1
|
Xu C, Qiao GG, Nan N, Bao L. Environmental Influence on Stripe Formation at the Graphite-Water Interface. Chemphyschem 2024; 25:e202400641. [PMID: 39143859 PMCID: PMC11614372 DOI: 10.1002/cphc.202400641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Understanding the characteristics of graphite-water interfaces is of scientific significance and practical importance. Ordered stripe structures have been observed at this interface, with their origins debated between condensed gas molecules and airborne hydrocarbons. Atomic force microscopy (AFM) studies have revealed variations in the morphology, formation and growth of these ordered structures. Here, we investigate the graphite-water interface under different environmental conditions using PeakForce Quantitative Nanomechanical (PF-QNM) AFM. Our findings reveal that stripe structures with 4 nm width and 0.5 nm periodicity, form and grow under wet laboratory conditions but not in pure inert gas or cleanroom environments. These stripes appear more readily when the graphite surface is immersed in water, with growth associated with gas nanodomains on the surface. This suggests that atmospheric contaminants migrate to the water-graphite interface, potentially facilitated by gas states. These findings underscore the impact of environmental conditions on graphitic materials, providing new insights into the mechanisms underlying stripe formation and growth.
Collapse
Affiliation(s)
- Chenglong Xu
- School of EngineeringSTEM CollegeRMIT UniversityAustralia Micro Nano Research FacilityRMIT UniversityMelbourneVictoria3000Australia
- Department of Chemical and Biomolecular EngineerUniversity of MelbourneParkvilleVictoria3010Australia
- Micro Nano Research FacilityRMIT UniversityMelbourneVictoria3000Australia
| | - Greg G. Qiao
- Department of Chemical and Biomolecular EngineerUniversity of MelbourneParkvilleVictoria3010Australia
| | - Nan Nan
- School of EngineeringSTEM CollegeRMIT UniversityAustralia Micro Nano Research FacilityRMIT UniversityMelbourneVictoria3000Australia
| | - Lei Bao
- School of EngineeringSTEM CollegeRMIT UniversityAustralia Micro Nano Research FacilityRMIT UniversityMelbourneVictoria3000Australia
| |
Collapse
|
2
|
Zhang L, Zhang Z, Xing C, Yu A, Yu J, Chen P. Aromatic Amino Acid-Dependent Surface Assembly of Amphiphilic Peptides for One-Step Graphite Exfoliation and Graphene Functionalization. J Phys Chem Lett 2024; 15:6611-6620. [PMID: 38888261 DOI: 10.1021/acs.jpclett.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Amphiphilic peptides show great potential for exfoliating graphite and functionalizing graphene. However, the variety of amino acids complicates our understanding of the underlying mechanisms. In this study, we designed four peptides (C6W1, C6W2, C6W4, and C6W6) with different amounts of aromatic tryptophan amino acids and two additional peptides (C6F4 and C6Y4) by substituting tryptophan with aromatic phenylalanine or tyrosine. This allowed us to investigate the processes and mechanisms of graphite exfoliation and graphene functionalization. Using experimental and computational methods, we discovered that peptides containing tryptophan demonstrated higher exfoliation efficiency and increased tryptophan content further improved this efficiency, resulting in more peptide-functionalized graphene layers. Significantly, the primary driving force for the surface-assisted assembly of peptides on graphite is the π-π stacking interaction between the aromatic ring contributed by aromatic amino acids and the hexagonal rings of the graphite surface. This interaction leads to a layer-by-layer exfoliation mechanism. Our research offers valuable insights into peptide design strategies for one-step graphite exfoliation and graphene functionalization in aqueous environments.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Zhining Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Cheng Xing
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Alice Yu
- Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3K7, Canada
| | - Jingmou Yu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
3
|
Xue J, Ji M, Lu Y, Pan D, Yang X, Yang X, Xu Z. The impact of chemical properties of the solid-liquid-adsorbate interfaces on the entropy-enthalpy compensation involved in adsorption. Phys Chem Chem Phys 2024; 26:8704-8715. [PMID: 38415756 DOI: 10.1039/d3cp05669d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Despite extensive studies on the thermodynamic mechanism governing molecular adsorption at the solid-water interface, a comprehensive understanding of the crucial role of interface properties in mediating the entropy-enthalpy compensation during adsorption is lacking, particularly at a quantitative level. Herein, we employed two types of surface models (hydroxyapatite and graphene) along with a series of amino acids to successfully elucidate how distinct interfacial features dictate the delicate balance between entropy and enthalpy variations. The adsorption of all amino acids on the hydroxyapatite surface is an enthalpy-dominated process, where the water-induced enthalpic component of the free energy and the surface-adsorbate electrostatic interaction term alternatively act as the driving force for adsorption in different regions of the surface. Although favorable interactions are observed between amino acids and the graphene surface, the entropy-enthalpy compensation exhibits dependence on the molecular size of the adsorbates. For small amino acids, favorable enthalpy changes predominantly determine their adsorption behavior; however, larger amino acids tend to bind more tightly with the graphene surface, which is thermodynamically dominated by the entropy variations despite the structural characteristics of amino acids. This study reveals specific entropy-enthalpy mechanisms underlying amino acid adsorption at the solid-liquid interface, providing guidance for surface design and synthesis of new biomolecules.
Collapse
Affiliation(s)
- Jinling Xue
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Mingyu Ji
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yuanyuan Lu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Dan Pan
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiao Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoning Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zhijun Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
- Zhangjiagang Institute of Nanjing Tech University, Zhangjiagang 215699, China
| |
Collapse
|
4
|
Zambrano AC, Loiola LMD, Bukhamsin A, Gorecki R, Harrison G, Mani V, Fatayer S, Nunes SP, Salama KN. Porous Laser-Scribed Graphene Electrodes Modified with Zwitterionic Moieties: A Strategy for Antibiofouling and Low-Impedance Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4408-4419. [PMID: 38231564 PMCID: PMC10835659 DOI: 10.1021/acsami.3c15849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Laser-scribed graphene electrodes (LSGEs) are promising platforms for the development of electrochemical biosensors for point-of-care settings and continuous monitoring and wearable applications. However, the frequent occurrence of biofouling drastically reduces the sensitivity and selectivity of these devices, hampering their sensing performance. Herein, we describe a versatile, low-impedance, and robust antibiofouling interface based on sulfobetaine-zwitterionic moieties. The interface induces the formation of a hydration layer and exerts electrostatic repulsion, protecting the electrode surface from the nonspecific adsorption of various biofouling agents. We demonstrate through electrochemical and microscopy techniques that the modified electrode exhibits outstanding antifouling properties, preserving more than 90% of the original signal after 24 h of exposure to bovine serum albumin protein, HeLa cells, and Escherichia coli bacteria. The promising performance of this antifouling strategy suggests that it is a viable option for prolonging the lifetime of LSGEs-based sensors when operating on complex biological systems.
Collapse
Affiliation(s)
- Alanis C Zambrano
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Livia M D Loiola
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Abdullah Bukhamsin
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Radoslaw Gorecki
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - George Harrison
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Veerappan Mani
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Shadi Fatayer
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Applied Physics Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Suzana P Nunes
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Chemistry and Chemical Engineering Programs, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Khaled N Salama
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Shi L, Nie B, Sha L, Ying K, Li J, Li G. Graphene Oxide-Mediated Regulation of Volume Exclusion and Wettability in Biomimetic Phosphorylation-Responsive Ionic Gates. NANO LETTERS 2023; 23:10326-10333. [PMID: 37931221 DOI: 10.1021/acs.nanolett.3c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Replicating phosphorylation-responsive ionic gates via artificial fluidic systems is essential for biomolecular detection and cellular communication research. However, current approaches to governing the gates primarily rely on volume exclusion or surface charge modulation. To overcome this limitation and enhance ion transport controllability, we introduce graphene oxide (GO) into nanochannel systems, simultaneously regulating the volume exclusion and wettability. Moreover, inspired by (cAMP)-dependent protein kinase A (PKA)-regulated L-type Ca2+ channels, we employ peptides for phosphorylation which preserves them as nanoadhesives to coat nanochannels with GO. The coating boosts steric hindrance and diminishes wettability, creating a substantial ion conduction barrier, which represents a significant advancement in achieving precise ion transport regulation in abiotic nanochannels. Leveraging the mechanism, we also fabricated a sensitive biosensor for PKA activity detection and inhibition exploration. The combined regulation of volume exclusion and wettability offers an appealing strategy for controlled nanofluidic manipulation with promising biomedical applications in diagnosis and drug discovery.
