1
|
Wang L, Zhang R, Cai W, Li J, Chen J, Wu D. Water-compatible electrogenerated chemiluminescence effect derived from readily accessible tripyridinium salts. Org Biomol Chem 2025; 23:4977-4982. [PMID: 40298897 DOI: 10.1039/d5ob00417a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Considering that numerous studies have shown pyridinium salts can be reduced electrochemically to form cationic radicals, we wonder whether these cationic radicals can further react with co-reactants to create excited-state species that display electrogenerated chemiluminescence (ECL). Herein, four tripyridinium salts were synthesized using a simple method, achieving relatively high yields of over 87%. Optical and electrochemical analyses revealed that these tripyridinium salts, which feature a large conjugated system, demonstrated notable electrochemical and photoluminescent properties. Most importantly, when paired with potassium persulfate as a co-reactant, distinct ECL behavior was observed even in water, with emissions detected at around 478 nm. The maximum ECL efficiency (ΦECL) of the synthesized salts, using Ru(bpy)32+ as a reference, was found to be 10.2%. Furthermore, we conducted a detailed investigation into the luminous mechanism behind ECL generation from the tripyridinium salts.
Collapse
Affiliation(s)
- Lewei Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Ru Zhang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Junming Chen
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Zhang R, Cai W, Yuan S, Zhao L, Wang L, Li J, Wu D, Kong Y. Ionic Covalent-Organic Frameworks Composed of Anthryl-Extended Viologen as a Kind of Electrochemiluminescence Luminophore. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356833 DOI: 10.1021/acsami.4c10899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Nowadays, covalent-organic frameworks (COFs) integrated with the electrochemiluminescence (ECL) behavior are highly desired owing to the significant advantages including multifunctionality, high sensitivity, and low background noise. Here, two ionic COFs (iCOFs) consisting of the anthryl-extended viologen as the backbone were designed and synthesized via the Zincke reaction. It is found for the first time that the as-prepared iCOFs accompanied by potassium persulfate as the coreactant can provide a clear ECL response in a water-bearing medium. The maximum ECL emissions of the iCOFs were in agreement with the photoluminescence spectra. Besides, cyclic voltammetry and electron paramagnetic resonance measurements reveal that the pyridinium unit was electrochemically reduced to afford the free radical. Then, it reacted with SO4·- to generate the excited-state [iCOF]*. Finally, [iCOF]* quickly returned to its ground state coupled with a clear ECL emission, yielding a maximum ECL quantum efficiency of 23.4% compared with tris(2,2'-bipyridyl) ruthenium(II) as the benchmark. In brief, the current study opens a way to develop a kind of ECL emitter that holds great potential in sensing, imaging, and light-emitting devices.
Collapse
Affiliation(s)
- Ru Zhang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shuyi Yuan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lei Zhao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lewei Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Ding CY, Zhong YW. Multicolor Electrochemiluminescence of Binary Microcrystals of Iridium and Ruthenium Complexes. Chem Asian J 2024:e202400987. [PMID: 39226114 DOI: 10.1002/asia.202400987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
We here report the multicolor electrochemiluminescence (ECL) of binary microcrystals prepared from a blue-emissive iridium complex 1 and an orange-emissive ruthenium complex 2. These materials display a plate-like morphology with high crystallinity, as demonstrated by microscopic and powder X-ray diffraction analyses. Under light excitation, these microcrystals exhibit gradient emission color changes as a result of the efficient energy transfer between two complexes. When modified on glass carbon electrodes, these microcrystals exhibit tunable ECLs with varied emission colors including sky-blue, white, orange, and red, depending on the doping ratio of complex 2 and the applied potential. Furthermore, organic amines with different molecular sizes are used as the co-reactant to examine their influences on the ECL efficiency of the porous microcrystals of 1. The analysis on the luminance and RGB values of ECL suggests the existence of energy transfer in the generation of multicolor ECLs in these binary crystals.
