Kalita R, Begum W, Ghosh B, Manna K. Selective Reduction of Nitro Compounds by Organosilanes Catalyzed by a Zirconium Metal-Organic Framework Supported Salicylaldimine-Cobalt(II) Complex. Chempluschem 2024; 89:e202300520. [PMID: 37930953 DOI: 10.1002/cplu.202300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Reducing nitro compounds to amines is a fundamental reaction in producing valuable chemicals in industry. Herein, the synthesis and characterization of a zirconium metal-organic framework-supported salicylaldimine-cobalt(II) chloride (salim-UiO-CoCl) and its application in catalytic reduction of nitro compounds are reported. Salim-UiO-Co displayed excellent catalytic activity in chemoselective reduction of aromatic and aliphatic nitro compounds to the corresponding amines in the presence of phenylsilane as a reducing agent under mild reaction conditions. Salim-UiO-Co catalyzed nitro reduction had a broad substrate scope with excellent tolerance to diverse functional groups, including easily reducible ones such as aldehyde, keto, nitrile, and alkene. Salim-UiO-Co MOF catalyst could be recycled and reused at least 14 times without noticeable losing activity and selectivity. Density functional theory (DFT) studies along with spectroscopic analysis were employed to get into a comprehensive investigation of the reaction mechanism. This work underscores the significance of MOF-supported single-site base-metal catalysts for the sustainable and cost-effective synthesis of chemical feedstocks and fine chemicals.
Collapse
Affiliation(s)
- Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Bharti Rana
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chhaya Thadhani
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rahul Kalita
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Biplab Ghosh
- BARC Beamlines Section, Indus-2, RRCAT, Indore, 452013, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
9
|
Chauhan M, Antil N, Rana B, Akhtar N, Thadhani C, Begum W, Manna K. Isoreticular Metal-Organic Frameworks Confined Mononuclear Ru-Hydrides Enable Highly Efficient Shape-Selective Hydrogenolysis of Polyolefins. JACS AU 2023; 3:3473-3484. [PMID: 38155638 PMCID: PMC10751774 DOI: 10.1021/jacsau.3c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Upcycling nonbiodegradable plastics such as polyolefins is paramount due to their ever-increasing demand and landfills after usage. Catalytic hydrogenolysis is highly appealing to convert polyolefins into targeted value-added products under mild reaction conditions compared with other methods, such as high-temperature incineration and pyrolysis. We have developed three isoreticular zirconium UiO-metal-organic frameworks (UiO-MOFs) node-supported ruthenium dihydrides (UiO-RuH2), which are efficient heterogeneous catalysts for hydrogenolysis of polyethylene at 200 °C, affording liquid hydrocarbons with a narrow distribution and excellent selectivity via shape-selective catalysis. UiO-66-RuH2 catalyzed hydrogenolysis of single-use low-density polyethylene (LDPE) produced a C12 centered narrow bell-shaped distribution of C8-C16 alkanes in >80% yield and 90% selectivity in the liquid phase. By tuning the pore sizes of the isoreticular UiO-RuH2 MOF catalysts, the distribution of the products could be systematically altered, affording different fuel-grade liquid hydrocarbons from LDPE in high yields. Our spectroscopic and theoretical studies and control experiments reveal that UiO-RuH2 catalysts enable highly efficient upcycling of plastic wastes under mild conditions owing to their unique combination of coordinatively unsaturated single-site Ru-active sites, uniform and tunable pores, well-defined porous structure, and superior stability. The kinetics and theoretical calculations also identify the C-C bond scission involving β-alkyl transfer as the turnover-limiting step.
Collapse
Affiliation(s)
- Manav Chauhan
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha Antil
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bharti Rana
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chhaya Thadhani
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Liu Z, Li G, Alalouni MR, Chen Z, Dong X, Wang J, Chen C. Facile preparation of a Ni-imidazole compound with high activity for ethylene dimerization. Chem Commun (Camb) 2023; 60:188-191. [PMID: 38044830 DOI: 10.1039/d3cc04794f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A compound consisting of Ni and imidazole (Ni-imidazole) was synthesized in large quantities by a one-step co-precipitation method. The structure and stability of this Ni-imidazole were well studied by a series of characterization methods. The Ni-imidazole compound exhibited excellent catalytic properties for the dimerization of ethylene to 1-butene.
Collapse
Affiliation(s)
- Zhaohui Liu
- School of Chemistry and Chemical Engineering & Institute of Advanced Interdisciplinary Studies, Multi-scale Porous Materials Center, Chongqing University, Chongqing, 401331, China
| | - Guanxing Li
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Mohammed R Alalouni
- Catalyst Center of Excellence (CCoE), Research and Development Center, Saudi Aramco, Dhahran 31311, Saudi Arabia
| | - Ziyin Chen
- Gas and Particulate Metrology Group, National Physical Laboratory, Teddington, London TW11 0LW, UK
| | - Xinglong Dong
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| | - Jianjian Wang
- School of Chemistry and Chemical Engineering & Institute of Advanced Interdisciplinary Studies, Multi-scale Porous Materials Center, Chongqing University, Chongqing, 401331, China
| | - Cailing Chen
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
11
|
Akhtar N, Chauhan M, Gupta P, Antil N, Manna K. A supported pyridylimine-cobalt catalyst for N-formylation of amines using CO 2. Dalton Trans 2023; 52:15384-15393. [PMID: 37043211 DOI: 10.1039/d3dt00058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
N-Formylation of amines with CO2 as a cheap and non-toxic C1-feedstock and hydrosilane reducing agent is a practical and environment friendly method to synthesize formamides. This study describes an efficient and chemoselective mono-N-formylation of amines using CO2 and phenylsilane under mild conditions using a porous metal-organic framework (MOF)-supported single-site cobalt catalyst (pyrim-UiO-Co). The pyrim-UiO-Co MOF has a UiO-topology, and its organic linkers bear a pyridylimine ligated Co catalytic moiety. A wide range of aliphatic and aromatic amines are transformed into desired N-formamides in moderate to excellent yields under 1-5 bar CO2. Pyrim-UiO-Co is tolerant to various functional groups and could be recycled and reused at least 10 times. Mechanistic investigation using kinetic, spectroscopic and density functional theory studies suggests that the formylation of benzylamine proceeds sequentially via oxidative addition of PhSiH3 and CO2 insertion, followed by a turn-over limiting reaction with an amine. Our work highlights the importance of MOF-based Earth-abundant metal catalysts for the practical and eco-friendly synthesis of fine chemicals using cheap feedstocks.