Collapse
Affiliation(s)
- Liu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Beibei Nie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Lingjun Sha
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Keqin Ying
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jinlong Li
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
6
|
Barria-Urenda M, Ruiz-Fernandez A, Gonzalez C, Oostenbrink C, Garate JA. Size Matters: Free-Energy Calculations of Amino Acid Adsorption over Pristine Graphene. J Chem Inf Model 2023; 63:6642-6654. [PMID: 37909535 DOI: 10.1021/acs.jcim.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
There is still growing interest in graphene interactions with proteins, both for its possible biological applications and due to concerns over detrimental effects at the cellular level. As with any process involving proteins, an understanding of amino acid composition is desirable. In this work, we systematically studied the adsorption process of amino acids onto pristine graphene via rigorous free-energy calculations. We characterized the free energy, potential energy, and entropy of the adsorption of all proteinogenic amino acids. The energetic components were further separated into pair interaction contributions. A linear correlation was found between the free energy and the solvent accessible surface area change during adsorption (ΔSASAads) over pristine graphene and uncharged amino acids. Free energies over pristine graphene were compared with adsorption onto graphene oxide, finding an almost complete loss of the favorability of amino acid adsorption onto graphene. Finally, the correlation with ΔSASAads was used to successfully predict the free energy of adsorption of several penta-l-peptides in different structural states and sequences. Due to the relative ease of calculating the ΔSASAads compared to free-energy calculations, it could prove to be a cost-effective predictor of the free energy of adsorption for proteins onto nonpolar surfaces.
Collapse
Affiliation(s)
- Mateo Barria-Urenda
- Centro Interdisciplinario de Neurociencia de Valparaíso, Pasaje Harrington 287, Playa Ancha, 2381850 Valparaíso, Chile
- Doctorado en Ciencias, Mención Biofísica y Biología Computacional, Facultad de Ciencias, Universidad de Valparaíso, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics (NNBP), Universidad San Sebastian, Bellavista, 7510602 Santiago, Chile
| | - Alvaro Ruiz-Fernandez
- Centro Científico y Tecnológico de Excelencia, Fundacion Ciencia & Vida, Santiago, Santiago 7780272, Chile
| | - Carlos Gonzalez
- Millennium Nucleus in NanoBioPhysics (NNBP), Universidad San Sebastian, Bellavista, 7510602 Santiago, Chile
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Jose Antonio Garate
- Centro Interdisciplinario de Neurociencia de Valparaíso, Pasaje Harrington 287, Playa Ancha, 2381850 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics (NNBP), Universidad San Sebastian, Bellavista, 7510602 Santiago, Chile
- Centro Científico y Tecnológico de Excelencia, Fundacion Ciencia & Vida, Santiago, Santiago 7780272, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista, 7510602 Santiago, Chile
| |
Collapse
|
7
|
Forte G, La Mendola D, Satriano C. The Hybrid Nano-Biointerface between Proteins/Peptides and Two-Dimensional Nanomaterials. Molecules 2023; 28:7064. [PMID: 37894543 PMCID: PMC10609159 DOI: 10.3390/molecules28207064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In typical protein-nanoparticle surface interactions, the biomolecule surface binding and consequent conformational changes are intermingled with each other and are pivotal to the multiple functional properties of the resulting hybrid bioengineered nanomaterial. In this review, we focus on the peculiar properties of the layer formed when biomolecules, especially proteins and peptides, face two-dimensional (2D) nanomaterials, to provide an overview of the state-of-the-art knowledge and the current challenges concerning the biomolecule coronas and, in general, the 2D nano-biointerface established when peptides and proteins interact with the nanosheet surface. Specifically, this review includes both experimental and simulation studies, including some recent machine learning results of a wide range of nanomaterial and peptide/protein systems.
Collapse
Affiliation(s)
- Giuseppe Forte
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy;
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Cristina Satriano
- NanoHybrid Biointerfaces Laboratory (NHBIL), Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| |
Collapse
|
8
|
Yang P, Guo W, Ramamoorthy A, Chen Z. Conformation and Orientation of Antimicrobial Peptides MSI-594 and MSI-594A in a Lipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5352-5363. [PMID: 37017985 DOI: 10.1021/acs.langmuir.2c03430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There is significant interest in the development of antimicrobial compounds to overcome the increasing bacterial resistance to conventional antibiotics. Studies have shown that naturally occurring and de novo-designed antimicrobial peptides could be promising candidates. MSI-594 is a synthetic linear, cationic peptide that has been reported to exhibit a broad spectrum of antimicrobial activities. Investigation into how MSI-594 disrupts the cell membrane is important for better understanding the details of this antimicrobial peptide (AMP)'s action against bacterial cells. In this study, we used two different synthetic lipid bilayers: zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and anionic 7:3 POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(1'-rac-glycerol) (POPG). Sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to determine the orientations of MSI-594 and its analogue MSI-594A associated with zwitterionic POPC and anionic 7:3 POPC/POPG lipid bilayers. The simulated ATR-FTIR and SFG spectra using nuclear magnetic resonance (NMR)-determined structures were compared with experimental spectra to optimize the bent angle between the N- (1-11) and C- (12-24) termini helices and the membrane orientations of the helices; since the NMR structure of the peptide was determined from lipopolysaccharide (LPS) micelles, the optimization was needed to find the most suitable conformation and orientation in lipid bilayers. The reported experimental results indicate that the optimized MSI-594 helical hairpin structure adopts a complete lipid bilayer surface-bound orientation (denoted "face-on") in both POPC and 7:3 POPC/POPG lipid bilayers. The analogue peptide, MSI-584A, on the other hand, exhibited a larger bent angle between the N- (1-11) and C- (12-24) termini helices with the hydrophobic C-terminal helix inserted into the hydrophobic region of the bilayer (denoted "membrane-inserted") when interacting with both POPC and 7:3 POPC/POPG lipid bilayers. These experimental findings on the membrane orientations suggest that both peptides are likely to disrupt the cell membrane through the carpet mechanism.
Collapse
Affiliation(s)
- Pei Yang
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Wen Guo
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Zhan Chen
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
9
|
Lu T, Chen Z. Monitoring the Molecular Structure of Fibrinogen during the Adsorption Process at the Buried Silicone Oil Interface In Situ in Real Time. J Phys Chem Lett 2023; 14:3139-3145. [PMID: 36961304 DOI: 10.1021/acs.jpclett.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Interfacial proteins play important roles in many research fields and applications, such as biosensors, biomedical implants, nonfouling coatings, etc. Directly probing interfacial protein behavior at buried solid/liquid and liquid/liquid interfaces is challenging. We used sum frequency generation vibrational spectroscopy and a Hamiltonian data analysis method to monitor the molecular structure of fibrinogen on silicone oil during the adsorption process in situ in real time. The results showed that the adsorbed fibrinogen molecules tend to adopt a bent structure throughout the entire adsorption process with the same orientation. This is different from the case of adsorbed fibrinogen on CaF2 with a linear structure or on polystyrene with a bent structure but a different orientation. The method introduced herein is generally applicable for following time-dependent molecular structures of many other proteins and peptides at interfaces in situ in real time at the molecular level.
Collapse
Affiliation(s)
- Tieyi Lu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Wang X, Yao C, Yao X, Lin J, Li R, Huang K, Lin W, Long X, Dai C, Dong J, Yu X, Huang W, Weng W, Wang Q, Ouyang H, Cheng K. Dynamic photoelectrical regulation of ECM protein and cellular behaviors. Bioact Mater 2023; 22:168-179. [PMID: 36203959 PMCID: PMC9529514 DOI: 10.1016/j.bioactmat.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Dynamic regulation of cell-extracellular matrix (ECM)-material interactions is crucial for various biomedical applications. In this study, a light-activated molecular switch for the modulation of cell attachment/detachment behaviors was established on monolayer graphene (Gr)/n-type Silicon substrates (Gr/Si). Initiated by light illumination at the Gr/Si interface, pre-adsorbed proteins (bovine serum albumin, ECM proteins collagen-1, and fibronectin) underwent protonation to achieve negative charge transfer to Gr films (n-doping) through π-π interactions. This n-doping process stimulated the conformational switches of ECM proteins. The structural alterations in these ECM interactors significantly reduced the specificity of the cell surface receptor-ligand interaction (e.g., integrin recognition), leading to dynamic regulation of cell adhesion and eventual cell detachment. RNA-sequencing results revealed that the detached bone marrow mesenchymal stromal cell sheets from the Gr/Si system manifested regulated immunoregulatory properties and enhanced osteogenic differentiation, implying their potential application in bone tissue regeneration. This work not only provides a fast and feasible method for controllable cells/cell sheets harvesting but also gives new insights into the understanding of cell-ECM-material communications. A light-activated molecular switch for regulation of cell attachment/detachment behaviors was established on (Gr/Si) substrates. Light-induced charge transfer from ECM protein to Gr/Si through π-π interactions, resulting in the conformational alteration of ECM proteins. Structural changes in ECM weakened the binding between RGD and integrin, inducing cell detachment. This work provides a feasible method for cell harvesting and improves the understanding of cell-ECM-material communications.
