1
|
Tang Y, Huang M, Jin J, Sun S, Wang L, Tan Y, Sun X, Guo H. Asymmetric Construction of Chiral 2-Azetines and Axially Chiral Tetrasubstituted Allenes Via Phosphine Catalysis. Angew Chem Int Ed Engl 2025; 64:e202415787. [PMID: 39523451 DOI: 10.1002/anie.202415787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Chiral 2-azetines and allenes are highly valuable structural units in natural products and useful chemicals. However, enantioselective synthesis of both 2-azetines and allenes has been extremely challenging. Herein, we present asymmetric construction of chiral 2-azetines (70-98 % yields and up to 96 % ee) through chiral phosphine-catalyzed [2+2] annulation of yne-enones with sulfamate-derived cyclic imines. These 2-azetines were easily transformed into chiral allenes upon treatment with Et3SiH, BF3 ⋅ Et2O and water at rt for 2 minutes. Based on the above transformations, a concise one-pot synthetic procedure combining [2+2] annulation of yne-enones and sulfamate-derived cyclic imines under phosphine catalysis and sequential reduction/isomerization/ring-opening reaction through Et3SiH, BF3 ⋅ Et2O and water was thus set up, providing axially chiral tetrasubstituted allenes in satisfactory yields and enantioselectivities (56-90 % yields and up to 91 % ee).
Collapse
Affiliation(s)
- Yi Tang
- Department of Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Mingxia Huang
- Department of Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Jingrong Jin
- Department of Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Shitao Sun
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Lan Wang
- Department of Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Yu Tan
- Department of Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Xiaojing Sun
- Department of Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| |
Collapse
|
2
|
Gonzalez KJ, Cerione C, Stoltz BM. Strategies for the Development of Asymmetric and Non-Directed Petasis Reactions. Chemistry 2024; 30:e202401936. [PMID: 38922740 PMCID: PMC11776500 DOI: 10.1002/chem.202401936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The Petasis reaction is a multicomponent reaction of aldehydes, amines and organoboron reagents and is a useful method for the construction of substituted amines. Despite the significant advancement of the Petasis reaction since its invention in 1993, strategies for asymmetric and non-directed Petasis reactions remain limited. To date, there are very few catalytic asymmetric Petasis reactions and almost all asymmetric reports employ a chiral auxiliary. Likewise, the aldehyde component often requires a directing group, ultimately limiting the reaction's scope. In this Concept, key methods for asymmetric and non-directed Petasis reactions are discussed, focusing on how these conceptual advances can be applied to solve long-standing gaps in the Petasis literature.
Collapse
Affiliation(s)
| | | | - Brian M. Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 101-20, Pasadena, CA 91125 (USA)
| |
Collapse
|
3
|
Woldegiorgis AG, Mustafai A, Muhammad FY, Farooqi R, Tolesa LD, Aimun K. Stereoselective Synthesis of Axially Chiral Allenes and Styrenes via Chiral Phosphoric Acid Catalysis: An Overview. ACS OMEGA 2024; 9:33351-33364. [PMID: 39130561 PMCID: PMC11307311 DOI: 10.1021/acsomega.4c04206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
Chiral allenes and styrenes are essential components in fields like medicinal chemistry, materials science, and organic synthesis. They serve a crucial role as chiral ligands and catalysts in asymmetric synthesis. Over the past decade, there has been a significant advancement in the development of practical methods utilizing organocatalytic strategies for the synthesis of chiral allenes and styrenes. It is noteworthy that despite extensive studies on the formation of allenes and styrenes, existing reviews on their construction confined to a specific organocatalysis, called chiral phosphoric acid catalysis, are less documented. This review aims to explore different conceptual approaches based on the electrophilic species involved in the reaction to produce stereoselective chiral allenes and styrenes, providing insights into recent advancements in the field. Emphasis is placed on works published since 2017, with detailed discussions on reaction mechanisms and examples from recent literature.
Collapse
Affiliation(s)
| | - Aleena Mustafai
- Bahauddin
Zakariya University, Institute of Chemical
Sciences, Multan 60800, Pakistan
| | - Faisal Yasin Muhammad
- Government
College University Faisalabad, Department of Chemistry, P.O. Box: 38000, Faisalabad 38040, Pakistan
| | - Rehmatullah Farooqi
- Bahauddin
Zakariya University, Institute of Chemical
Sciences, Multan 60800, Pakistan
| | - Leta Deressa Tolesa
- Adama
Science and Technology University, School of Applied Natural Science, P.O. Box: 1888, Adama 1000, Ethiopia
| | - Khadija Aimun
- Government
College University Faisalabad, Department of Chemistry, P.O. Box: 38000, Faisalabad 38040, Pakistan
| |
Collapse
|
4
|
Zheng JY, Wang F, Zhang Y, Zheng Z, Wu JH, Ren X, Su Z, Chen W, Wang T. Novel Stereo-Induction Pattern in Pudovik Addition/Phospha-Brook Rearrangement Towards Chiral Trisubstituted Allenes. Angew Chem Int Ed Engl 2024; 63:e202403707. [PMID: 38520267 DOI: 10.1002/anie.202403707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
Despite the significance of chiral allene skeletons in catalysis, organic synthesis and medicinal chemistry et al., there is a scarcity of reports on axially chiral allenyl phosphorus compounds. Here, we disclosed an efficient and straightforward cascade reaction between ethynyl ketones and phosphine oxides, resulting in a broad array of trisubstituted allenes incorporating a phosphorus moiety in high yields with excellent stereoselectivities facilitated by peptide-mimic phosphonium salt (PPS) catalysis, Additionally, comprehensive series of mechanistic experiments have been conducted to elucidate that this cascade reaction proceeds via an asymmetric Pudovik addition reaction followed by a subsequent phospha-Brook rearrangement that occurs concomitantly with kinetic resolution, representing a stereospecific rearrangement and protonation process facilitating central-to-axial chirality transfer in a cascade manner. We anticipate that our research will pave the way for a promising exploration of novel stereo-induction pattern in the Pudovik addition/phospha-Brook rearrangement cascade reaction.