Collapse
Affiliation(s)
- Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Poorvi Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
12
|
Lee MG, Li XY, Ozden A, Wicks J, Ou P, Li Y, Dorakhan R, Lee J, Park HK, Yang JW, Chen B, Abed J, dos Reis R, Lee G, Huang JE, Peng T, Chin YH, Sinton D, Sargent EH. Selective synthesis of butane from carbon monoxide using cascade electrolysis and thermocatalysis at ambient conditions. Nat Catal 2023. [DOI: 10.1038/s41929-023-00937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
13
|
Zhao D, Li Y, Zhang Z, Xu T, Ye C, Shi T, Wang Y. Extraordinary microcarriers derived from spores and pollens. MATERIALS HORIZONS 2023; 10:1121-1139. [PMID: 36637068 DOI: 10.1039/d2mh01236g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Spores and pollens refer to the reproductive cells of seed plants and asexually reproducing sporophytes, exhibiting a natural core-shell structure and exquisite surface morphology. They possess extraordinary dimensional homogeneity, porosity, amphiphilicity and adhesion. Their sporopollenin exine layer endows them with chemically stable, UV resistant, and biocompatible properties, which can also be facilely functionalized due to sufficient groups on the surface. The unique characteristics of spores and pollens have facilitated a wide range of applications in drug carriers, biological imaging, food science, microrobotics, environmental purification, flexible electronics, cell scaffolds, 3D printing materials and biological detection. This review showcases the common structural composition and physicochemical properties of spores and pollens, describes the extraction and processing methods, and summarizes the recent research on their applications in various fields. Following these sections, this review analyzes the existing challenges in spores and pollen research and provides a future outlook.
Collapse
Affiliation(s)
- Danshan Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| | - Yawen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| | - Zhidong Zhang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, Xinjiang 830091, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Tian Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
14
|
Chen C, Meng L, Alalouni MR, Dong X, Wu ZP, Zuo S, Zhang H. Ultra-Highly Active Ni-Doped MOF-5 Heterogeneous Catalysts for Ethylene Dimerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301235. [PMID: 36922746 DOI: 10.1002/smll.202301235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Here, an ultra-highly active Ni-MOF-5 catalyst with high Ni loading for ethylene dimerization is reported. The Ni-MOF-5 catalysts are synthesized by a facile one-pot co-precipitation method at room temperature, where Ni2+ replaces Zn2+ in MOF-5. Unlike Zn2+ with tetrahedral coordination in MOF-5, Ni2+ is coordinated with extra solvent molecules except for four-oxygen from the framework. After removing coordinated solvent molecules, Ni-MOF-5 achieves an ethylene turnover frequency of 352 000 h-1 , corresponding to 9040 g of product per gram of catalyst per hour, at 35 °C and 50 bar, far exceeding the activities of all reported heterogeneous catalysts. The high Ni loading and full exposure structure account for the excellent catalytic performance. Isotope labeling experiments reveal that the catalytic process follows the Cossee-Arlman mechanism, rationalizing the high activity and selectivity of the catalyst. These results demonstrate that Ni-MOF-5 catalysts are very promising for industrial catalytic ethylene dimerization.
Collapse
Affiliation(s)
- Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Lingkun Meng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130012, China
| | - Mohammed R Alalouni
- Catalyst Center of Excellence (CCoE), Research and Development Center, Saudi Aramco, Dhahran, 31311, Saudi Arabia
| | - Xinglong Dong
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Zhi-Peng Wu
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Shouwei Zuo
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Huabin Zhang
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
15
|
Iliescu A, Oppenheim JJ, Sun C, Dincǎ M. Conceptual and Practical Aspects of Metal-Organic Frameworks for Solid-Gas Reactions. Chem Rev 2023; 123:6197-6232. [PMID: 36802581 DOI: 10.1021/acs.chemrev.2c00537] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The presence of site-isolated and well-defined metal sites has enabled the use of metal-organic frameworks (MOFs) as catalysts that can be rationally modulated. Because MOFs can be addressed and manipulated through molecular synthetic pathways, they are chemically similar to molecular catalysts. They are, nevertheless, solid-state materials and therefore can be thought of as privileged solid molecular catalysts that excel in applications involving gas-phase reactions. This contrasts with homogeneous catalysts, which are overwhelmingly used in the solution phase. Herein, we review theories dictating gas phase reactivity within porous solids and discuss key catalytic gas-solid reactions. We further treat theoretical aspects of diffusion within confined pores, the enrichment of adsorbates, the types of solvation spheres that a MOF might impart on adsorbates, definitions of acidity/basicity in the absence of solvent, the stabilization of reactive intermediates, and the generation and characterization of defect sites. The key catalytic reactions we discuss broadly include reductive reactions (olefin hydrogenation, semihydrogenation, and selective catalytic reduction), oxidative reactions (oxygenation of hydrocarbons, oxidative dehydrogenation, and carbon monoxide oxidation), and C-C bond forming reactions (olefin dimerization/polymerization, isomerization, and carbonylation reactions).