Collapse
Affiliation(s)
- Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Cai Yao
- School of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xudong Yao
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, 322000, China
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Rui Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Kun Huang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Weiming Lin
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Xiaojun Long
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Chao Dai
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Jiajun Dong
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
| | - Xuegong Yu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Wenwen Huang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
| | - Qi Wang
- School of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
- Corresponding author. Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, 310027, China
- Corresponding author.
| |
Collapse
|
11
|
Probing both sides of the story. Proc Natl Acad Sci U S A 2022; 119:e2212419119. [PMID: 36070345 PMCID: PMC9499575 DOI: 10.1073/pnas.2212419119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
12
|
Chen J, Xu E, Wei Y, Chen M, Wei T, Zheng S. Graph Clustering Analyses of Discontinuous Molecular Dynamics Simulations: Study of Lysozyme Adsorption on a Graphene Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10817-10825. [PMID: 36001808 DOI: 10.1021/acs.langmuir.2c01331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the interfacial behaviors of biomolecules is crucial to applications in biomaterials and nanoparticle-based biosensing technologies. In this work, we utilized autoencoder-based graph clustering to analyze discontinuous molecular dynamics (DMD) simulations of lysozyme adsorption on a graphene surface. Our high-throughput DMD simulations integrated with a Go̅-like protein-surface interaction model makes it possible to explore protein adsorption at a large temporal scale with sufficient accuracy. The graph autoencoder extracts a low-dimensional feature vector from a contact map. The sequence of the extracted feature vectors is then clustered, and thus the evolution of the protein molecule structure in the absorption process is segmented into stages. Our study demonstrated that the residue-surface hydrophobic interactions and the π-π stacking interactions play key roles in the five-stage adsorption. Upon adsorption, the tertiary structure of lysozyme collapsed, and the secondary structure was also affected. The folding stages obtained by autoencoder-based graph clustering were consistent with detailed analyses of the protein structure. The combination of machine learning analysis and efficient DMD simulations developed in this work could be an important tool to study biomolecules' interfacial behaviors.
Collapse
Affiliation(s)
- Jing Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, P. R. China
| | | | - Yong Wei
- Department of Computer Science, High Point University, High Point, North Carolina 27268, United States
| | | | - Tao Wei
- Department of Chemical Engineering, Howard University, Washington, D.C. 20059, United States
| | - Size Zheng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, P. R. China
| |
Collapse
|
13
|
Li N, Huang X, Chen J, Shao H. Investigating the conversion from coordination bond to electrostatic interaction on self-assembled monolayer by SECM. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Bantun F, Singh R, Alkhanani MF, Almalki AH, Alshammary F, Khan S, Haque S, Srivastava M. Gut microbiome interactions with graphene based nanomaterials: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154789. [PMID: 35341865 DOI: 10.1016/j.scitotenv.2022.154789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Rapid growth of nanotechnology has accelerated immense possibility of engineered nanomaterials (ENMs) exposure by human and living organisms. In this context, wide range applications of graphene based nanomaterials (GBNMs) may inevitably cause their release into the environment. Consequently, potential risks to the ecological system and human health is consistently increasing due to the probable ingestion of GBNMs by mean of contaminated water or food sources. Further, gut microbiome is known to play a profound impact on the health status of human being and has been recognized as the most exciting advancement in the biomedical science. Recent studies has shown vital role of ENMs to alter gut microbiome and thereby changed pathological status of organisms. Therefore, in this review results of numerous studies dedicated to explore the impact of GBNMs on gut microbiome and thereby various pathological status have been summarized. Dietary exposure of different types of GBNMs [e.g. graphene, graphene oxide (GO), partially reduced graphene oxide (PRGO), graphene quantum dots (GQDs)] have been evaluated on the gut microbiome through numerous in vitro and in vivo models. Moreover, emphasis has been made to evaluate different physiological responses with the short/long-term exposure of GBNMs, particularly in gastrointestinal tract (GIT) and its correlation with gut microbiome and the health status. It is reviewed that exposure of GBNMs can exert significant impact which alter the composition, diversity and function of gut microbiome. This may further appear in terms of enteric disorder along with numerous pathological changes e.g. IEC (intestinal epithelial cells) colitis, lysosomal dysfunction, inflammation, shortened colon, resorbed embryo, retardation in skeletal development, low weight of fetus, early or late dead of fetus and IBD (inflammatory bowel disease) like symptoms. Finally, potential health risks due to the exposure of GBNMs have been discussed with future perspective.
Collapse
Affiliation(s)
- Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah - 24382, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India.
| | - Mustfa F Alkhanani
- Emergency Medical Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif 21944, Saudi Arabia
| | - Freah Alshammary
- Department of Preventive Dental Sciences, College of Dentistry, Hail University, Hail 2440, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Hail University, Hail 2440, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059 Nilüfer, Bursa, Turkey
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
15
|
Chen SH, Bell DR, Luan B. Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Adv Drug Deliv Rev 2022; 186:114336. [PMID: 35597306 PMCID: PMC9212071 DOI: 10.1016/j.addr.2022.114336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 12/28/2022]
Abstract
Two-dimensional (2D) nanomaterials such as graphene are increasingly used in research and industry for various biomedical applications. Extensive experimental and theoretical studies have revealed that 2D nanomaterials are promising drug delivery vehicles, yet certain materials exhibit toxicity under biological conditions. So far, it is known that 2D nanomaterials possess strong adsorption propensities for biomolecules. To mitigate potential toxicity and retain favorable physical and chemical properties of 2D nanomaterials, it is necessary to explore the underlying mechanisms of interactions between biomolecules and nanomaterials for the subsequent design of biocompatible 2D nanomaterials for nanomedicine. The purpose of this review is to integrate experimental findings with theoretical observations and facilitate the study of 2D nanomaterial interaction with biomolecules at the molecular level. We discuss the current understanding and progress of 2D nanomaterial interaction with proteins, lipid membranes, and DNA based on molecular dynamics (MD) simulation. In this review, we focus on the 2D graphene nanosheet and briefly discuss other 2D nanomaterials. With the ever-growing computing power, we can image nanoscale processes using MD simulation that are otherwise not observable in experiment. We expect that molecular characterization of the complex behavior between 2D nanomaterials and biomolecules will help fulfill the goal of designing effective 2D nanomaterials as drug delivery platforms.
Collapse
Affiliation(s)
- Serena H Chen
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - David R Bell
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Binquan Luan
- IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, USA.
| |
Collapse
|
16
|
Pandit S, Maroli N, Naskar S, Khatri B, Maiti PK, De M. Graphene oxide as a dual template for induced helicity of peptides. NANOSCALE 2022; 14:7881-7890. [PMID: 35583859 DOI: 10.1039/d2nr00183g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial template-mediated fabrication of secondary structures within peptides always attracts great interest in biological systems due to several biomimetic interactions. In all earlier studies, a uniform template containing molecules/nanomaterials was used to target only one type of peptide at a time, which extensively limits the diversity in the generation of artificial protein surface/binding sites. This limitation can be overcome by the incorporation of more than one binding template (heterogeneity) in a single system, for example, Janus nanomaterials, which are challenging and difficult to synthesize. In this context, graphene oxide (GO) is considered an artificial binding site (template). It contains two distinctive binding zones, i.e., surface and edge, which can induce the secondary structure of peptides based on complementary interactions. To establish our concept, we have implemented a hybrid sequence i.e., i, i + 4, i + 7 and i + 11 pattern peptides, which defines a more linear surface, suitable for recognition by the two-dimensional GO. Depending on the amino acid residue at the specific locations, we observed substantial enhancement of peptide helicity either at the surface or at the edges of GO from the random coil. However, non-interacting peptides remain as a random coil. We have established this by circular dichroism study at various conditions, as well as atomic force microscopy and optical imaging study. Furthermore, we have also established our observations using molecular dynamics (MD) simulations. This study reveals that the synthesized GO-peptides composite with different secondary structures and recognition residues can mimic biological systems.