Collapse
Affiliation(s)
- Jia-Yan Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Fan Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yan Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology and Jinjiang Out-patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jia-Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology and Jinjiang Out-patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Deliaval M, Jayarajan R, Eriksson L, Szabó KJ. Three-Component Approach to Densely Functionalized Trifluoromethyl Allenols by Asymmetric Organocatalysis. J Am Chem Soc 2023; 145:10001-10006. [PMID: 37126044 PMCID: PMC10176480 DOI: 10.1021/jacs.3c02852] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have developed a new three-component catalytic coupling reaction of alkynyl boronates, diazomethanes, and aliphatic/aromatic ketones in the presence of BINOL derivatives. The reaction proceeds with a remarkably high enantio- and diastereoselectivity (up to three contiguous stereocenters) affording tertiary CF3-allenols in a single operational step. The reaction proceeds under mild, neutral, metal-free conditions, which leads to a high level of functional group tolerance.
Collapse
Affiliation(s)
- Marie Deliaval
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ramasamy Jayarajan
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lars Eriksson
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Kálmán J Szabó
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Li M, Sun GQ, Liu YY, Li SX, Liu HC, Qiu YF, Chen DP, Wang XC, Liang YM, Quan ZJ. Nickel-Catalyzed Three-Component Tandem Radical Cyclization 1,5-Difunctionalization of 1,3-Enynes and Alkyl Bromide. J Org Chem 2023; 88:1403-1410. [PMID: 36656018 DOI: 10.1021/acs.joc.2c02271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A nickel-catalyzed three-component tandem radical cyclization reaction of aryl bromides with 1,3-enynes and aryl boric acids to construct γ-lactam-substituted allene derivatives has been described. This protocol provides lactam alkyl radicals through the free radical cyclization process, which can be effectively used to participate in the subsequent multicomponent coupling reaction so that 1,3-enynes could directly convert into corresponding poly-substituted allene compounds. In addition, this efficient method enjoys a broad substrate scope and provides a series of 1,5-difunctionalized allenes in a one-pot reaction.
Collapse
Affiliation(s)
- Ming Li
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Guo-Qing Sun
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yu-Yu Liu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shun-Xi Li
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Hai-Chao Liu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Dong-Pin Chen
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
7
|
da Silva EM, Vidal HDA, Januário MAP, Corrêa AG. Advances in the Asymmetric Synthesis of BINOL Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010012. [PMID: 36615207 PMCID: PMC9821997 DOI: 10.3390/molecules28010012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
BINOL derivatives have shown relevant biological activities and are important chiral ligands and catalysts. Due to these properties, their asymmetric synthesis has attracted the interest of the scientific community. In this work, we present an overview of the most efficient methods to obtain chiral BINOLs, highlighting the use of metal complexes and organocatalysts as well as kinetic resolution. Further derivatizations of BINOLs are also discussed.
Collapse
|
8
|
Nistanaki SK, Williams CG, Wigman B, Wong JJ, Haas BC, Popov S, Werth J, Sigman MS, Houk KN, Nelson HM. Catalytic asymmetric C-H insertion reactions of vinyl carbocations. Science 2022; 378:1085-1091. [PMID: 36480623 PMCID: PMC9993429 DOI: 10.1126/science.ade5320] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
From the preparation of pharmaceuticals to enzymatic construction of natural products, carbocations are central to molecular synthesis. Although these reactive intermediates are engaged in stereoselective processes in nature, exerting enantiocontrol over carbocations with synthetic catalysts remains challenging. Many resonance-stabilized tricoordinated carbocations, such as iminium and oxocarbenium ions, have been applied in catalytic enantioselective reactions. However, their dicoordinated counterparts (aryl and vinyl carbocations) have not, despite their emerging utility in chemical synthesis. We report the discovery of a highly enantioselective vinyl carbocation carbon-hydrogen (C-H) insertion reaction enabled by imidodiphosphorimidate organocatalysts. Active site confinement featured in this catalyst class not only enables effective enantiocontrol but also expands the scope of vinyl cation C-H insertion chemistry, which broadens the utility of this transition metal-free C(sp3)-H functionalization platform.