Collapse
Affiliation(s)
- Andrei Iliescu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chenyue Sun
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincǎ
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Yeh B, Chheda S, Prinslow SD, Hoffman AS, Hong J, Perez-Aguilar JE, Bare SR, Lu CC, Gagliardi L, Bhan A. Structure and Site Evolution of Framework Ni Species in MIL-127 MOFs for Propylene Oligomerization Catalysis. J Am Chem Soc 2023; 145:3408-3418. [PMID: 36724435 DOI: 10.1021/jacs.2c10551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A mixed-valence oxotrimer metal-organic framework (MOF), Ni-MIL-127, with a fully coordinated nickel atom and two iron atoms in the inorganic node, generates a missing linker defect upon thermal treatment in helium (>473 K) to engender an open coordination site on nickel which catalyzes propylene oligomerization devoid of any cocatalysts or initiators. This catalyst is stable for ∼20 h on stream at 500 kPa and 473 K, unprecedented for this chemistry. The number of missing linkers on synthesized and activated Ni-MIL-127 MOFs is quantified using temperature-programmed oxidation, 1H nuclear magnetic resonance spectroscopy, and X-ray absorption spectroscopy to be ∼0.7 missing linkers per nickel; thus, a majority of Ni species in the MOF framework catalyze propylene oligomerization. In situ NO titrations under reaction conditions enumerate ∼62% of the nickel atoms as catalytically relevant to validate the defect density upon thermal treatment. Propylene oligomerization rates on Ni-MIL-127 measured at steady state have activation energies of 55-67 kJ mol-1 from 448 to 493 K and are first-order in propylene pressures from 5 to 550 kPa. Density functional theory calculations on cluster models of Ni-MIL-127 are employed to validate the plausibility of the missing linker defect and the Cossee-Arlman mechanism for propylene oligomerization through comparisons between apparent activation energies from steady-state kinetics and computation. This study illustrates how MOF precatalysts engender defective Ni species which exhibit reactivity and stability characteristics that are distinct and can be engineered to improve catalytic activity for olefin oligomerization.
Collapse
Affiliation(s)
- Benjamin Yeh
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Saumil Chheda
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States.,Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Steven D Prinslow
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jorge E Perez-Aguilar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Connie C Lu
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Aditya Bhan
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Löbbert L, Chheda S, Zheng J, Khetrapal N, Schmid J, Zhao R, Gaggioli CA, Camaioni DM, Bermejo-Deval R, Gutiérrez OY, Liu Y, Siepmann JI, Neurock M, Gagliardi L, Lercher JA. Influence of 1-Butene Adsorption on the Dimerization Activity of Single Metal Cations on UiO-66 Nodes. J Am Chem Soc 2023; 145:1407-1422. [PMID: 36598430 DOI: 10.1021/jacs.2c12192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Grafting metal cations to missing linker defect sites in zirconium-based metal-organic frameworks, such as UiO-66, produces a uniquely well-defined and homotopic catalytically active site. We present here the synthesis and characterization of a group of UiO-66-supported metal catalysts, M-UiO-66 (M = Ni, Co, Cu, and Cr), for the catalytic dimerization of alkenes. The hydrogen-deuterium exchange via deuterium oxide adsorption followed by infrared spectroscopy showed that the last molecular water ligand desorbs from the sites after evacuation at 300 °C leading to M(OH)-UiO-66 structures. Adsorption of 1-butene is studied using calorimetry and density functional theory techniques to characterize the interactions of the alkene with metal cation sites that are found active for alkene oligomerization. For the most active Ni-UiO-66, the removal of molecular water from the active site significantly increases the 1-butene adsorption enthalpy and almost doubles the catalytic activity for 1-butene dimerization in comparison to the presence of water ligands. Other M-UiO-66 (M = Co, Cu, and Cr) exhibit 1-3 orders of magnitude lower catalytic activities compared to Ni-UiO-66. The catalytic activities correlate linearly with the Gibbs free energy of 1-butene adsorption. Density functional theory calculations probing the Cossee-Arlman mechanism for all metals support the differences in activity, providing a molecular level understanding of the metal site as the active center for 1-butene dimerization.
Collapse
Affiliation(s)
- Laura Löbbert
- Department of Chemistry, Catalysis Research Center, Technical University Munich, 85747Garching, Germany
| | - Saumil Chheda
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota55455, United States.,Department of Chemistry and Chemical Theory Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota55455, United States
| | - Jian Zheng
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Navneet Khetrapal
- Department of Chemistry and Chemical Theory Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota55455, United States
| | - Julian Schmid
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Ruixue Zhao
- Department of Chemistry, Catalysis Research Center, Technical University Munich, 85747Garching, Germany
| | - Carlo A Gaggioli
- Department of Chemistry and Chemical Theory Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota55455, United States
| | - Donald M Camaioni
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Ricardo Bermejo-Deval
- Department of Chemistry, Catalysis Research Center, Technical University Munich, 85747Garching, Germany
| | - Oliver Y Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Yue Liu
- Department of Chemistry, Catalysis Research Center, Technical University Munich, 85747Garching, Germany
| | - J Ilja Siepmann
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota55455, United States.,Department of Chemistry and Chemical Theory Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota55455, United States
| | - Matthew Neurock
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota55455, United States.,Department of Chemistry and Chemical Theory Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Johannes A Lercher
- Department of Chemistry, Catalysis Research Center, Technical University Munich, 85747Garching, Germany.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| |
Collapse
|
18
|
Karpova TR, Lavrenov AV, Buluchevskii EA, Leontieva NN. Polyfunctional catalysis in conversion of light alkenes. Russ Chem Bull 2023; 72:379-392. [PMID: 37073400 PMCID: PMC10092927 DOI: 10.1007/s11172-023-3806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 04/20/2023]
Abstract
Light alkenes are among the main petrochemical intermediate products, the consumption of which is steadily growing. Using ethylene as an example, the possibilities of using polyfunctional heterogeneous catalysts for carrying out practically important reactions of its oligomerization, alkylation, and metathesis were considered. Particular attention was paid to catalysts for the conversion of ethylene to propylene.