Collapse
Affiliation(s)
- Chun-Yun Ding
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Liu J, Ming W, Zhang J, Zhou X, Qin Y, Wu L. Aggregation-induced electrochemiluminescence based on intramolecular charge transfer and twisted molecular conformation for label-free Immunoassay. Anal Chim Acta 2024; 1320:342994. [PMID: 39142778 DOI: 10.1016/j.aca.2024.342994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024]
Abstract
Organic emitters with exceptional properties exhibit significant potential in the field of aggregation-induced electrochemiluminescence (AIECL); however, their practicality is impeded by limited ECL efficiency (ΦECL). This paper investigates a novel type of AIECL emitter (BDPPA NPs), where an efficient intramolecular charge transfer (ICT) effect and highly twisted conformation contribute to a remarkable enhancement of ECL. The ICT effect reduces the electron transfer path, while the twisted conformation effectively restricts π-π stacking and intramolecular motions. Intriguingly, compared to the standard system of [Ru(bpy)32+]/TPrA, bright emissions with up to 54 % ΦECL were achieved, enabling direct visual observation of ECL through the co-reactant route. The label-free immunosensor exhibited distinguished performance in detecting SARS-CoV-2 N protein across an exceptionally wide linear range of 0.001-500 ng mL-1, with a remarkably low detection limit of 0.28 pg mL-1. Furthermore, this developed ECL platform exhibited excellent sensitivity, specificity, and stability characteristics, providing an efficient avenue for constructing platforms for bioanalysis and clinical diagnosis analysis.
Collapse
Affiliation(s)
- Jinxia Liu
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China
| | - Wenjun Ming
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China
| | - Jing Zhang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China
| | - Xiaobo Zhou
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China
| | - Yuling Qin
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, PR China.
| | - Li Wu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
5
|
Lai W, Yan S, Jiang M, Wang M, Qiao X, Hong C. Dual-Mode Immunoassay Constructed by Water-Induced Perylene Diimide Supramolecular Self-Assembly and Enzymatic Biocatalytic Precipitation Strategy. Anal Chem 2024. [PMID: 39146222 DOI: 10.1021/acs.analchem.4c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A water-induced electron-deficient dye, the supramolecule perylene diimide (PDI), has been identified recently. PDI possesses advantages such as easy reduction, nontoxicity, low cost, and simple preparation, making it a promising candidate for electrochemiluminescence (ECL) sensing platforms. In this study, a series of PDI supramolecular systems with morphological changes were prepared by utilizing water molecules to induce PDI self-assembly. This method improves the π-π stacking interactions between PDI molecules and effectively mitigates the aggregation-caused quenching (ACQ) effect on the luminous efficiency of the coplanar polycyclic aromatic hydrocarbon PDI. It is noteworthy that excellent ECL emission performance of the PDI supramolecular system was observed at -0.4 V. This low excitation potential aids in preserving antigen-antibody bioactivity and ensures accurate identification of the immune response. As a proof of concept, a dual-mode immunosensing platform for carcinoembryonic antigen (CEA) detection was constructed using an enzymatic biocatalytic precipitation (EBCP) strategy. The dual-mode immunosensor exhibited good detection performance in the concentration range of 0.001-80 ng·mL-1, presenting an advanced bioprotective analytical method for CEA detection.
Collapse
Affiliation(s)
- Wenjing Lai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Shijie Yan
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Mingzhe Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Min Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Xiuwen Qiao
- School of Pharmacy, Xinjiang Second Medical College, No.12 Shengli Road, Karamay 834000, China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
6
|
Jia H, Li N, He H, Zhang X, Teng Y, Qin W. Multicolor Tunable Upconversion Luminescence via Near‐Infrared Manipulation of Population Pathways of Er 3+ Ions Excited‐State Levels for Volumetric Color Displays. ADVANCED OPTICAL MATERIALS 2024; 12. [DOI: 10.1002/adom.202302583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 01/05/2025]
Abstract
AbstractPrecise control over multicolor luminescence of upconversion nanoparticles (UCNPs) is of significant importance for their applications in widespread fields of research. However, realizing the tunable emissions in single UCNPs with a single lanthanide element remains a great challenge. Herein, without multiple lanthanide elements, a new strategy for the regulation of the excited‐state level population pathways of the same lanthanide activator Er3+ ion to obtain multicolor‐tunable upconversion luminescence is proposed through utilizing 980 nm coupled 1973 nm synergistic excitation. Unlike typical single wavelength excitation, the synergistic excitation may affect population pathways of the excited‐state level of Er3+ ion by adjusting excitation wavelength and power density, resulting in a dynamically adjustable change in luminescence color output. Notably, multicolor luminescence involving green, chartreuse, yellow, orange, and red can be tuned dynamically in the NaYF4:Er3+ single UCNPs by using the tunable 980/1973 nm synergistic excitation. This dynamic luminescence color variation from these UCNPs has demonstrated promising potential applications in volumetric color display. The results provide a new approach to achieve multicolor‐tunable upconversion luminescence at single nanoparticles level and open up the possibility of developing true three‐dimensional volumetric color display technologies with resolution at the nanometer range.