Collapse
Affiliation(s)
- Sepand K. Nistanaki
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chloe G. Williams
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Benjamin Wigman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan J. Wong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brittany C. Haas
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Stasik Popov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jacob Werth
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hosea M. Nelson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Akkarasereenon K, Batsomboon P, Ruchirawat S, Ploypradith P. Functionalized Chromans from ortho-Quinone Methides and Arylallenes. J Org Chem 2022; 87:15863-15887. [PMID: 36373006 DOI: 10.1021/acs.joc.2c01962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
ortho-Quinone methides (o-QMs) underwent formal [4 + 2]-cycloaddition reactions with arylallenes regioselectively at the styrenyl olefin to furnish the corresponding 3-methylene-2-arylchromans in moderate to good yields (up to 88%). When R ≠ H, the reactions also proceeded with moderate stereoselectivity (up to 5:1) which was governed by the nature of the R group. The 3-methylene-2-arylchromans could serve as common intermediates for further functionalization including epoxidation, oxidative cleavage/Baeyer-Villiger oxidation, Riley oxidation, acid-catalyzed rearrangement, and Pd-catalyzed cross-coupling reactions to furnish the corresponding derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Kornkamon Akkarasereenon
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Paratchata Batsomboon
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand
| | - Poonsakdi Ploypradith
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand
| |
Collapse
|
10
|
Xu X, Wang M, Peng L, Guo C. Nickel-Catalyzed Asymmetric Propargylation for the Synthesis of Axially Chiral 1,3-Disubstituted Allenes. J Am Chem Soc 2022; 144:21022-21029. [DOI: 10.1021/jacs.2c10863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xianghong Xu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Mingxu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lingzi Peng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Liang PY, Shi S, Xu XX, Zhang HR, Che Z, Lu K, Yan CX, Jin NZ, Zhou PP. Organocatalytic synthesis of chiral allene catalyzed by chiral phosphoric acid via asymmetric 1,8-addition of indole imine methide: Mechanism and origin of enantioselectivity. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Ligand-controlled Cobalt-Catalyzed Formation of Carbon–Boron Bonds: Hydroboration vs. C–H/B–H Dehydrocoupling. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Vytla D, Emmadi J, Velayuthaperumal R, Shaw P, Cavallaro CL, Mathur A, Roy A. Visible-light enabled one-pot three-component Petasis reaction for synthesis of α-substituted secondary sulfonamides/amides/hydrazides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Li W, Zhou L. Synthesis of Tetrasubstituted Allenes via Visible-Light-Promoted Radical 1,3-Difunctionalization of Alkynyl Diazo Compounds. Org Lett 2022; 24:3976-3981. [PMID: 35622019 DOI: 10.1021/acs.orglett.2c01366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we described an unprecedented process for generating allenyl radicals through radical addition to alkynyl diazo compounds followed by a 1,2-radical shift with the loss of nitrogen. Using this protocol, radical 1,3-difunctionalization of alkynyl diazo compounds for the synthesis of tetrasubstituted allenes with RSO2X (X = SeR', SR', and I) as the radical sources was developed. The reactions were promoted by visible light without photocatalyst and any additives.
Collapse
Affiliation(s)
- Weiyu Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
15
|
Sun Q, Zhang X, Duan X, Qin L, Yuan X, Wu M, Liu J, Zhu S, Qiu J, Guo K. Photoinduced Merging with Copper‐ or
Nickel‐Catalyzed
1,
4‐Cyanoalkylarylation
of 1,
3‐Enynes
to Access Multiple Functionalizatized Allenes in Batch and Continuous Flow. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qi Sun
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xin‐Peng Zhang
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xiu Duan
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Long‐Zhou Qin
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xin Yuan
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Meng‐Yu Wu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Jie Liu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Shan‐Shan Zhu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Jiang‐Kai Qiu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
- State Key Laboratory of Materials‐Oriented Chemical Engineering Nanjing Tech University Nanjing 211800 P. R. China
| | - Kai Guo
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
- State Key Laboratory of Materials‐Oriented Chemical Engineering Nanjing Tech University Nanjing 211800 P. R. China
| |
Collapse
|
16
|
Wang X, Chen X, Lin W, Li P, Li W. Recent Advances in Organocatalytic Enantioselective Synthesis of Axially Chiral Allenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xing Wang
- Department of Medicinal Chemistry School of Pharmacy Qingdao University 308 Ningxia Road Qingdao Shandong 266021 People's Republic of China
| | - Xuling Chen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 People's Republic of China
| | - Wei Lin
- Department of Medicinal Chemistry School of Pharmacy Qingdao University 308 Ningxia Road Qingdao Shandong 266021 People's Republic of China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 People's Republic of China
| | - Wenjun Li
- Department of Medicinal Chemistry School of Pharmacy Qingdao University 308 Ningxia Road Qingdao Shandong 266021 People's Republic of China
| |
Collapse
|
17
|
Zhang FH, Guo X, Zeng X, Wang Z. Catalytic Enantioconvergent Allenylation of Aldehydes with Propargyl Halides. Angew Chem Int Ed Engl 2022; 61:e202117114. [PMID: 35029018 DOI: 10.1002/anie.202117114] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/09/2022]
Abstract
α-Allenol is a versatile synthon in organic synthesis. The catalytic asymmetric synthesis of α-allenols from readily available starting materials remains a prominent challenge, especially when simultaneous control over axial and central chirality is required. Herein, we describe the Cr-catalyzed enantioconvergent allenylation of aldehydes with racemic propargyl halides to rapidly access a wide range of chiral α-allenols with adjacent axial and central chiralities. This method features excellent regio-, diastereo- and enantioselectivity control with broad substrate scope, and provides facile access to all four stereoisomers when allied with a Mitsunobu reaction. Preliminary mechanistic studies support radical-based reaction pathways. The synthetic utility is demonstrated by the application in late-stage functionalization and the formal total synthesis of (+)-varitriol.
Collapse
Affiliation(s)
- Feng-Hua Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| | - Xiaochong Guo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| | - Xianrong Zeng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
18
|
Chevis PJ, Promchai T, Richardson C, Limtharakul T, Pyne SG. Synthesis of syn- and enantioenriched anti-β-amino alcohols by highly diastereoselective borono-Mannich allylation reactions. Chem Commun (Camb) 2022; 58:2220-2223. [PMID: 35072667 DOI: 10.1039/d1cc06775c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly diastereoselective method for the synthesis of syn-β-amino alcohols and enantioenriched anti-β-amino alcohols has been developed involving α-hydroxyl aldehydes and chiral α-phenylaminoxyaldehydes or α-benzoyloxyaldehydes, respectively in Petasis borono-Mannich allylation reactions. This study broadens the scope and utility of the Petasis reaction to include pinacol allylboronate and highlights its unique reactivity and stereochemical outcomes.