Collapse
Affiliation(s)
- T. R. Karpova
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| | - A. V. Lavrenov
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| | - E. A. Buluchevskii
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| | - N. N. Leontieva
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| |
Collapse
|
19
|
Dutta S, More YD, Fajal S, Mandal W, Dam GK, Ghosh SK. Ionic metal-organic frameworks (iMOFs): progress and prospects as ionic functional materials. Chem Commun (Camb) 2022; 58:13676-13698. [PMID: 36421063 DOI: 10.1039/d2cc05131a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metal-organic frameworks (MOFs) have been a research hotspot for the last two decades, witnessing an extraordinary upsurge across various domains in materials chemistry. Ionic MOFs (both anionic and cationic MOFs) have emerged as next-generation ionic functional materials and are an important subclass of MOFs owing to their ability to generate strong electrostatic interactions between their charged framework and guest molecules. Furthermore, the presence of extra-framework counter-ions in their confined nanospaces can serve as additional functionality in these materials, which endows them a significant advantage in specific host-guest interactions and ion-exchange-based applications. In the present review, we summarize the progress and future prospects of iMOFs both in terms of fundamental developments and potential applications. Furthermore, the design principles of ionic MOFs and their state-of-the-art ion exchange performances are discussed in detail and the future perspectives of these promising ionic materials are proposed.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
20
|
Chakraborty R, Carsch KM, Jaramillo DE, Yabuuchi Y, Furukawa H, Long JR, Head-Gordon M. Prediction of Multiple Hydrogen Ligation at a Vanadium(II) Site in a Metal-Organic Framework. J Phys Chem Lett 2022; 13:10471-10478. [PMID: 36326596 DOI: 10.1021/acs.jpclett.2c02844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Densifying hydrogen in a metal-organic framework (MOF) at moderate pressures can circumvent challenges associated with high-pressure compression. The highly tunable structural and chemical composition in MOFs affords vast possibilities to optimize binding interactions. At the heart of this search are the nanoscale characteristics of molecular adsorption at the binding site(s). Using density functional theory (DFT) to model binding interactions of hydrogen to the exposed metal site of cation-exchanged MFU-4l, we predict multiple hydrogen ligation of H2 at the first coordination sphere of V(II) in V(II)-exchanged MFU-4l. We find that the strength of this binding between the metal site and H2 molecules can be tuned by altering the halide counterion adjacent to the metal site and that the fluoride containing node affords the most favorable interactions for high-density H2 storage. Using energy decomposition analysis, we delineate electronic contributions that enable multiple hydrogen ligation and demonstrate its benefits for hydrogen adsorption and release at modest pressures.
Collapse
Affiliation(s)
- Romit Chakraborty
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Kurtis M Carsch
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - David E Jaramillo
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Yuto Yabuuchi
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Hiroyasu Furukawa
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Jeffrey R Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemical and Biomedical Engineering, University of California, Berkeley, California94720, United States
| | - Martin Head-Gordon
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
21
|
Liu Q, Hoefer N, Berkbigler G, Cui Z, Liu T, Co AC, McComb DW, Wade CR. Strong CO 2 Chemisorption in a Metal–Organic Framework with Proximate Zn–OH Groups. Inorg Chem 2022; 61:18710-18718. [DOI: 10.1021/acs.inorgchem.2c03212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qiao Liu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicole Hoefer
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, Ohio 43210, United States
| | - Grant Berkbigler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhihao Cui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tianyu Liu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anne C. Co
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David W. McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Casey R. Wade
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Developments in late transition metal catalysts with high thermal stability for ethylene polymerization: A crucial aspect from laboratory to industrialization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Röß-Ohlenroth R, Kraft M, Bunzen H, Volkmer D. Inhibition, Binding of Organometallics, and Thermally Induced CO Release in an MFU-4-Type Metal-Organic Framework Scaffold with Open Bidentate Bibenzimidazole Coordination Sites. Inorg Chem 2022; 61:16380-16389. [PMID: 36197843 DOI: 10.1021/acs.inorgchem.2c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triazolate-based MFU-4-type metal-organic frameworks are promising candidates for various applications, of which heterogeneous catalysis has emerged as a hot topic owing to the facile post-synthetic metal and ligand exchange in Kuratowski secondary building units (SBUs). Herein, we present the largest non-interpenetrated isoreticular MFU-4-type framework CFA-19 ([Co5IICl4(H2-bibt)3]; H4-bibt = 1,1',5,5'-tetrahydro-6,6'-biimidazo[4,5-f]benzotriazole; CFA-19 = Coordination Framework Augsburg University-19) and the CFA-19-Tp derivative featuring trispyrazolylborate inhibited SBUs as a scaffold with open bibenzimidazole coordination sites at the backbone of the H4-bibt linker. The proof-of-principle incorporation of accessible MIBr(CO)3 (M = Re, Mn) sites in CFA-19-Tp was revealed by single-crystal X-ray diffraction, and a thermally induced CO release was observed for MnBr(CO)3. Deprotonation of bibenzimidazole was also achieved by the reaction with ZnEt2.
Collapse
Affiliation(s)
- Richard Röß-Ohlenroth
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | - Maryana Kraft
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | - Hana Bunzen
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | - Dirk Volkmer
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| |
Collapse
|
24
|
Ma R, Gao J, Kou J, Dean DP, Breckner CJ, Liang K, Zhou B, Miller JT, Zou G. Insights into the Nature of Selective Nickel Sites on Ni/Al 2O 3 Catalysts for Propane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rui Ma
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou515031, China
| | - Junxian Gao
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana47907, United States
| | - Jiajing Kou
- College of Vehicles and Energy, Yanshan University, Qinhuangdao066000, China
| | - David P. Dean
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana47907, United States
| | - Christian J. Breckner
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana47907, United States
| | - Kaijun Liang
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou515031, China
| | - Bo Zhou
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou515031, China
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana47907, United States
| | - Guojun Zou
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou515031, China
| |
Collapse
|
25
|
Chen C, Alalouni MR, Xiao P, Li G, Pan T, Shen J, Cheng Q, Dong X. Ni-Loaded 2D Zeolitic Imidazolate Framework as a Heterogeneous Catalyst with Highly Activity for Ethylene Dimerization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Mohammed R. Alalouni
- Catalyst Center of Excellence (CCoE), Research and Development Center, Saudi Aramco, Dhahran31311, Saudi Arabia
| | - Peiyao Xiao