Collapse
Affiliation(s)
- Subrata Pandit
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India.
| | - Nikhil Maroli
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - Bhavesh Khatri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
17
|
Ardoña HAM, Zimmerman JF, Shani K, Kim SH, Eweje F, Bitounis D, Parviz D, Casalino E, Strano M, Demokritou P, Parker KK. Differential modulation of endothelial cytoplasmic protrusions after exposure to graphene-family nanomaterials. NANOIMPACT 2022; 26:100401. [PMID: 35560286 PMCID: PMC9812361 DOI: 10.1016/j.impact.2022.100401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 05/14/2023]
Abstract
Engineered nanomaterials offer the benefit of having systematically tunable physicochemical characteristics (e.g., size, dimensionality, and surface chemistry) that highly dictate the biological activity of a material. Among the most promising engineered nanomaterials to date are graphene-family nanomaterials (GFNs), which are 2-D nanomaterials (2DNMs) with unique electrical and mechanical properties. Beyond engineering new nanomaterial properties, employing safety-by-design through considering the consequences of cell-material interactions is essential for exploring their applicability in the biomedical realm. In this study, we asked the effect of GFNs on the endothelial barrier function and cellular architecture of vascular endothelial cells. Using micropatterned cell pairs as a reductionist in vitro model of the endothelium, the progression of cytoskeletal reorganization as a function of GFN surface chemistry and time was quantitatively monitored. Here, we show that the surface oxidation of GFNs (graphene, reduced graphene oxide, partially reduced graphene oxide, and graphene oxide) differentially affect the endothelial barrier at multiple scales; from the biochemical pathways that influence the development of cellular protrusions to endothelial barrier integrity. More oxidized GFNs induce higher endothelial permeability and the increased formation of cytoplasmic protrusions such as filopodia. We found that these changes in cytoskeletal organization, along with barrier function, can be potentiated by the effect of GFNs on the Rho/Rho-associated kinase (ROCK) pathway. Specifically, GFNs with higher surface oxidation elicit stronger ROCK2 inhibitory behavior as compared to pristine graphene sheets. Overall, findings from these studies offer a new perspective towards systematically controlling the surface-dependent effects of GFNs on cytoskeletal organization via ROCK2 inhibition, providing insight for implementing safety-by-design principles in GFN manufacturing towards their targeted biomedical applications.
Collapse
Affiliation(s)
- Herdeline Ann M Ardoña
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - John F Zimmerman
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Kevin Shani
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Su-Hwan Kim
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Feyisayo Eweje
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University Boston, MA 02115, USA
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Evan Casalino
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Michael Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University Boston, MA 02115, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA.
| |
Collapse
|
18
|
Thakkar R, Gajaweera S, Comer J. Organic contaminants and atmospheric nitrogen at the graphene-water interface: a simulation study. NANOSCALE ADVANCES 2022; 4:1741-1757. [PMID: 36132158 PMCID: PMC9417612 DOI: 10.1039/d1na00570g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Ordered nanoscale patterns have been observed by atomic force microscopy at graphene-water and graphite-water interfaces. The two dominant explanations for these patterns are that (i) they consist of self-assembled organic contaminants or (ii) they are dense layers formed from atmospheric gases (especially nitrogen). Here we apply molecular dynamics simulations to study the behavior of dinitrogen and possible organic contaminants at the graphene-water interface. Despite the high concentration of N2 in ambient air, we find that its expected occupancy at the graphene-water interface is quite low. Although dense (disordered) aggregates of dinitrogen have been observed in previous simulations, our results suggest that they are stable only in the presence of supersaturated aqueous N2 solutions and dissipate rapidly when they coexist with nitrogen gas near atmospheric pressure. On the other hand, although heavy alkanes are present at only trace concentrations (micrograms per cubic meter) in typical indoor air, we predict that such concentrations can be sufficient to form ordered monolayers that cover the graphene-water interface. For octadecane, grand canonical Monte Carlo suggests nucleation and growth of monolayers above an ambient concentration near 6 μg m-3, which is less than some literature values for indoor air. The thermodynamics of the formation of these alkane monolayers includes contributions from the hydration free-energy (unfavorable), the free-energy of adsorption to the graphene-water interface (highly favorable), and integration into the alkane monolayer phase (highly favorable). Furthermore, the peak-to-peak distances in AFM force profiles perpendicular to the interface (0.43-0.53 nm), agree with the distances calculated in simulations for overlayers of alkane-like molecules, but not for molecules such as N2, water, or aromatics. Taken together, these results suggest that ordered domains observed on graphene, graphite, and other hydrophobic materials in water are consistent with alkane-like molecules occupying the interface.
Collapse
Affiliation(s)
- Ravindra Thakkar
- Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology 1620 Denison Avenue Mahattan Kansas USA
| | - Sandun Gajaweera
- Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology 1620 Denison Avenue Mahattan Kansas USA
| | - Jeffrey Comer
- Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology 1620 Denison Avenue Mahattan Kansas USA
| |
Collapse
|
19
|
Du J, Yang C, Ma X, Li Q. Insights into the conformation changes of SARS-CoV-2 spike receptor-binding domain on graphene. APPLIED SURFACE SCIENCE 2022; 578:151934. [PMID: 34866721 PMCID: PMC8627288 DOI: 10.1016/j.apsusc.2021.151934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 05/13/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely spread in the world, causing more than two million deaths and seriously threatening human life. Effective protection measures are important to prevent the infection and spreading of the virus. To explore the effects of graphene on the virus adsorption and its biological properties, the adsorption process of the receptor binding domain (RBD) of SARS-CoV-2 on graphene has been investigated by molecular dynamics simulations in this paper. The results show that RBD can be quickly adsorbed onto the surface of graphene due to π - π stacking and hydrophobic interactions. Residue PHE486 with benzene ring has stronger adsorption force and the maximum contact area with graphene. Graphene significantly affects the secondary structure of RBD area, especially on the three key sites of binding with human ACE2, GLY476, PHE486 and ASN487. The binding free energy of RBD and graphene shows that the adsorption is irreversible. Undoubtedly, these changes will inevitably affect the pathogenicity of the virus. Therefore, this study provides a theoretical basis for the application of graphene in the protection of SARS-CoV-2, and also provides a reference for the potential application of graphene in the biomedical field.
Collapse
Affiliation(s)
- Jianbin Du
- College of Science, Langfang Normal University, Langfang 065000, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Chunmei Yang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiangyun Ma
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Qifeng Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Toto E, Laurenzi S, Santonicola MG. Recent Trends in Graphene/Polymer Nanocomposites for Sensing Devices: Synthesis and Applications in Environmental and Human Health Monitoring. Polymers (Basel) 2022; 14:1030. [PMID: 35267853 PMCID: PMC8914833 DOI: 10.3390/polym14051030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Graphene-based nanocomposites are largely explored for the development of sensing devices due to the excellent electrical and mechanical properties of graphene. These properties, in addition to its large specific surface area, make graphene attractive for a wide range of chemical functionalization and immobilization of (bio)molecules. Several techniques based on both top-down and bottom-up approaches are available for the fabrication of graphene fillers in pristine and functionalized forms. These fillers can be further modified to enhance their integration with polymeric matrices and substrates and to tailor the sensing efficiency of the overall nanocomposite material. In this review article, we summarize recent trends in the design and fabrication of graphene/polymer nanocomposites (GPNs) with sensing properties that can be successfully applied in environmental and human health monitoring. Functional GPNs with sensing ability towards gas molecules, humidity, and ultraviolet radiation can be generated using graphene nanosheets decorated with metallic or metal oxide nanoparticles. These nanocomposites were shown to be effective in the detection of ammonia, benzene/toluene gases, and water vapor in the environment. In addition, biological analytes with broad implications for human health, such as nucleic bases or viral genes, can also be detected using sensitive, graphene-based polymer nanocomposites. Here, the role of the biomolecules that are immobilized on the graphene nanomaterial as target for sensing is reviewed.