Collapse
Affiliation(s)
- Philip J Chevis
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| | - Thanika Promchai
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia. .,Department of Chemistry, Faculty of Science and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| | - Thunwadee Limtharakul
- Department of Chemistry, Faculty of Science and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
19
|
Zhang F, Guo X, Zeng X, Wang Z. Catalytic Enantioconvergent Allenylation of Aldehydes with Propargyl Halides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Feng‐Hua Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Hangzhou 310024, Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study Hangzhou 310024, Zhejiang Province China
| | - Xiaochong Guo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Hangzhou 310024, Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study Hangzhou 310024, Zhejiang Province China
| | - Xianrong Zeng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Hangzhou 310024, Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study Hangzhou 310024, Zhejiang Province China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Hangzhou 310024, Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study Hangzhou 310024, Zhejiang Province China
| |
Collapse
|
20
|
Zhang Y, Du S, Yang T, Jin F, Zhou J, Cao B, Mao ZJ, Song XR, Xiao Q. Direct and Efficient Synthesis of Tetrasubstituted Allenyl organothiophosphates from Propargylic Alcohols under Catalyst- and Additive-Free Conditions. Org Chem Front 2022. [DOI: 10.1039/d2qo00455k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An environment-friendly approach that affords tetrasubstituted allenyl organothiophosphates containing highly congested carbon centers from easily prepared propargylic alcohols and phosphorothioic acids [(RO)2P(O)SH] with water as the only by-product is developed....
Collapse
|
21
|
Tao JJ, Tang JD, Hong T, Ye JW, Chen JY, Xie C, Zhang Z, Li S. Crown Ether-Derived Chiral BINOL: Enantioselective Michael Addition of Alkenyl Boronic Acids to α,β-Unsaturated Ketones. ACS OMEGA 2021; 6:35093-35103. [PMID: 34963990 PMCID: PMC8697596 DOI: 10.1021/acsomega.1c05875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
A new class of aza-crown ether-derived chiral BINOL catalysts were designed, synthesized, and applied in the asymmetric Michael addition of alkenylboronic acids to α,β-unsaturated ketones. It was found that introducing aza-crown ethers to the BINOL catalyst could achieve apparently higher enantioselectivity than a similar BINOL catalyst without aza-crown ethers did, although the host-guest complexation of alkali ions by the aza-crown ethers could not further improve the catalysis effectiveness. Under mediation of the aza-crown ether-derived chiral BINOL and in the presence of a magnesium salt, an array of chiral γ,δ-unsaturated ketones were furnished in good enantioselectivities (81-95% ees).
Collapse
|
22
|
Zhao Y, Wang JL, Zhang Z, Li XS, Niu ZJ, Liu XY. Copper-Catalyzed Direct Allenylation of Inactive Cyclic Ethers. J Org Chem 2021; 86:18056-18066. [PMID: 34842425 DOI: 10.1021/acs.joc.1c02339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here a direct allenylation reaction of inactive cyclic ethers. The reaction proceeds through a copper-catalyzed 1,4-difunctionalization of 1,3-enynes, with cyano group installed at the allenes simultaneously. This methodology shows a broad functional group compatibility to 1,3-enynes. Diversified allene-modified cyclic ether derivatives were synthesized with high regioselectivity under mild conditions.
Collapse
Affiliation(s)
- Yichuan Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jin-Lin Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
23
|
Chai J, Nie Y, Wang Z, Cheng L, Liu YG, Wu J. Metal Free Access to Polysubstituted Pyrimidines via Nitrile Activation and [2+2+2] Cycloaddition. Chemistry 2021; 27:17565-17569. [PMID: 34626013 DOI: 10.1002/chem.202103219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Indexed: 11/08/2022]
Abstract
Tf2 O mediated intermolecular / intramolecular [2+2+2] cycloaddition between alkynes and nitriles has been developed for efficient construction of polysubstituted pyrimidines and bicyclopyrimidines. In presence of Tf2 O, aza-allene species were generated in situ through nitrile activation and subsequently participated in the [2+2+2] cycloaddition, which was fully supported by deuteration experiments. The reaction had good substrate extensibility with moderate to excellent yield including trimethylsilylalkynes. The method was utilized as a synthetic tool in the preparation of a luminescent metal complex.
Collapse
Affiliation(s)
- Jinkui Chai
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yu Nie
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhao Wang
- Henan University of Animal Husbandry and Economy, Zhengzhou, 450001, P. R. China
| | - Li Cheng
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Ying-Guo Liu
- Division of Molecular Catalysis & Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Junliang Wu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
24
|
Crescentini LD, Favi G, Mari G, Ciancaleoni G, Costamagna M, Santeusanio S, Mantellini F. Experimental and Theoretical DFT Investigations in the [2,3]-Wittig-Type Rearrangement of Propargyl/Allyl-Oxy-Pyrazolones. Molecules 2021; 26:6557. [PMID: 34770965 PMCID: PMC8587800 DOI: 10.3390/molecules26216557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Here we report the synthesis of interesting 3-alkyl-4-hydroxy-1-aryl-4-(propa-1,2-dienyl)1H-pyrazol-5(4H)-ones and 9-alkyl-7-aryl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-ones, starting from 1,2-diaza-1,3-dienes (DDs) and propargyl alcohol. The reaction proceeds through a sequence Michael-type nucleophilic attack/cyclization/[2,3]-Wittig rearrangement. In the same way, the reaction between the aforementioned DDs and allyl alcohol furnished 4-allyl-4-hydroxy-3-alkyl-1-aryl-1H-pyrazol-5(4H)-ones. A DFT study was also carried out, in order to have decisive clarifications about the mechanism.