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Guanxing Li
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Tingting Pan
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Jie Shen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Qingpeng Cheng
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Xinglong Dong
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| |
Collapse
|
26
|
Alzamly A, Bakiro M, Hussein Ahmed S, Siddig LA, Nguyen HL. Linear α-olefin oligomerization and polymerization catalyzed by metal-organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Tuttle RR, Finke RG, Reynolds MM. Cu II Lewis Acid, Proton-Coupled Electron Transfer Mechanism for Cu-Metal–Organic Framework-Catalyzed NO Release from S-Nitrosoglutathione. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert R. Tuttle
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richard G. Finke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
28
|
Röß-Ohlenroth R, Hirrle M, Kraft M, Kalytta-Mewes A, Jesche A, Krug von Nidda HA, Volkmer D. Synthesis, Thermal Stability and Magnetic Properties of an Interpenetrated Mn(II) Triazolate Coordination Framework. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Marcel Hirrle
- University of Augsburg: Universitat Augsburg GERMANY
| | - Maryana Kraft
- University of Augsburg: Universitat Augsburg GERMANY
| | | | - Anton Jesche
- University of Augsburg: Universitat Augsburg GERMANY
| | | | - Dirk Volkmer
- Augsburg University Institute of Physics Universitaetsstrasse 1 D-96159 Augsburg GERMANY
| |
Collapse
|
29
|
The Role of Nickel and Brønsted Sites on Ethylene Oligomerization with Ni-H-Beta Catalysts. Catalysts 2022. [DOI: 10.3390/catal12050565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The present work studies the adsorption of ethylene on Ni-H-Beta particles to unravel the roles of nickel and Brønsted sites in the catalytic oligomerization of ethylene. Three models (i.e., two based on the Cossee–Arlman mechanism and one based on the metallacycle mechanism) are examined in terms of the nature of the active sites and the adsorption mechanism involved in the ethylene coordination step. The results are consistent with the participation of two active sites in the formation of [Ni(II)-H]+ Cossee–Arlman centers and also suggest that ethylene dissociates upon adsorption on [Ni(II)-H]+ sites. Further characterization of Ni-H-Beta catalysts prepared at different nickel loadings and silica-to-alumina ratios reveals that highly dispersed Ni2+ exists on the catalyst surface and interacts with the catalyst’s lattice oxygen and free NiO crystals. At the same time, the kinetic results indicate that Brønsted sites may form isolated nickel-hydride ([Ni(II)-H]+) centers on the catalyst surface. In addition, the presence of residual, noncoordinated Ni2+ and Brønsted sites (not involved in the formation of [Ni(II)-H]+ sites) shows a reduced probability of the formation of nickel-hydride sites, hindering the conversion rate of ethylene. A mechanism for forming [Ni(II)-H]+ centers is proposed, involving ethylene adsorption over Ni2+ and a Brønsted site. This research has important implications for improving ethylene oligomerization processes over nickel-based heterogeneous catalysts.
Collapse
|
30
|
Xu Y, LiBretto NJ, Zhang G, Miller JT, Greeley J. First-Principles Analysis of Ethylene Oligomerization on Single-Site Ga 3+ Catalysts Supported on Amorphous Silica. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yinan Xu
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Nicole J. LiBretto
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Guanghui Zhang
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024, P.R. China
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jeffrey Greeley
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
31
|
Kinetic Modeling of Ethene Oligomerization on Bifunctional Nickel and Acid β Zeolites. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Doyle LR, Thompson EA, Burnage AL, Whitwood AC, Jenkins HT, Macgregor SA, Weller AS. MicroED characterization of a robust cationic σ-alkane complex stabilized by the [B(3,5-(SF 5) 2C 6H 3) 4] - anion, via on-grid solid/gas single-crystal to single-crystal reactivity. Dalton Trans 2022; 51:3661-3665. [PMID: 35156982 PMCID: PMC8902584 DOI: 10.1039/d2dt00335j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Microcrystalline (∼1 μm) [Rh(Cy2PCH2CH2PCy2)(norbornadiene)][S-BArF4], [S-BArF4] = [B(3,5-(SF5)2C6H3)4]−, reacts with H2 in a single-crystal to single-crystal transformation to form the σ-alkane complex [Rh(Cy2PCH2CH2PCy2)(norbornane)][S-BArF4], for which the structure was determined by microcrystal Electron Diffraction (microED), to 0.95 Å resolution, via an on-grid hydrogenation, and a complementary single-crystal X-ray diffraction study on larger, but challenging to isolate, crystals. Comparison with the [BArF4]− analogue [ArF = 3,5-(CF3)2(C6H3)] shows that the [S-BArF4]− anion makes the σ-alkane complex robust towards decomposition both thermally and when suspended in pentane. Subsequent reactivity with dissolved ethene in a pentane slurry, forms [Rh(Cy2PCH2CH2PCy2)(ethene)2][S-BArF4], and the catalytic dimerisation/isomerisation of ethene to 2-butenes. The increased stability of [S-BArF4]− salts is identified as being due to increased non-covalent interactions in the lattice, resulting in a solid-state molecular organometallic material with desirable stability characteristics. The thermally and chemically robust σ-alkane complex [Rh(Cy2PCH2CH2PCy2)(norborane)][B(3,5-(SF5)2C6H3)4] is characterized by micro-electron diffraction using on-grid single-crystal to single-crystal reactivity.![]()
Collapse
Affiliation(s)
- Laurence R Doyle
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Emily A Thompson
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Arron L Burnage
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Huw T Jenkins
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Stuart A Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Andrew S Weller
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
33
|
Newar R, Begum W, Akhtar N, Antil N, Chauhan M, Kumar A, Gupta P, Malik J, Kumar B, Manna K. Mono‐Phosphine Metal‐Organic Framework‐Supported Cobalt Catalyst for Efficient Borylation Reactions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rajashree Newar
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Wahida Begum
- Indian Institute of Technology Delhi Chemistry Hauz KhasNew Delhi 110016 New Delhi INDIA
| | - Naved Akhtar
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Neha Antil
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Manav Chauhan
- Indian Institute of Technology Delhi Chemistry Hauz KhasIIT DELHI, HAUZ KHAS 110016 New Delhi INDIA
| | - Ajay Kumar
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Poorvi Gupta
- Indian Institute of Technology Delhi Chemistry HAUZ KHAS 110016 New Delhi INDIA
| | - Jaideep Malik
- Indian Institute of Technology Roorkee Chemistry Roorkee 247667 Roorkee INDIA
| | - Balendra Kumar
- Sri Venkateswara College Chemistry University of Delhi 110021 New Delhi INDIA
| | - Kuntal Manna
- Indian Institute of Technology Delhi Department of Chemistry CHEMISTRY IIT DELHI, HAUZ KHAS 110016 New Delhi INDIA
| |
Collapse
|
34
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
35
|
Beucher R, Hulea V, Cammarano C. Kinetic and mechanistic insights into Ni-AlKIT-6 catalyzed ethylene oligomerization. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00258a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An experimental study of the ethylene dimerization and isomerization performed on a mesoporous 2 wt% Ni-AIKIT-6 showed that the kinetically determining step is the insertion of ethylene in the metal–alkyl bond at the nickel site neighborhood.