Collapse
Affiliation(s)
- Heng Jia
- College of Chemical Engineering Inner Mongolia University of Technology Huhhot Inner Mongolia 010051 China
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun Jilin 130012 China
| | - Nan Li
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun Jilin 130012 China
- Institute for Interdisciplinary Quantum Information Technology Jilin Engineering Normal University Changchun 130052 China
| | - Huiyu He
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun Jilin 130012 China
| | - Xucheng Zhang
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun Jilin 130012 China
| | - Yingyue Teng
- College of Chemical Engineering Inner Mongolia University of Technology Huhhot Inner Mongolia 010051 China
| | - Weiping Qin
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun Jilin 130012 China
| |
Collapse
|
7
|
Dong X, Zhang X, Ren X, Ma H, Zhang N, Li F, Ju H, Wei Q. Bandgap-Regulated Electrochemiluminescence Enhancement Strategy for Florfenicol Detection Based on ZrCuO 3: A Multimodal Luminophore. Anal Chem 2023; 95:17362-17371. [PMID: 37971307 DOI: 10.1021/acs.analchem.3c03823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The low electrochemiluminescence (ECL) efficiency issue of zirconia (ZrO2) has been a pressing problem since its discovery. In this study, a bandgap-regulated ECL enhancement strategy was developed to improve the ECL efficiency of ZrO2. Specifically, through the calcination of metal-organic frameworks (MOFs), the MOF-derived bimetallic oxide ZrCuO3 was synthesized. Compared to ZrO2, the synthesized ZrCuO3 exhibited a narrower bandgap and higher electron transfer efficiency, leading to enhanced ECL efficiency. Further investigation of the ECL emitter revealed that ZrCuO3 exhibited multimodal ECL emission: annihilation ECL and co-reactant participation ECL (including anodic ECL with tripropylamine as a co-reactant and cathodic ECL with K2S2O8 as a co-reactant). The anodic ECL with the highest efficiency was selected as the main mode for detecting the target in the aptasensor. Annihilation ECL and cathodic ECL served as alternative modes to ensure stability and continuity of the sensing system. Based on the bandgap-regulated strategy of ZrCuO3, a sensing chip with ITO as the working electrode was designed for the sensitive detection of florfenicol (FF). The constructed signal "off-on-off" aptasensor exhibited excellent detection performance for FF in the range of 0.0005-200 ng/mL. The proposed method provided a novel strategy for the analysis of other antibiotics or biomolecules.
Collapse
Affiliation(s)
- Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiaoyue Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Faying Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Zhang X, Kuang X, Ren X, Wang Y, Liu X, Li Y, Ju H, Wei Q. Supramolecular Anchored Copper Nanoclusters for a Multipath Electrochemiluminescence Probe. Anal Chem 2023; 95:16761-16770. [PMID: 37905934 DOI: 10.1021/acs.analchem.3c04086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Copper nanoclusters (Cu NCs) are highly promising nanomaterials in the field of electrochemiluminescence (ECL). Nevertheless, their limited stability and efficiency have impeded their practical applications. Here, we introduced a novel supramolecular anchoring strategy resulting in the creation of exceptionally stable Cu NCs (CET-Cu NCs) with remarkable ECL properties. Specifically, CET-Cu NCs exhibited a relative ECL efficiency (ΦECL) of 62% based on the annihilation ECL efficiency of [Ru(bpy)3]2+ (100%), with tripropylamine employed as a coreactant. Moreover, CET-Cu NCs can generate ECL emission through multiple different paths, which enables them to serve as signal probes in a wider range of testing scenarios, thereby enhancing the reliability and robustness of sensing and analytical systems. To demonstrate the practical utility, CET-Cu NCs were selected as an ECL signal probe for a sensing platform that facilitated ultrasensitive detection of progesterone via oriented immobilization technology and antibody/aptamer sandwich assays. This study surmounted the barriers to the practical application of Cu NCs through the implementation of a supramolecular anchoring strategy, thereby providing enhanced utility of Cu NCs in ECL sensing and analysis.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xuan Kuang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yuewei Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yueyun Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Zhu Z, Zeng C, Zhao Y, Ma J, Yao X, Huo S, Feng Y, Wang M, Lu X. Precise Modulation of Intramolecular Aggregation-induced Electrochemiluminescence by Tetraphenylethylene-based Supramolecular Architectures. Angew Chem Int Ed Engl 2023; 62:e202312692. [PMID: 37747050 DOI: 10.1002/anie.202312692] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