Collapse
Affiliation(s)
- Lucia De Crescentini
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Gianfranco Favi
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Giacomo Mari
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Gianluca Ciancaleoni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, PI, Italy; (G.C.); (M.C.)
| | - Marcello Costamagna
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, PI, Italy; (G.C.); (M.C.)
| | - Stefania Santeusanio
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Fabio Mantellini
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| |
Collapse
|
25
|
Zhou ZZ, Song XR, Du S, Xia KJ, Tian WF, Xiao Q, Liang YM. Photoredox/nickel dual-catalyzed regioselective alkylation of propargylic carbonates for trisubstituted allenes. Chem Commun (Camb) 2021; 57:9390-9393. [PMID: 34528958 DOI: 10.1039/d1cc03303d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, a highly regioselective alkylation of propargylic carbonates for trisubstituted allenes with alkyl 1,4-dihydropyridine derivatives (1,4-DHPs) is developed via a photoredox/nickel dual-catalyzed process, which represents the first direct approach to access alkylated allene products without alkyl organometallic reagents. This method features a broad substrate scope and mild conditions. A hypothetical mechanism with an alkyl radical and an allenyl Ni(III) species is proposed. Benzylation products were also obtained to be the complement building blocks for the potential synthesis of pharmaceuticals.
Collapse
Affiliation(s)
- Zhao-Zhao Zhou
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330000, P. R. China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xian-Rong Song
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Sha Du
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Ke-Jian Xia
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330000, P. R. China.
| | - Wan-Fa Tian
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Qiang Xiao
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|
26
|
Tao L, Yang W, Zhao W. Synthesis of Carboxylic Acids, Esters, and Amides from 1,1‐Dibromoalkenes via Oxidation of Alkynyl Boronate Intermediates. ChemistrySelect 2021. [DOI: 10.1002/slct.202102150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Tao
- State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University South Lushan Road Changsha 410082 P. R. China
| | - Wen Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University South Lushan Road Changsha 410082 P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University South Lushan Road Changsha 410082 P. R. China
| |
Collapse
|
27
|
O'Connor TJ, Mai BK, Nafie J, Liu P, Toste FD. Generation of Axially Chiral Fluoroallenes through a Copper-Catalyzed Enantioselective β-Fluoride Elimination. J Am Chem Soc 2021; 143:13759-13768. [PMID: 34465099 DOI: 10.1021/jacs.1c05769] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein we report the copper-catalyzed silylation of propargylic difluorides to generate axially chiral, tetrasubstituted monofluoroallenes in both good yields (27 examples >80%) and enantioselectivities (82-98% ee). Compared to previously reported synthetic routes to axially chiral allenes (ACAs) from prochiral substrates, a mechanistically distinct reaction has been developed: the enantiodiscrimination between enantiotopic fluorides to set an axial stereocenter. DFT calculations and vibrational circular dichroism (VCD) suggest that β-fluoride elimination from an alkenyl copper intermediate likely proceeds through a syn-β-fluoride elimination pathway rather than an anti-elimination pathway. The effects of the C1-symmetric Josiphos-derived ligand on reactivity and enantioselectivity were investigated. Not only does this report showcase that alkenyl copper species (like their alkyl counterparts) can undergo β-fluoride elimination, but this elimination can be achieved in an enantioselective fashion.
Collapse
Affiliation(s)
- Thomas J O'Connor
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jordan Nafie
- BioTools, Inc., 17546 Bee Line Highway, Jupiter, Florida 33458, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
28
|
Sharma A, Nagaraju K, Rao GA, Gurubrahamam R, Chen K. Asymmetric Organocatalysis of Activated Alkynes and Enynes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Akashdeep Sharma
- Department of Chemistry Indian Institute of Technology Jammu Jagati Jammu (J&K) 181221 India
| | - Koppanathi Nagaraju
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| | - Gunda Ananda Rao
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| | - Ramani Gurubrahamam
- Department of Chemistry Indian Institute of Technology Jammu Jagati Jammu (J&K) 181221 India
| | - Kwunmin Chen
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| |
Collapse
|
29
|
Xie Y, Yang X, Xu J, Chai H, Liu H, Zhang J, Song J, Gao Y, Jin Z, Chi YR. Access to Allene‐Containing Molecules via Enantioselective Reactions of Azolium Cumulenolate Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yongtao Xie
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Jun Xu
- College of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Huifang Chai
- College of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Hongxia Liu
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Jun Song
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Yuan Gao
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
30
|
Xie Y, Yang X, Xu J, Chai H, Liu H, Zhang J, Song J, Gao Y, Jin Z, Chi YR. Access to Allene-Containing Molecules via Enantioselective Reactions of Azolium Cumulenolate Intermediates. Angew Chem Int Ed Engl 2021; 60:14817-14823. [PMID: 33834597 DOI: 10.1002/anie.202102177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Indexed: 12/17/2022]
Abstract
Azolium cumulenolates are a special type of intermediates in N-heterocyclic carbene catalysis. They contain elongated linear structures with three contiguous C=C bonds and sterically unhindered α-carbon atoms. These structural features make it difficult to develop enantioselective reactions for these intermediates. Here we disclose the first carbene-catalyzed highly enantioselective addition reactions of azolium cumulenolates. The reaction starts with alkynals as the precursors for azolium cumulenolate intermediates that undergo enantioselective addition to activated ketones. From the same set of substrates, both allene and spirooxindole products can be obtained with high yields and excellent enantioselectivities. The allene moieties in our optically enriched products carry rich reactivities and can be transformed to diverse molecules. The spirooxindole scaffolds in our products are important structural motifs in natural products and medicines.