Collapse
Affiliation(s)
- Remi Beucher
- Institut Charles Gerhardt Montpellier, UMR 5253, ICGM, CNRS, Univ Montpellier, ENSCM, Matériaux Avancés pour la Catalyse et la Santé, 34296 Montpellier, France
| | - Vasile Hulea
- Institut Charles Gerhardt Montpellier, UMR 5253, ICGM, CNRS, Univ Montpellier, ENSCM, Matériaux Avancés pour la Catalyse et la Santé, 34296 Montpellier, France
| | - Claudia Cammarano
- Institut Charles Gerhardt Montpellier, UMR 5253, ICGM, CNRS, Univ Montpellier, ENSCM, Matériaux Avancés pour la Catalyse et la Santé, 34296 Montpellier, France
| |
Collapse
|
36
|
Newar R, Kalita R, Akhtar N, Antil N, Chauhan M, Manna K. N-Formylation of amines utilizing CO 2 by a heterogeneous metal–organic framework supported single-site cobalt catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01231f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-site cobalt-hydride supported on oxo-nodes of a porous aluminium metal–organic framework is a chemoselective and reusable catalyst for N-formylation of amines using CO2.
Collapse
Affiliation(s)
- Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rahul Kalita
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
37
|
Antil N, Kumar A, Akhtar N, Begum W, Chauhan M, Newar R, Rawat MS, Manna K. Chemoselective and Tandem Reduction of Arenes Using a Metal-Organic Framework-Supported Single-Site Cobalt Catalyst. Inorg Chem 2021; 61:1031-1040. [PMID: 34967211 DOI: 10.1021/acs.inorgchem.1c03098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of heterogeneous, chemoselective, and tandem catalytic systems using abundant metals is vital for the sustainable synthesis of fine and commodity chemicals. We report a robust and recyclable single-site cobalt-hydride catalyst based on a porous aluminum metal-organic framework (DUT-5 MOF) for chemoselective hydrogenation of arenes. The DUT-5 node-supported cobalt(II) hydride (DUT-5-CoH) is a versatile solid catalyst for chemoselective hydrogenation of a range of nonpolar and polar arenes, including heteroarenes such as pyridines, quinolines, isoquinolines, indoles, and furans to afford cycloalkanes and saturated heterocycles in excellent yields. DUT-5-CoH exhibited excellent functional group tolerance and could be reusable at least five times without decreased activity. The same MOF-Co catalyst was also efficient for tandem hydrogenation-hydrodeoxygenation of aryl carbonyl compounds, including biomass-derived platform molecules such as furfural and hydroxymethylfurfural to cycloalkanes. In the case of hydrogenation of cumene, our spectroscopic, kinetic, and density functional theory (DFT) studies suggest the insertion of a trisubstituted alkene intermediate into the Co-H bond occurring in the turnover limiting step. Our work highlights the potential of MOF-supported single-site base-metal catalysts for sustainable and environment-friendly industrial production of chemicals and biofuels.
Collapse
Affiliation(s)
- Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ajay Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manhar Singh Rawat
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
38
|
Kim H, Kim H, Kim K, Lee E. Construction of Stable Metal-Organic Framework Platforms Embedding N-Heterocyclic Carbene Metal Complexes for Selective Catalysis. Inorg Chem 2021; 60:18687-18697. [PMID: 34878260 DOI: 10.1021/acs.inorgchem.1c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a bottom-up approach to immobilize catalysts into MOFs, including copper halides and gold chloride in a predictable manner. Interestingly, the structures of MOFs bearing NHC metal complexes maintained a similar 4-fold interpenetrated cube. They exhibited exceptionally high porosity despite the interpenetrated structure and showed good stability in various solvents. Moreover, these MOFs possess high size activity depending on the size of the substrates in various reactions, compared to homogeneous catalysis. Also, the high catalytic activity of MOFs can be preserved 4 times without significant loss of crystallinity. Incorporation of the various metal complexes into MOFs allows for the preparation of functional MOFs for practical applications.
Collapse
Affiliation(s)
- Hyunyong Kim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 790-784, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Hyunseok Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 790-784, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea.,Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Eunsung Lee
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 790-784, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea.,Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
39
|
Yeh B, Vicchio SP, Chheda S, Zheng J, Schmid J, Löbbert L, Bermejo-Deval R, Gutiérrez OY, Lercher JA, Lu CC, Neurock M, Getman RB, Gagliardi L, Bhan A. Site Densities, Rates, and Mechanism of Stable Ni/UiO-66 Ethylene Oligomerization Catalysts. J Am Chem Soc 2021; 143:20274-20280. [PMID: 34817993 DOI: 10.1021/jacs.1c09320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nickel-functionalized UiO-66 metal organic frameworks (MOFs) oligomerize ethylene in the absence of cocatalysts or initiators after undergoing ethylene-pressure-dependent transients and maintain stable oligomerization rates for >15 days on stream. Higher ethylene pressures shorten induction periods and engender more active sites for ethylene oligomerization; these sites exhibit invariant selectivity-conversion characteristics to justify that only one type of catalytic center is relevant for oligomerization. The number of active sites is estimated using in situ NO titration to disambiguate the effect of increased reaction rates upon exposure to increasing ethylene pressures. After accounting for augmented site densities with increasing ethylene pressures, ethylene oligomerization is first order in ethylene pressure from 100 to 1800 kPa with an activation energy of 81 kJ mol-1 at temperatures from 443-503 K on Ni/UiO-66. A representative Ni/UiO-66 cluster model that mimics high ethylene pressure process conditions is validated with ab initio thermodynamic analysis, and the Cossee-Arlman mechanism is posited based on comparisons between experimental and computed activation enthalpies from density functional theory calculations on these cluster models of Ni/UiO-66. The insights gained from experiment and theory help rationalize evolution in structure and stability for ethylene oligomerization Ni/UiO-66 MOF catalysts.