Collapse
Affiliation(s)
- Elisa Toto
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| | - Susanna Laurenzi
- Department of Astronautical Electrical and Energy Engineering, Sapienza University of Rome, Via Salaria 851-881, 00138 Rome, Italy;
| | - Maria Gabriella Santonicola
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| |
Collapse
|
21
|
Lu T, Guo W, Datar PM, Xin Y, Marsh ENG, Chen Z. Probing protein aggregation at buried interfaces: distinguishing between adsorbed protein monomers, dimers, and a monomer-dimer mixture in situ. Chem Sci 2022; 13:975-984. [PMID: 35211262 PMCID: PMC8790787 DOI: 10.1039/d1sc04300e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/04/2021] [Indexed: 11/21/2022] Open
Abstract
Protein adsorption on surfaces greatly impacts many applications such as biomedical materials, anti-biofouling coatings, bio-separation membranes, biosensors, antibody protein drugs etc. For example, protein drug adsorption on the widely used lubricant silicone oil surface may induce protein aggregation and thus affect the protein drug efficacy. It is therefore important to investigate the molecular behavior of proteins at the silicone oil/solution interface. Such an interfacial study is challenging because the targeted interface is buried. By using sum frequency generation vibrational spectroscopy (SFG) with Hamiltonian local mode approximation method analysis, we studied protein adsorption at the silicone oil/protein solution interface in situ in real time, using bovine serum albumin (BSA) as a model. The results showed that the interface was mainly covered by BSA dimers. The deduced BSA dimer orientation on the silicone oil surface from the SFG study can be explained by the surface distribution of certain amino acids. To confirm the BSA dimer adsorption, we treated adsorbed BSA dimer molecules with dithiothreitol (DTT) to dissociate these dimers. SFG studies on adsorbed BSA after the DTT treatment indicated that the silicone oil surface is covered by BSA dimers and BSA monomers in an approximate 6 : 4 ratio. That is to say, about 25% of the adsorbed BSA dimers were converted to monomers after the DTT treatment. Extensive research has been reported in the literature to determine adsorbed protein dimer formation using ex situ experiments, e.g., by washing off the adsorbed proteins from the surface then analyzing the washed-off proteins, which may induce substantial errors in the washing process. Dimerization is a crucial initial step for protein aggregation. This research developed a new methodology to investigate protein aggregation at a solid/liquid (or liquid/liquid) interface in situ in real time using BSA dimer as an example, which will greatly impact many research fields and applications involving interfacial biological molecules.
Collapse
Affiliation(s)
- Tieyi Lu
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Wen Guo
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Prathamesh M Datar
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Yue Xin
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| |
Collapse
|
22
|
Tewari M, Pareek P, Kumar S. Correlating Amino Acid Interaction with Graphene-Based Materials Regulating Cell Function. J Indian Inst Sci 2022. [DOI: 10.1007/s41745-021-00272-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Non-covalent interactions of graphene surface: Mechanisms and applications. Chem 2022. [DOI: 10.1016/j.chempr.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Principles and Biomedical Application of Graphene Family Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:3-22. [DOI: 10.1007/978-981-16-4923-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Wang Q, Wang H, Ma Y, Cao X, Gao H. Effects of Electroactive materials on nerve cell behaviors and applications in peripheral nerve repair. Biomater Sci 2022; 10:6061-6076. [DOI: 10.1039/d2bm01216b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peripheral nerve damage can lead to loss of function or even complete disability, which bring about a huge burden on both the patient and society. Regulating nerve cell behavior and...
Collapse
|
26
|
Shahriari S, Sastry M, Panjikar S, Singh Raman RK. Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors. Nanotechnol Sci Appl 2021; 14:197-220. [PMID: 34815666 PMCID: PMC8605898 DOI: 10.2147/nsa.s334487] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/02/2021] [Indexed: 01/21/2023] Open
Abstract
Graphene and graphene oxide have become the base of many advanced biosensors due to their exceptional characteristics. However, lack of some properties, such as inertness of graphene in organic solutions and non-electrical conductivity of graphene oxide, are their drawbacks in sensing applications. To compensate for these shortcomings, various methods of modifications have been developed to provide the appropriate properties required for biosensing. Efficient modification of graphene and graphene oxide facilitates the interaction of biomolecules with their surface, and the ultimate bioconjugate can be employed as the main sensing part of the biosensors. Graphene nanomaterials as transducers increase the signal response in various sensing applications. Their large surface area and perfect biocompatibility with lots of biomolecules provide the prerequisite of a stable biosensor, which is the immobilization of bioreceptor on transducer. Biosensor development has paramount importance in the field of environmental monitoring, security, defense, food safety standards, clinical sector, marine sector, biomedicine, and drug discovery. Biosensor applications are also prevalent in the plant biology sector to find the missing links required in the metabolic process. In this review, the importance of oxygen functional groups in functionalizing the graphene and graphene oxide and different types of functionalization will be explained. Moreover, immobilization of biomolecules (such as protein, peptide, DNA, aptamer) on graphene and graphene oxide and at the end, the application of these biomaterials in biosensors with different transducing mechanisms will be discussed.
Collapse
Affiliation(s)
- Shiva Shahriari
- Department of Mechanical & Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | - Murali Sastry
- Department of Materials Science and Engineering, Monash University, Melbourne, Victoria, Australia
| | - Santosh Panjikar
- ANSTO, Australian Synchrotron, Melbourne, Victoria, Australia
- Department of Molecular Biology and Biochemistry, Monash University, Melbourne, Victoria, Australia
| | - R K Singh Raman
- Department of Mechanical & Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Dubrovin EV, Klinov DV. Atomic Force Microscopy of Biopolymers on Graphite Surfaces. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x2106002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Guo W, Lu T, Gandhi Z, Chen Z. Probing Orientations and Conformations of Peptides and Proteins at Buried Interfaces. J Phys Chem Lett 2021; 12:10144-10155. [PMID: 34637311 DOI: 10.1021/acs.jpclett.1c02956] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular structures of peptides/proteins at interfaces determine their interfacial properties, which play important roles in many applications. It is difficult to probe interfacial peptide/protein structures because of the lack of appropriate tools. Sum frequency generation (SFG) vibrational spectroscopy has been developed into a powerful technique to elucidate molecular structures of peptides/proteins at buried solid/liquid and liquid/liquid interfaces. SFG has been successfully applied to study molecular interactions between model cell membranes and antimicrobial peptides/membrane proteins, surface-immobilized peptides/enzymes, and physically adsorbed peptides/proteins on polymers and 2D materials. A variety of other analytical techniques and computational simulations provide supporting information to SFG studies, leading to more complete understanding of structure-function relationships of interfacial peptides/proteins. With the advance of SFG techniques and data analysis methods, along with newly developed supplemental tools and simulation methodology, SFG research on interfacial peptides/proteins will further impact research in fields like chemistry, biology, biophysics, engineering, and beyond.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tieyi Lu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zahra Gandhi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
29
|
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Guo W, Zou X, Jiang H, Koebke KJ, Hoarau M, Crisci R, Lu T, Wei T, Marsh ENG, Chen Z. Molecular Structure of the Surface-Immobilized Super Uranyl Binding Protein. J Phys Chem B 2021; 125:7706-7716. [PMID: 34254804 DOI: 10.1021/acs.jpcb.1c03849] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, a super uranyl binding protein (SUP) was developed, which exhibits excellent sensitivity/selectivity to bind uranyl ions. It can be immobilized onto a surface in sensing devices to detect uranyl ions. Here, sum frequency generation (SFG) vibrational spectroscopy was applied to probe the interfacial structures of surface-immobilized SUP. The collected SFG spectra were compared to the calculated orientation-dependent SUP SFG spectra using a one-excitonic Hamiltonian approach based on the SUP crystal structures to deduce the most likely surface-immobilized SUP orientation(s). Furthermore, discrete molecular dynamics (DMD) simulation was applied to refine the surface-immobilized SUP conformations and orientations. The immobilized SUP structures calculated from DMD simulations confirmed the SUP orientations obtained from SFG data analyzed based on the crystal structures and were then used for a new round of SFG orientation analysis to more accurately determine the interfacial orientations and conformations of immobilized SUP before and after uranyl ion binding, providing an in-depth understanding of molecular interactions between SUP and the surface and the effect of uranyl ion binding on the SUP interfacial structures. We believe that the developed method of combining SFG measurements, DMD simulation, and Hamiltonian data analysis approach is widely applicable to study biomolecules at solid/liquid interfaces.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Xingquan Zou
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Hanjie Jiang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Karl J Koebke
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Marie Hoarau
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Ralph Crisci
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Tieyi Lu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Tao Wei
- Department of Chemical Engineering, Howard University, 2366 Sixth Street, NW, Washington, D.C. 20059, United States
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Cicuéndez M, Coimbra A, Santos J, Oliveira H, Ayán−Varela M, Paredes JI, Villar−Rodil S, Vila M, Silva VS. Cytotoxicity of Nucleotide-Stabilized Graphene Dispersions on Osteosarcoma and Healthy Cells: On the Way to Safe Theranostics Agents. ACS APPLIED BIO MATERIALS 2021; 4:4384-4393. [DOI: 10.1021/acsabm.1c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mónica Cicuéndez
- CICECO, Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
- NRG-TEMA, Mechanical Engineering Department, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193 , Portugal
| | - Andreia Coimbra
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Joana Santos
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Helena Oliveira
- CICECO, Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Miguel Ayán−Varela
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Juan Ignacio. Paredes
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Sílvia Villar−Rodil
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Mercedes Vila
- NRG-TEMA, Mechanical Engineering Department, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193 , Portugal
| | - Virgília Sofia Silva
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
32
|
Rehak P, Král P. Hybridization of Biomolecular Crystals and Low-Dimensional Materials. ACS NANO 2021; 15:6678-6683. [PMID: 33818078 DOI: 10.1021/acsnano.0c10027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In cellular environments, metabolites, peptides, proteins, and other biomolecules can self-assemble into planar and fibrilar molecular crystals. We use atomistic molecular dynamics simulations to show that such biomolecular crystals coupled with low-dimensional materials can form stable hybrid superstructures. We discuss enantiopure and racemic TRP and PHE amino acid crystals adsorbed on or intercalated between graphene, phosphorene, and carbon nanotubes. While racemic biomolecular crystals tend to stay straight in solutions and when adsorbed on flat and cylindrical nanosurfaces, enantiopure crystals undergo twisting. Mixed material properties of these hybrid superstructures can be attractive in many applications.