Collapse
Affiliation(s)
- Yongtao Xie
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jun Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Huifang Chai
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hongxia Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jun Song
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuan Gao
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District, Guiyang, 550025, China
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
31
|
Wang X, Zhu B, Dong J, Tian H, Liu Y, Song H, Wang Q. Visible-light-mediated multicomponent reaction for secondary amine synthesis. Chem Commun (Camb) 2021; 57:5028-5031. [PMID: 33881074 DOI: 10.1039/d1cc01560e] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The widespread presence of secondary amines in agrochemicals, pharmaceuticals, natural products, and small-molecule biological probes has inspired efforts to streamline the synthesis of molecules with this functional group. Herein, we report an operationally simple, mild protocol for the synthesis of secondary amines by three-component alkylation reactions of imines (generated in situ by condensation of benzaldehydes and anilines) with unactivated alkyl iodides catalyzed by inexpensive and readily available Mn2(CO)10. This protocol, which is compatible with a wide array of sensitive functional groups and does not require a large excess of the alkylating reagent, is a versatile, flexible tool for the synthesis of secondary amines.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Binbing Zhu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Hao Tian
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People's Republic of China
| |
Collapse
|
32
|
Zhang CY, Zhu J, Cui SH, Xie XY, Wang XD, Wu L. Visible-Light-Induced 1,4-Hydroxysulfonylation of Vinyl Enynes with Sulfonyl Chlorides: The Bridge of Chloride Linking Water and Enynes. Org Lett 2021; 23:3530-3535. [PMID: 33881322 DOI: 10.1021/acs.orglett.1c00943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel visible-light-induced 1,4-hydroxysulfonylation of vinyl enynes with sulfonyl chlorides has been established, providing a highly efficient protocol to access multisubstituted sulfonyl allenic alcohols. Control experiments and mechanistic studies disclose that the target products result from sequential reactions of hydroxyl and tosyl radicals, among which chloride anion plays a key role to generate the requisite •OH, thus bridging water and enynes. Moreover, the vinyl pendant is believed to decisively affect the site-selectivity of hydroxyl radical.
Collapse
Affiliation(s)
- Cheng-Yun Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Su-Hang Cui
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiao-Yu Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiao-Dong Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China.,College of Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, P.R. China
| |
Collapse
|
33
|
Alonso JM, Almendros P. Deciphering the Chameleonic Chemistry of Allenols: Breaking the Taboo of a Onetime Esoteric Functionality. Chem Rev 2021; 121:4193-4252. [PMID: 33630581 PMCID: PMC8479864 DOI: 10.1021/acs.chemrev.0c00986] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/19/2022]
Abstract
The allene functionality has participated in one of the most exciting voyages in organic chemistry, from chemical curiosities to a recurring building block in modern organic chemistry. In the last decades, a special kind of allene, namely, allenol, has emerged. Allenols, formed by an allene moiety and a hydroxyl functional group with diverse connectivity, have become common building blocks for the synthesis of a wide range of structures and frequent motif in naturally occurring systems. The synergistic effect of the allene and hydroxyl functional groups enables allenols to be considered as a unique and sole functionality exhibiting a special reactivity. This Review summarizes the most significant contributions to the chemistry of allenols that appeared during the past decade, with emphasis on their synthesis, reactivity, and occurrence in natural products.
Collapse
Affiliation(s)
- José M. Alonso
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pedro Almendros
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
34
|
Guo K, Kleij AW. Copper-Mediated Dichotomic Borylation of Alkyne Carbonates: Stereoselective Access to (E)-1,2-Diborylated 1,3-Dienes versus Traceless Monoborylation Affording α-Hydroxyallenes. Angew Chem Int Ed Engl 2021; 60:4901-4906. [PMID: 33230901 DOI: 10.1002/anie.202014310] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 11/09/2022]
Abstract
A mild copper-mediated protocol has been developed for borylation of alkynyl cyclic carbonates. Depending on the nature of the borylating reaction partner, either stereoselective diborylation of the propargylic surrogate takes place, providing convenient access to (E)-1,2-borylated 1,3-dienes, or traceless monoborylation occurs, which leads to α-hydroxyallenes as the principal product. The dichotomy in this borylation protocol has been scrutinized by several control experiments, illustrating that a relatively small change in the diboron(4) reagent allows for competitive alcohol-assisted protodemetalation to forge an α-hydroxyallene product under ambient conditions.
Collapse
Affiliation(s)
- Kun Guo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
35
|
Guo K, Kleij AW. Copper‐Mediated Dichotomic Borylation of Alkyne Carbonates: Stereoselective Access to (
E
)‐1,2‐Diborylated 1,3‐Dienes versus Traceless Monoborylation Affording α‐Hydroxyallenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kun Guo
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
36
|
Pei G, Chen H, Xu W, Chen T, Li J. Diboron-controlled product selectivity switch in copper-catalyzed decarboxylative substitutions of alkynyl cyclic carbonates. Org Chem Front 2021. [DOI: 10.1039/d1qo01411k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DFT calculations were performed to explore the mechanisms, origins of diboron-controlled divergent product selectivity and stereoselectivity in the copper-catalyzed decarboxylative substitution of alkynyl cyclic carbonates.