Collapse
Affiliation(s)
- Benjamin Yeh
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Stephen P Vicchio
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634-0909, United States
| | - Saumil Chheda
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States.,Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jian Zheng
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Julian Schmid
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Laura Löbbert
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Ricardo Bermejo-Deval
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Oliver Y Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Connie C Lu
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Matthew Neurock
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Rachel B Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634-0909, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Aditya Bhan
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
40
|
Tuttle RR, Daly RE, Rithner CD, Reynolds MM. Monitoring a MOF Catalyzed Reaction Directly in Blood Plasma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52006-52013. [PMID: 34280308 DOI: 10.1021/acsami.1c08917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we establish a method to quantitatively monitor a metal-organic framework (MOF)-catalyzed, biomedically relevant reaction directly in blood plasma, specifically, the generation of nitric oxide (NO) from the endogenous substrate S-nitrosoglutathione (GSNO) catalyzed by H3[(Cu4Cl)3-(BTTri)8] (CuBTTri). The reaction monitoring method uses UV-vis and 1H NMR spectroscopies along with a nitric oxide analyzer (NOA) to yield the reaction stoichiometry and catalytic rate for GSNO to NO conversion catalyzed by CuBTTri in blood plasma. The results show 100% loss of GSNO within 16 h and production of 1 equiv. of glutathione disulfide (GSSG) per 2 equiv. of GSNO. Only 78 ± 10% recovery of NO(g) was observed, indicating that blood plasma can scavenge the generated NO before it can escape the reaction vessel. Significantly, to best apply and understand reaction systems with biomedical importance, such as NO release catalyzed by CuBTTri, methods to study the reaction directly in biological solvents must be developed.
Collapse
|
41
|
Fabrizio K, Lazarou KA, Payne LI, Twight LP, Golledge S, Hendon CH, Brozek CK. Tunable Band Gaps in MUV-10(M): A Family of Photoredox-Active MOFs with Earth-Abundant Open Metal Sites. J Am Chem Soc 2021; 143:12609-12621. [PMID: 34370478 DOI: 10.1021/jacs.1c04808] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Titanium-based metal-organic frameworks (Ti-MOFs) have attracted intense research attention because they can store charges in the form of Ti3+ and they serve as photosensitizers to cocatalysts through heterogeneous photoredox reactions at the MOF-liquid interface. Both the charge storage and charge transfer depend on the redox potentials of the MOF and the molecular substrate, but the factors controlling these energetic aspects are not well understood. Additionally, photocatalysis involving Ti-MOFs relies on cocatalysts rather than the intrinsic Ti reactivity, in part because Ti-MOFs with open metal sites are rare. Here, we report that the class of Ti-MOFs known as MUV-10 can be synthetically modified to include a range of redox-inactive ions with flexible coordination environments that control the energies of the photoactive orbitals. Lewis acidic cations installed in the MOF cluster (Cd2+, Sr2+, and Ba2+) or introduced to the pores (H+, Li+, Na+, K+) tune the electronic structure and band gaps of the MOFs. Through the use of optical redox indicators, we report the first direct measurement of the Fermi levels (redox potentials) of photoexcited MOFs in situ. Taken together, these results explain the ability of Ti-MOFs to store charges and provide design principles for achieving heterogeneous photoredox chemistry with electrostatic control.
Collapse
|
42
|
Antil N, Kumar A, Akhtar N, Newar R, Begum W, Manna K. Metal-Organic Framework-Confined Single-Site Base-Metal Catalyst for Chemoselective Hydrodeoxygenation of Carbonyls and Alcohols. Inorg Chem 2021; 60:9029-9039. [PMID: 34085831 DOI: 10.1021/acs.inorgchem.1c01008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chemoselective deoxygenation of carbonyls and alcohols using hydrogen by heterogeneous base-metal catalysts is crucial for the sustainable production of fine chemicals and biofuels. We report an aluminum metal-organic framework (DUT-5) node support cobalt(II) hydride, which is a highly chemoselective and recyclable heterogeneous catalyst for deoxygenation of a range of aromatic and aliphatic ketones, aldehydes, and primary and secondary alcohols, including biomass-derived substrates under 1 bar H2. The single-site cobalt catalyst (DUT-5-CoH) was easily prepared by postsynthetic metalation of the secondary building units (SBUs) of DUT-5 with CoCl2 followed by the reaction of NaEt3BH. X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy (XANES) indicated the presence of CoII and AlIII centers in DUT-5-CoH and DUT-5-Co after catalysis. The coordination environment of the cobalt center of DUT-5-Co before and after catalysis was established by extended X-ray fine structure spectroscopy (EXAFS) and density functional theory. The kinetic and computational data suggest reversible carbonyl coordination to cobalt preceding the turnover-limiting step, which involves 1,2-insertion of the coordinated carbonyl into the cobalt-hydride bond. The unique coordination environment of the cobalt ion ligated by oxo-nodes within the porous framework and the rate independency on the pressure of H2 allow the deoxygenation reactions chemoselectively under ambient hydrogen pressure.
Collapse
Affiliation(s)
- Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ajay Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
43
|
Kømurcu M, Lazzarini A, Kaur G, Borfecchia E, Øien-Ødegaard S, Gianolio D, Bordiga S, Lillerud KP, Olsbye U. Co-catalyst free ethene dimerization over Zr-based metal-organic framework (UiO-67) functionalized with Ni and bipyridine. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Allendorf MD, Stavila V, Witman M, Brozek CK, Hendon CH. What Lies beneath a Metal-Organic Framework Crystal Structure? New Design Principles from Unexpected Behaviors. J Am Chem Soc 2021; 143:6705-6723. [PMID: 33904302 DOI: 10.1021/jacs.0c10777] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rational design principles established for metal-organic frameworks (MOFs) allow clear structure-property relationships, fueling expansive growth for energy storage and conversion, catalysis, and beyond. However, these design principles are based on the assumption of compositional and structural rigidity, as measured crystallographically. Such idealization of MOF structures overlooks subtle chemical aspects that can lead to departures from structure-based chemical intuition. In this Perspective, we identify unexpected behavior of MOFs through literature examples. Based on this analysis, we conclude that departures from ideality are not uncommon. Whereas linker topology and metal coordination geometry are useful starting points for understanding MOF properties, we anticipate that deviations from the idealized crystal representation will be necessary to explain important and unexpected behaviors. Although this realization reinforces the notion that MOFs are highly complex materials, it should also stimulate a broader reexamination of the literature to identify corollaries to existing design rules and reveal new structure-property relationships.