Collapse
Affiliation(s)
- Pavel Rehak
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Departments of Physics, Pharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
33
|
Pushpavanam K, Ma J, Cai Y, Naser NY, Baneyx F. Solid-Binding Proteins: Bridging Synthesis, Assembly, and Function in Hybrid and Hierarchical Materials Fabrication. Annu Rev Chem Biomol Eng 2021; 12:333-357. [PMID: 33852353 DOI: 10.1146/annurev-chembioeng-102020-015923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is considerable interest in the development of hybrid organic-inorganic materials because of the potential for harvesting the unique capabilities that each system has to offer. Proteins are an especially attractive organic component owing to the high amount of chemical information encoded in their amino acid sequence, their amenability to molecular and computational (re)design, and the many structures and functions they specify. Genetic installation of solid-binding peptides (SBPs) within protein frameworks affords control over the position and orientation of adhesive and morphogenetic segments, and a path toward predictive synthesis and assembly of functional materials and devices, all while harnessing the built-in properties of the host scaffold. Here, we review the current understanding of the mechanisms through which SBPs bind to technologically relevant interfaces, with an emphasis on the variables that influence the process, and highlight the last decade of progress in the use of solid-binding proteins for hybrid and hierarchical materials synthesis.
Collapse
Affiliation(s)
- Karthik Pushpavanam
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98115, USA;
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98115, USA
| | - Yifeng Cai
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98115, USA;
| | - Nada Y Naser
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98115, USA;
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98115, USA; .,Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98115, USA
| |
Collapse
|
34
|
Jakubowski W, Atraszkiewicz R, Nowak D, Batory D, Szymański W, Sobczyk-Guzenda A, Kaczmarek Ł, Kula P, Cłapa M, Warga T, Czerniak-Reczulska M. Optimization of Glutathione Adhesion Process to Modified Graphene Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:756. [PMID: 33802987 PMCID: PMC8002596 DOI: 10.3390/nano11030756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
The presented work shows the results of the functionalization of the graphene surface obtained by the growth on the liquid bimetallic matrices method. We used glutathione (GSH) as a peptide model, which allowed us to optimize the procedure to obtain high process efficiency. To establish the amount of GSH attached to the graphene surface, the Folina-Ciocalteu method was used, which allows the assessment of the concentration of colored reaction products with peptide bonds without the disadvantages of most methods based on direct colored reaction of peptide bonds. Samples surface morphology, quality of graphene and chemical structure in the subsequent stages of surface modification were tested-for this purpose Raman spectroscopy, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) were used.
Collapse
Affiliation(s)
- Witold Jakubowski
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
| | - Radomir Atraszkiewicz
- Division of Surface Engineering and Heat Treatment, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland; (R.A.); (P.K.)
| | - Dorota Nowak
- Division of Biomedical Engineering and Functional Materials, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland; (D.N.); (M.C.); (M.C.-R.)
| | - Damian Batory
- Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland;
| | - Witold Szymański
- Division of Nanomaterials Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland;
| | - Anna Sobczyk-Guzenda
- Division of Coating, Polymer and Non-Metal Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland;
| | - Łukasz Kaczmarek
- Division of Advanced Materials and Composite, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland; (Ł.K.); (T.W.)
| | - Piotr Kula
- Division of Surface Engineering and Heat Treatment, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland; (R.A.); (P.K.)
| | - Marian Cłapa
- Division of Biomedical Engineering and Functional Materials, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland; (D.N.); (M.C.); (M.C.-R.)
| | - Tomasz Warga
- Division of Advanced Materials and Composite, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland; (Ł.K.); (T.W.)
| | - Małgorzata Czerniak-Reczulska
- Division of Biomedical Engineering and Functional Materials, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland; (D.N.); (M.C.); (M.C.-R.)
| |
Collapse
|
35
|
Abstract
Understanding peptide-surface interactions is crucial for programming self-assembly of peptides at surfaces and in realizing their applications, such as biosensors and biomimetic materials. In this study, we developed insights into the dependence of a residue's interaction with a surface on its neighboring residue in a tripeptide using molecular dynamics simulations. This knowledge is integral for designing rational mutations to control peptide-surface complexes. Using graphene as our model surface, we estimated the free energy of adsorption (ΔAads) and extracted predominant conformations of 26 tripeptides with the motif LNR-CR-Gly, where LNR and CR are variable left-neighboring and central residues, respectively. We considered a combination of strongly adsorbing (Phe, Trp, and Arg) and weakly adsorbing (Ala, Val, Leu, Ser, and Thr) amino acids on graphene identified in a prior study to form the tripeptides. Our results indicate that ΔAads of a tripeptide cannot be estimated as the sum of ΔAads of each residue indicating that the residues in a tripeptide do not behave as independent entities. We observed that the contributions from the strongly adsorbing amino acids were dominant, which suggests that such residues could be used for strengthening peptide-graphene interactions irrespective of their neighboring residues. In contrast, the adsorption of weakly adsorbing central residues is dependent on their neighboring residues. Our structural analysis revealed that the dihedral angles of LNR are more correlated with that of CR in the adsorbed state than in bulk state. Together with ΔAads trends, this implies that different backbone structures of a given CR can be accessed for a similar ΔAads by varying the LNR. Therefore, incorporation of context effects in designing mutations can lead to desired peptide structure at surfaces. Our results also emphasize that these cooperative effects in ΔAads and structure are not easily predicted a priori. The collective results have applications in guiding rational mutagenesis techniques to control orientation of peptides at surfaces and in developing peptide structure prediction algorithms in adsorbed state from its sequence.
Collapse
Affiliation(s)
- Siva Dasetty
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sapna Sarupria
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
36
|
Ramadan S, Lobo R, Zhang Y, Xu L, Shaforost O, Kwong Hong Tsang D, Feng J, Yin T, Qiao M, Rajeshirke A, Jiao LR, Petrov PK, Dunlop IE, Titirici MM, Klein N. Carbon-Dot-Enhanced Graphene Field-Effect Transistors for Ultrasensitive Detection of Exosomes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7854-7864. [PMID: 33560115 DOI: 10.1021/acsami.0c18293] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Graphene field-effect transistors (GFETs) are suitable building blocks for high-performance electrical biosensors, because graphene inherently exhibits a strong response to charged biomolecules on its surface. However, achieving ultralow limit-of-detection (LoD) is limited by sensor response time and screening effect. Herein, we demonstrate that the detection limit of GFET biosensors can be improved significantly by decorating the uncovered graphene sensor area with carbon dots (CDs). The developed CDs-GFET biosensors used for exosome detection exhibited higher sensitivity, faster response, and three orders of magnitude improvements in the LoD compared with nondecorated GFET biosensors. A LoD down to 100 particles/μL was achieved with CDs-GFET sensor for exosome detection with the capability for further improvements. The results were further supported by atomic force microscopy (AFM) and fluorescent microscopy measurements. The high-performance CDs-GFET biosensors will aid the development of an ultrahigh sensitivity biosensing platform based on graphene for rapid and early diagnosis of diseases.