Collapse
Affiliation(s)
- Guojing Pei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Hui Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Wan Xu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Juan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
37
|
Cai L, Pan YL, Chen L, Cheng JP, Li X. Bi(OAc) 3/chiral phosphoric acid catalyzed enantioselective allylation of seven-membered cyclic imines, dibenzo[b,f][1,4]oxazepines. Chem Commun (Camb) 2020; 56:12383-12386. [PMID: 32931535 DOI: 10.1039/d0cc05855f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient asymmetric allylation reaction of allylboronates with seven-membered cyclic imines, dibenzo[b,f][1,4]oxazepines, is described. The reaction, which is catalyzed by a Bi(OAc)3/CPA system, gives a range of chiral nitrogen-containing heterocycle structures in high yields and with good enantioselectivities. The conversion of these products to nitrogen-containing heterocycles is also demonstrated.
Collapse
Affiliation(s)
- Liu Cai
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | | | |
Collapse
|
38
|
Zeng Y, Chiou MF, Zhu X, Cao J, Lv D, Jian W, Li Y, Zhang X, Bao H. Copper-Catalyzed Enantioselective Radical 1,4-Difunctionalization of 1,3-Enynes. J Am Chem Soc 2020; 142:18014-18021. [PMID: 33035049 DOI: 10.1021/jacs.0c06177] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chiral allenes are important structural motifs frequently found in natural products, pharmaceuticals, and other organic compounds. Asymmetric 1,4-difunctionalization of 1,3-enynes is a promising strategy to construct axial chirality and produce substituted chiral allenes from achiral substrates. However, the previous state of the art in 1,4-difunctionalization of 1,3-enynes focused on the allenyl anion pathway. Because of this, only electrophiles can be introduced into the allene backbones in the second functionalization step, consequently limiting the reaction and allene product types. The development of asymmetric 1,4-difunctionalization of 1,3-enynes via a radical pathway would complement previous methods and support expansion of the toolbox for the synthesis of asymmetric allenes. Herein, we report the first radical enantioselective allene formation via a group transfer pathway in the context of copper-catalyzed radical 1,4-difunctionalization of 1,3-enynes. This method addresses a longstanding unsolved problem in asymmetric radical chemistry, provides an important strategy for stereocontrol with free allenyl radicals, and offers a novel approach to the valuable, but previously inaccessible, chiral allenes. This work should shed light on asymmetric radical reactions and may lead to other enantioselective group transfer reactions.
Collapse
Affiliation(s)
- Yuehua Zeng
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China
| | - Mong-Feng Chiou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China
| | - Xiaotao Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jie Cao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China
| | - Daqi Lv
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China
| | - Wujun Jian
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China
| | - Xinhao Zhang
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China.,Shenzhen Bay Laboratory, Shenzhen 518055, People's Republic of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
39
|
Hu Y, Shi W, Zheng B, Liao J, Wang W, Wu Y, Guo H. Organocatalytic Asymmetric C(sp
2
)−H Allylic Alkylation: Enantioselective Synthesis of Tetrasubstituted Allenoates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yimin Hu
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Wangyu Shi
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Bing Zheng
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Jianning Liao
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Wei Wang
- College of Public Health Zhengzhou University Zhengzhou 450001 P. R. China
| | - Yongjun Wu
- College of Public Health Zhengzhou University Zhengzhou 450001 P. R. China
| | - Hongchao Guo
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| |
Collapse
|
40
|
Hu Y, Shi W, Zheng B, Liao J, Wang W, Wu Y, Guo H. Organocatalytic Asymmetric C(sp
2
)−H Allylic Alkylation: Enantioselective Synthesis of Tetrasubstituted Allenoates. Angew Chem Int Ed Engl 2020; 59:19820-19824. [PMID: 32820579 DOI: 10.1002/anie.202009460] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Yimin Hu
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Wangyu Shi
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Bing Zheng
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Jianning Liao
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Wei Wang
- College of Public Health Zhengzhou University Zhengzhou 450001 P. R. China
| | - Yongjun Wu
- College of Public Health Zhengzhou University Zhengzhou 450001 P. R. China
| | - Hongchao Guo
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| |
Collapse
|
41
|
Li X, Sun J. Organocatalytic Enantioselective Synthesis of Chiral Allenes: Remote Asymmetric 1,8‐Addition of Indole Imine Methides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xingguang Li
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| | - Jianwei Sun
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| |
Collapse
|
42
|
Zhu WR, Su Q, Diao HJ, Wang EX, Wu F, Zhao YL, Weng J, Lu G. Enantioselective Dehydrative γ-Arylation of α-Indolyl Propargylic Alcohols with Phenols: Access to Chiral Tetrasubstituted Allenes and Naphthopyrans. Org Lett 2020; 22:6873-6878. [PMID: 32808789 DOI: 10.1021/acs.orglett.0c02386] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we report an enantioselective dehydrative γ-arylation of α-indolyl propargylic alcohols with phenols via organocatalysis, which provides efficient access to chiral tetrasubstituted allenes and naphthopyrans in high yields with excellent regio- and enantioselectivities under mild conditions. This method features the use of cheaply available naphthols/phenols as the C-H aryl source and liberating water as the sole byproduct. Control experiments suggest that the excellent enantioselectivity and remote regioselectivity stem from dual hydrogen-bonding interaction with the chiral phosphoric acid catalyst.