Collapse
Affiliation(s)
- Mark D Allendorf
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Vitalie Stavila
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Matthew Witman
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Carl K Brozek
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States.,Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
45
|
Chen C, Alalouni MR, Dong X, Cao Z, Cheng Q, Zheng L, Meng L, Guan C, Liu L, Abou-Hamad E, Wang J, Shi Z, Huang KW, Cavallo L, Han Y. Highly Active Heterogeneous Catalyst for Ethylene Dimerization Prepared by Selectively Doping Ni on the Surface of a Zeolitic Imidazolate Framework. J Am Chem Soc 2021; 143:7144-7153. [PMID: 33908757 DOI: 10.1021/jacs.1c02272] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The production of 1-butene by ethylene dimerization is an important chemical industrial process currently implemented using homogeneous catalysts. Here, we describe a highly active heterogeneous catalyst (Ni-ZIF-8) for ethylene dimerization, which consists of isolating Ni-active sites selectively located on the crystal surface of a zeolitic imidazolate framework. Ni-ZIF-8 can be easily prepared by a simple one-pot synthesis method in which site-specific anchoring of Ni is achieved spontaneously because of the incompatibility between the d8 electronic configuration of Ni2+ and the three-dimensional framework of ZIF-8. The full exposure and square-planar coordination of the Ni sites accounts for the high catalytic activity of Ni-ZIF-8. It exhibits an average ethylene turnover frequency greater than 1 000 000 h-1 (1-butene selectivity >85%) at 35 °C and 50 bar, far exceeding the activities of previously reported heterogeneous catalysts and many homogeneous catalysts under similar conditions. Moreover, compared to molecular Ni complexes used as homogeneous catalysts for ethylene dimerization, Ni-ZIF-8 has significantly higher stability and shows constant activity during 4 h of continuous reaction. Isotopic labeling experiments indicate that ethylene dimerization over Ni-ZIF-8 follows the Cossee-Arlman mechanism, and detailed characterizations combined with density functional theory calculations rationalize this observed high activity.
Collapse
Affiliation(s)
- Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mohammed R Alalouni
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Xinglong Dong
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zhen Cao
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Qingpeng Cheng
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lingkun Meng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P.R. China
| | - Chao Guan
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Lingmei Liu
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Edy Abou-Hamad
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jianjian Wang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P.R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P.R. China
| | - Kuo-Wei Huang
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
46
|
Olefin oligomerization by main group Ga 3+ and Zn 2+ single site catalysts on SiO 2. Nat Commun 2021; 12:2322. [PMID: 33875664 PMCID: PMC8055657 DOI: 10.1038/s41467-021-22512-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/08/2021] [Indexed: 11/08/2022] Open
Abstract
In heterogeneous catalysis, olefin oligomerization is typically performed on immobilized transition metal ions, such as Ni2+ and Cr3+. Here we report that silica-supported, single site catalysts containing immobilized, main group Zn2+ and Ga3+ ion sites catalyze ethylene and propylene oligomerization to an equilibrium distribution of linear olefins with rates similar to that of Ni2+. The molecular weight distribution of products formed on Zn2+ is similar to Ni2+, while Ga3+ forms higher molecular weight olefins. In situ spectroscopic and computational studies suggest that oligomerization unexpectedly occurs by the Cossee-Arlman mechanism via metal hydride and metal alkyl intermediates formed during olefin insertion and β-hydride elimination elementary steps. Initiation of the catalytic cycle is proposed to occur by heterolytic C-H dissociation of ethylene, which occurs at about 250 °C where oligomerization is catalytically relevant. This work illuminates new chemistry for main group metal catalysts with potential for development of new oligomerization processes.
Collapse
|
47
|
Kiani D, Baltrusaitis J. Immobilization and activation of cobalt-amine catalyst on NH4OH-treated activated carbon for ethylene dimerization. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Antil N, Kumar A, Akhtar N, Newar R, Begum W, Dwivedi A, Manna K. Aluminum Metal–Organic Framework-Ligated Single-Site Nickel(II)-Hydride for Heterogeneous Chemoselective Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ajay Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashutosh Dwivedi
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
49
|
Yonezawa H, Shiraogawa T, Han M, Tashiro S, Ehara M, Shionoya M. Mechanistic Studies on Photoinduced Catalytic Olefin Migration Reactions at the Pd(II) Centers of a Porous Crystal, Metal-Macrocycle Framework. Chem Asian J 2021; 16:202-206. [PMID: 33300244 DOI: 10.1002/asia.202001306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/03/2020] [Indexed: 11/07/2022]
Abstract
Porous crystals with well-defined active metal centers on the pore surface have high potential as heterogeneous metal catalysts. We have recently demonstrated that a porous molecular crystal, metal-macrocycle framework (MMF), catalyzes olefin migration reactions by photoactivation of its PdII Cl2 moieties exposed on the crystalline channel surface. Herein we report a mechanistic study of the photoinduced olefin migration reactions at the PdII active centers of MMF. Several experiments, including a deuterium scrambling study, revealed that olefin migration is catalyzed via an alkyl mechanism by in situ generated Pd-H species on the channel surface during photoirradiation. This proposed mechanism was further supported by DFT and ONIOM calculations.
Collapse
Affiliation(s)
- Hirotaka Yonezawa
- Department of Chemistry Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takafumi Shiraogawa
- Institute for Molecular Science and SOKENDAI, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Mengying Han
- Department of Chemistry Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shohei Tashiro
- Department of Chemistry Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masahiro Ehara
- Institute for Molecular Science and SOKENDAI, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
50
|
Ortega DE, Matute RA. Influence of linkers on the Kuratowski-type secondary building unit in nickel single-site MOFs for ethylene oligomerization catalysis: a computational study. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02137g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni-Kuratowski-type MOFs were studied computationally for ethylene oligomerization and the catalytic performance of sterically different linkers was elucidated.
Collapse
Affiliation(s)
- Daniela E. Ortega
- Centro Integrativo de Biología y Química Aplicada (CIBQA)
- Universidad Bernardo O'Higgins
- Santiago 8370854
- Chile
| | - Ricardo A. Matute
- Centro Integrativo de Biología y Química Aplicada (CIBQA)
- Universidad Bernardo O'Higgins
- Santiago 8370854
- Chile
- Division of Chemistry and Chemical Engineering
| |
Collapse
|