Collapse
Affiliation(s)
- Sami Ramadan
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard Lobo
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Yuanzhou Zhang
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lizhou Xu
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Olena Shaforost
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Jingyu Feng
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Tianyi Yin
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mo Qiao
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Anvesh Rajeshirke
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Long R Jiao
- Department of Hepatobiliary Surgery, Division of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Peter K Petrov
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Iain E Dunlop
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Norbert Klein
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
37
|
Zheng S, Sajib MSJ, Wei Y, Wei T. Discontinuous Molecular Dynamics Simulations of Biomolecule Interfacial Behavior: Study of Ovispirin-1 Adsorption on a Graphene Surface. J Chem Theory Comput 2021; 17:1874-1882. [PMID: 33586958 DOI: 10.1021/acs.jctc.0c01172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fundamental understanding of biomolecular interfacial behavior, such as protein adsorption at the microscopic scale, is critical to broad applications in biomaterials, nanomedicine, and nanoparticle-based biosensing techniques. The goal of achieving both computational efficiency and accuracy presents a major challenge for simulation studies at both atomistic and molecular scales. In this work, we developed a unique, accurate, high-throughput simulation method which, by integrating discontinuous molecular dynamics (DMD) simulations with the Go-like protein-surface interaction model, not only solves the dynamics efficiently, but also describes precisely the protein intramolecular and intermolecular interactions at the atomistic scale and the protein-surface interactions at the coarse-grained scale. Using our simulation method and in-house developed software, we performed a systematic study of α-helical ovispirin-1 peptide adsorption on a graphene surface, and our study focused on the effect of surface hydrophobic interactions and π-π stacking on protein adsorption. Our DMD simulations were consistent with full-atom molecular dynamics simulations and showed that a single ovispirin-1 peptide lay down on the flat graphene surface with randomized secondary structure due to strong protein-surface interactions. Peptide aggregates were formed with an internal hydrophobic core driven by strong interactions of hydrophobic residues in the bulk environment. However, upon adsorption, the hydrophobic graphene surface can break the hydrophobic core by denaturing individual peptide structures, leading to disassembling the aggregate structure and further randomizing the ovispirin-1 peptide's secondary structures.
Collapse
Affiliation(s)
- Size Zheng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, P. R. China
| | - Md Symon Jahan Sajib
- Chemical Engineering Department, Howard University, Washington, D.C. 20059, United States
| | - Yong Wei
- Department of Computer Science and Information Systems, University of North Georgia, Dahlonega, Georgia 30597, United States
| | - Tao Wei
- Chemical Engineering Department, Howard University, Washington, D.C. 20059, United States
| |
Collapse
|
38
|
Graphene nanoribbons: A state-of-the-art in health care. Int J Pharm 2021; 595:120269. [DOI: 10.1016/j.ijpharm.2021.120269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023]
|
39
|
Yang Z, Tang D, Hu J, Tang M, Zhang M, Cui HL, Wang L, Chang C, Fan C, Li J, Wang H. Near-Field Nanoscopic Terahertz Imaging of Single Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005814. [PMID: 33306275 DOI: 10.1002/smll.202005814] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/22/2020] [Indexed: 05/26/2023]
Abstract
Terahertz (THz) biological imaging has attracted intense attention due to its capability of acquiring physicochemical information in a label-free, noninvasive, and nonionizing manner. However, extending THz imaging to the single-molecule level remains a challenge, partly due to the weak THz reflectivity of biomolecules with low dielectric constants. Here, the development of graphene-mediated THz scattering-type scanning near-field optical microscope for direct imaging of single proteins is reported. Importantly, it is found that a graphene substrate with high THz reflectivity and atomic flatness can provide high THz contrast against the protein molecules. In addition, a platinum probe with an optimized shaft length is found enabling the enhancement of the amplitude of the scattered THz near-field signals. By coupling these effects, the topographical and THz scattering images of individual immunoglobulin G (IgG) and ferritin molecules with the size of a few nanometers are obtained, simultaneously. The demonstrated strategy thus opens new routes to imaging single biomolecules with THz.
Collapse
Affiliation(s)
- Zhongbo Yang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Dongyun Tang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jiao Hu
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Mingjie Tang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Mingkun Zhang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hong-Liang Cui
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714, China
| | - Lihua Wang
- Bioimaging Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Chao Chang
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiang Li
- Bioimaging Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Huabin Wang
- Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| |
Collapse
|
40
|
Zhang S, Andre JS, Hsu L, Toolis A, Esarey SL, Li B, Chen Z. Nondestructive In Situ Detection of Chemical Reactions at the Buried Interface between Polyurethane and Isocyanate-Based Primer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01862] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shuqing Zhang
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - John S Andre
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Lorraine Hsu
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | - Amy Toolis
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | - Samuel L Esarey
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | - Bolin Li
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
41
|
Li B, Xie S, Xia A, Suo T, Huang H, Zhang X, Chen Y, Zhou X. Recent advance in the sensing of biomarker transcription factors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Kamel M, Raissi H, Hashemzadeh H, Mohammadifard K. Theoretical elucidation of the amino acid interaction with graphene and functionalized graphene nanosheets: insights from DFT calculation and MD simulation. Amino Acids 2020; 52:1465-1478. [PMID: 33098474 DOI: 10.1007/s00726-020-02905-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/18/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Maedeh Kamel
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran.
| | | | - Kamal Mohammadifard
- Department of Chemical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
43
|
Guo W, Xu S, Reichart TM, Xiao M, Lu T, Mello C, Chen Z. Probing Molecular Interactions between Surface-Immobilized Antimicrobial Peptides and Lipopolysaccharides In Situ. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12383-12393. [PMID: 33034460 DOI: 10.1021/acs.langmuir.0c02492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria. Recently, a label-free immobilized antimicrobial peptide (AMP) surface plasmon resonance platform was developed to successfully distinguish LPS from multiple bacterial strains. Among the tested AMPs, SMAP29 exhibited excellent affinity with LPS and has two independent LPS-binding sites located at two termini of the peptide. In this study, sum frequency generation vibrational spectroscopy was applied to investigate molecular interactions between three LPS samples and surface-immobilized SMAP29 via the N-terminus, the C-terminus, and a middle site at the solid/liquid interface in situ in real-time, supplemented by circular dichroism spectroscopy. It was found that the conformations and orientations of surface-immobilized SMAP29 via different sites are different when interacting with the same LPS, with different interaction kinetics. The same SMAP29 sample also has different structures and interaction kinetics while interacting with different LPS samples with different charge densities and hydrophobicities. The observed results on molecular interactions between surface-immobilized peptides and LPS can well interpret the different adsorption amounts of various LPSs on different surface-immobilized peptides.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Shan Xu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Timothy M Reichart
- Office of the Chief Scientist, Combat Capabilities Development Command Soldier Center, 15 Kansas Street, Natick, Massachusetts 01760, United States
- Department of Chemistry, Hampden-Sydney College, Hampden-Sydney, VA 23943, United States
| | - Minyu Xiao
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Tieyi Lu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Charlene Mello
- Office of the Chief Scientist, Combat Capabilities Development Command Soldier Center, 15 Kansas Street, Natick, Massachusetts 01760, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
44
|
Liu H, Deng J, Luo Z, Lin Y, Merz KM, Zheng Z. Receptor–Ligand Binding Free Energies from a Consecutive Histograms Monte Carlo Sampling Method. J Chem Theory Comput 2020; 16:6645-6655. [DOI: 10.1021/acs.jctc.0c00457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao Liu
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Jianpeng Deng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Zhou Luo
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Yawei Lin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Kenneth M. Merz
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Zheng Zheng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| |
Collapse
|
45
|
Wang X, Lan PC, Ma S. Metal-Organic Frameworks for Enzyme Immobilization: Beyond Host Matrix Materials. ACS CENTRAL SCIENCE 2020; 6:1497-1506. [PMID: 32999925 PMCID: PMC7517118 DOI: 10.1021/acscentsci.0c00687] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 05/15/2023]
Abstract