Collapse
Affiliation(s)
- Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qiong Su
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hong-Juan Diao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Er-Xuan Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Feng Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yun-Long Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
43
|
Li X, Sun J. Organocatalytic Enantioselective Synthesis of Chiral Allenes: Remote Asymmetric 1,8‐Addition of Indole Imine Methides. Angew Chem Int Ed Engl 2020; 59:17049-17054. [DOI: 10.1002/anie.202006137] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Xingguang Li
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| | - Jianwei Sun
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| |
Collapse
|
44
|
Kalita SJ, Cheng F, Huang Y. Recent Advances of Applying Boron‐Reagents in Asymmetric Total Syntheses of Natural Products and Bio‐Active Molecules. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Subarna Jyoti Kalita
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology Wuhan 430070 People's Republic of China
| | - Feng Cheng
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology Wuhan 430070 People's Republic of China
| | - Yi‐Yong Huang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology Wuhan 430070 People's Republic of China
| |
Collapse
|
45
|
Li C, Zhao P, Li R, Zhang B, Zhao W. Oxidation of Alkynyl Boronates to Carboxylic Acids, Esters, and Amides. Angew Chem Int Ed Engl 2020; 59:10913-10917. [PMID: 32219974 DOI: 10.1002/anie.202000988] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/16/2020] [Indexed: 12/13/2022]
Abstract
A general efficient protocol was developed for the synthesis of carboxylic acids, esters, and amides through oxidation of alkynyl boronates, generated directly from terminal alkynes. This protocol represents the first example of C(sp)-B bond oxidation. This approach displays a broad substrate scope, including aryl and alkyl alkynes, and exhibits excellent functional group tolerance. Water, primary and secondary alcohols, and amines are suitable nucleophiles for this transformation. Notably, amino acids and peptides can be used as nucleophiles, providing an efficient method for the synthesis and modification of peptides. The practicability of this methodology was further highlighted by the preparation of pharmaceutical molecules.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Pei Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Ruoling Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
46
|
Li QH, Jiang X, Wu K, Luo RQ, Liang M, Zhang ZH, Huang ZY. Research Progress on the Catalytic Enantioselective Synthesis of Axially Chiral Allenes by Chiral Organocatalysts. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200306094427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chiral allenes are important structural scaffolds found in many natural products
and drugs, and in addition, they also serve as building blocks for many organic transformations.
The conventional methods for preparing chiral allenes rely on the resolution of
racemic allenes and the chirality transfer between non-racemic propargylic derivatives and
nucleophilic reagents. In recent years, the synthesis of chiral allenes by asymmetric catalysis
has been achieved fruitful results. Among them, enantioselective synthesis of chiral
allenes with chiral organic catalysts is particularly prominent. In this paper, the research
progress of enantioselective synthesis of chiral allenes catalyzed by chiral organic catalysts
in recent years is reviewed, including various reaction systems and synthesis applications.
Collapse
Affiliation(s)
- Qing Han Li
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Xin Jiang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Kun Wu
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Rui Qiang Luo
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Meng Liang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Zhi Hao Zhang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Zhe Yao Huang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| |
Collapse
|
47
|
Wang H, Luo H, Zhang ZM, Zheng WF, Yin Y, Qian H, Zhang J, Ma S. Pd-Catalyzed Enantioselective Syntheses of Trisubstituted Allenes via Coupling of Propargylic Benzoates with Organoboronic Acids. J Am Chem Soc 2020; 142:9763-9771. [DOI: 10.1021/jacs.0c02876] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huanan Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Hongwen Luo
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Zhan-Ming Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Wei-Feng Zheng
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Yu Yin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Junliang Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, PR China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, PR China
| |
Collapse
|
48
|
Li C, Zhao P, Li R, Zhang B, Zhao W. Oxidation of Alkynyl Boronates to Carboxylic Acids, Esters, and Amides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Pei Zhao
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Ruoling Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Bing Zhang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
49
|
Guo K, Kleij AW. Cu-Catalyzed Synthesis of Tetrasubstituted 2,3-Allenols through Decarboxylative Silylation of Alkyne-Substituted Cyclic Carbonates. Org Lett 2020; 22:3942-3945. [PMID: 32338521 DOI: 10.1021/acs.orglett.0c01222] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An efficient and mild Cu-catalyzed protocol has been developed for the decarboxylative silylation of alkyne-functionalized cyclic carbonate substrates affording 2,3-allenols featuring four different substituents. This practical methodology gives access to a wide scope of tetrasubstituted functionalized allenes in excellent yields.
Collapse
Affiliation(s)
- Kun Guo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007Tarragona, Spain.,Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
50
|
Xu X, Dong S, Feng L, Wang S, Liu X, Feng X. Kinetic Resolution of Propargylic Ethers via [2,3]-Wittig Rearrangement to Synthesize Chiral α-Hydroxyallenes. Org Lett 2020; 22:2692-2696. [PMID: 32166950 DOI: 10.1021/acs.orglett.0c00649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient kinetic resolution of propargyloxy dicarbonyl compounds via asymmetric [2,3]-Wittig rearrangement was achieved by using a chiral N,N'-dioxide/NiII complex catalyst. Various chiral α-allenyl alcohols were obtained in high enantioselectivities under mild conditions. The utility of this method was readily demonstrated in the asymmetric synthesis of the chiral 2,5-dihydrofuran derivative.
Collapse
Affiliation(s)
- Xi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - LiLi Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Sijing Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|