Enzyme immobilization in metal-organic frameworks (MOFs) as a promising strategy is attracting the interest of scientists from different disciplines with the expansion of MOFs' development. Different from other traditional host materials, their unique strengths of high surface areas, large yet adjustable pore sizes, functionalizable pore walls, and diverse architectures make MOFs an ideal platform to investigate hosted enzymes, which is critical to the industrial and commercial process. In addition to the protective function of MOFs, the extensive roles of MOFs in the enzyme immobilization are being well-explored by making full use of their remarkable properties like well-defined structure, high porosity, and tunable functionality. Such development shifts the focus from the exploration of immobilization strategies toward functionalization. Meanwhile, this would undoubtedly contribute to a better understanding of enzymes in regards to the structural transformation after being hosted in a confinement environment, particularly to the orientation and conformation change as well as the interplay between enzyme and matrix MOFs. In this Outlook, we target a comprehensive review of the role diversities of the host matrix MOF based on the current enzyme immobilization research, along with proposing an outlook toward the future development of this field, including the representatives of potential techniques and methodologies being capable of studying the hosted enzymes.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Pui Ching Lan
- Department
of Chemistry, University of North Texas, 1508 West Mulberry Street, Denton, Texas 76201, United States
| | - Shengqian Ma
- Department
of Chemistry, University of North Texas, 1508 West Mulberry Street, Denton, Texas 76201, United States
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
- E-mail:
| |
Collapse
|
46
|
Walters F, Ali MM, Burwell G, Rozhko S, Tehrani Z, Daghigh Ahmadi E, Evans JE, Abbasi HY, Bigham R, Mitchell JJ, Kazakova O, Devadoss A, Guy OJ. A Facile Method for the Non-Covalent Amine Functionalization of Carbon-Based Surfaces for Use in Biosensor Development. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1808. [PMID: 32927839 PMCID: PMC7559712 DOI: 10.3390/nano10091808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Affinity biosensors based on graphene field-effect transistor (GFET) or resistor designs require the utilization of graphene's exceptional electrical properties. Therefore, it is critical when designing these sensors, that the electrical properties of graphene are maintained throughout the functionalization process. To that end, non-covalent functionalization may be preferred over covalent modification. Drop-cast 1,5-diaminonaphthalene (DAN) was investigated as a quick and simple method for the non-covalent amine functionalization of carbon-based surfaces such as graphene, for use in biosensor development. In this work, multiple graphene surfaces were functionalized with DAN via a drop-cast method, leading to amine moieties, available for subsequent attachment to receptor molecules. Successful modification of graphene with DAN via a drop-cast method was confirmed using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and real-time resistance measurements. Successful attachment of receptor molecules also confirmed using the aforementioned techniques. Furthermore, an investigation into the effect of sequential wash steps which are required in biosensor manufacture, on the presence of the DAN layer, confirmed that the functional layer was not removed, even after multiple solvent exposures. Drop-cast DAN is thus, a viable fast and robust method for the amine functionalization of graphene surfaces for use in biosensor development.
Collapse
Affiliation(s)
- Ffion Walters
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Muhammad Munem Ali
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Gregory Burwell
- Department of Physics, College of Science, Swansea University, Swansea SA2 8PP, UK; (G.B.); (R.B.)
| | - Sergiy Rozhko
- National Physical Laboratory, Quantum Metrology Institute, Teddington, Middlesex TW11 0LW, UK; (S.R.); (O.K.)
| | - Zari Tehrani
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Ehsaneh Daghigh Ahmadi
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Jon E. Evans
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Hina Y. Abbasi
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Ryan Bigham
- Department of Physics, College of Science, Swansea University, Swansea SA2 8PP, UK; (G.B.); (R.B.)
| | - Jacob John Mitchell
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Olga Kazakova
- National Physical Laboratory, Quantum Metrology Institute, Teddington, Middlesex TW11 0LW, UK; (S.R.); (O.K.)
| | - Anitha Devadoss
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
| | - Owen J. Guy
- Centre for NanoHealth, College of Engineering, Swansea University, Swansea SA2 8PP, UK; (M.M.A.); (Z.T.); (E.D.A.); (J.E.E.); (H.Y.A.); (J.J.M.)
- Department of Chemistry, College of Science, Swansea University, Swansea SA2 8PP, UK
| |
Collapse
|
47
|
Lin T, Guo W, Guo R, Chen Z. Probing Biological Molecule Orientation and Polymer Surface Structure at the Polymer/Solution Interface In Situ. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7681-7690. [PMID: 32525691 DOI: 10.1021/acs.langmuir.0c01319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymers are widely used for many applications ranging from biomedical materials, marine antifouling coatings, membranes for biomolecule separation, to substrates for enzyme molecules for biosensing. For such applications, it is important to understand molecular interactions between biological molecules and polymer materials in situ in real time. Such understanding provides vital knowledge to manipulate biological molecule-polymer interactions and to optimize polymer surface structures to improve polymer performance. In this research, sum frequency generation (SFG) vibrational spectroscopy was applied to study interactions between peptides (serving as models for biological molecules) and deuterated polystyrene (d8-PS, serving as a model for polymer materials). The peptide conformations/orientations and polymer surface phenyl orientation during the peptide-d8-PS interactions were determined using SFG. It was found that the π-π interaction between the aromatic amino acids on peptides and phenyl groups on d8-PS surface does not play a significant role. Instead, the peptide-d8-PS interactions are mediated by general hydrophobic interactions between the peptides and the polymer surface.
Collapse
|
48
|
Hong Y, Bao S, Xiang X, Wang X. Concentration-Dominated Orientation of Phenyl Groups at the Polystyrene/Graphene Interface. ACS Macro Lett 2020; 9:889-894. [PMID: 35648522 DOI: 10.1021/acsmacrolett.0c00279] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The interfacial orientation of aromatic groups plays a crucial role in determining the properties of graphene-based aromatic polymer nanocomposites. Here, the interfacial orientation of the polystyrene (PS) phenyl groups in contact with graphene is revealed by sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra showed that the orientation of the phenyl groups is closely related to the interfacial concentration as the chains reach the quasi-equilibrium state. The phenyl groups remain in a relatively unrestricted state at a low concentration of the PS phenyl groups, and they prefer to recline to more favorably interact with graphene via a face-to-face configuration. Densely stacked phenyl groups are too crowded to form multilayer face-to-face interactions with graphene, and they prefer to remain upright, while π-π interactions are formed among the phenyl groups themselves in addition to the edge-to-face interactions to maximize the bonding energy of the π-π interactions. This is enthalpically favorable and driven mainly by the π-π interactions. This work provides important knowledge for the design and optimization of functional graphene-based aromatic polymer nanocomposites.
Collapse
Affiliation(s)
- Yongming Hong
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Senyang Bao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiang Xiang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
49
|
Hosseinpour S, Roeters SJ, Bonn M, Peukert W, Woutersen S, Weidner T. Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chem Rev 2020; 120:3420-3465. [DOI: 10.1021/acs.chemrev.9b00410] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | | | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Sander Woutersen
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 EP Amsterdam, The Netherlands
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
50
|
Srivastava R. Interactions, electronic and optical properties of nanographene–peptide complexes: a theoretical study. RSC Adv 2020; 10:38654-38662. [PMID: 35517564 PMCID: PMC9057264 DOI: 10.1039/d0ra07961h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
We studied the interaction of planar phenylalanine (phe), tryptophan (try), tyrosine (tyr); amide asparagine (asn) and glutamine (gln); arginine (arg) side-chains, charged histidine (his-c) and charged lysine (lys-c) side-chains on a nanographene (g) surface by Density Functional theory (DFT) and Time Dependent Density Functional Theory (TDDFT). The occupied number of states by the system at each energy level and relative contribution of a particular atom/orbital has been studied by Density of States (DOS) and Partial Density of States (PDOS) respectively. Atom-in Molecules (AIM) analysis and non-covalent interaction (NCI) PLOT are used to study the interactions in these complexes. The absorption spectra and HOMO–LUMO (HL) gaps are quantitatively analysed to study the correlation between the optical properties of the studied complexes. The HL gap of peptides is larger than the HL gap of graphene–peptide complexes, indicating strong interactions. All the peptides interact from the above the nanographene surfaces. garg, glys-c, gtry and gtyr complexes have smaller bond distance as compared to gasn, ggln, ghis-c and gphe complexes. AIM analysis and (NCI) PLOT showed noncovalent interactions for these complexes. TDDFT calculations indicated the applicability of these complexes as biosensors. We studied interactions of planar phenylalanine, tryptophan, tyrosine; amide asparagine and glutamine; arginine side-chains, charged histidine and charged lysine side-chains on a nanographene surface by density functional theory and time dependent density functional theory.![]()
Collapse
Affiliation(s)
- Ruby Srivastava
- CSIR-Centre for Cellular and Molecular Biology
- Hyderabad
- India
| |
Collapse
|