The precisely modulated synthesis of programmable light-emitting materials remains a challenge. To address this challenge, we construct four tetraphenylethylene-based supramolecular architectures (SA, SB, SC, and SD), revealing that they exhibit higher electrochemiluminescence (ECL) intensities and efficiencies than the tetraphenylethylene monomer and can be classified as highly efficient and precisely modulated intramolecular aggregation-induced electrochemiluminescence (PI-AIECL) systems. The best-performing system (SD) shows a high ECL cathodic efficiency exceeding that of the benchmark tris(2,2'-bipyridyl)ruthenium(II) chloride in aqueous solution by nearly six-fold. The electrochemical characterization of these architectures in an organic solvent provides deeper mechanistic insights, revealing that SD features the lowest electrochemical band gap. Density functional theory calculations indicate that the band gap of the guest ligand in the SD structure is the smallest and most closely matched to that of the host scaffold. Finally, the SD system is used to realize ECL-based cysteine detection (detection limit=14.4 nM) in real samples. Thus, this study not only provides a precisely modulated supramolecular strategy allowing chromophores to be controllably regulated on a molecular scale, but also inspires the programmable synthesis of high-performance aggregation-induced electrochemiluminescence emitters.
Collapse
Affiliation(s)
- Zhentong Zhu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, People's Republic of China
| | - Chaoqin Zeng
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, People's Republic of China
| | - Yaqi Zhao
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, People's Republic of China
| | - Jianjun Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, Jilin, People's Republic of China
| | - Xiaoqiang Yao
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, People's Republic of China
| | - Shuhui Huo
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, People's Republic of China
| | - Yanjun Feng
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, People's Republic of China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, Jilin, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
10
|
Yang X, Xu Y, Huang X, Hang J, Guo W, Dai Z. Multicolor Iridium(III) Complexes with Host-Guest Recognition Motifs for Enhanced Electrochemiluminescence and Modular Labeling. Anal Chem 2023; 95:4543-4549. [PMID: 36820622 DOI: 10.1021/acs.analchem.2c05698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Cyclometalated Ir(III) complexes with high electrochemiluminescence (ECL) efficiency and appropriate bioconjugation sites are urgently needed in ECL immunoassays (ECLIA). Herein, we report the synthesis, photophysics, electrochemistry, and ECL of six new Ir(III) complexes bearing naphthyl (nap) or adamantane phenyl (adap) substitutions, four of which emit cyan, green, or red light and display 1.7- to 7.5-fold increases in ECL intensity. In combination with DFT/TDDFT calculations, this enhancement is rationalized to the augmented radiative rate that arises from both the strengthened spin-orbit coupling (SOC) and the increased transition dipole moment. In addition, the adap-based Ir(III) complex shows high binding affinity with β-cyclodextrin (β-CD) due to the strong hydrophobic interaction, which enables us to develop a modular strategy for the labeling of Ir(III) complexes with biomolecules and to use hydrophobic luminophores in the aqueous-phase detection. As demonstrated, a novel ECLIA is built up and exhibits a wide linear range from 1 ng/mL to 10 μg/mL and a detection limit of 72 pg/mL for the determination of C-reactive protein (CRP). These findings provide new insights into the design, synthesis, and bio-labeling of highly emissive Ir(III) complexes and pave the way for the development of novel ECLIA based on host-guest recognition motifs.
Collapse
Affiliation(s)
- Xinrui Yang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yingying Xu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiaojin Huang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Junmeng Hang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Weiliang Guo
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
11
|
Wu K, Zheng Y, Chen R, Zhou Z, Liu S, Shen Y, Zhang Y. Advances in electrochemiluminescence luminophores based on small organic molecules for biosensing. Biosens Bioelectron 2023; 223:115031. [PMID: 36571992 DOI: 10.1016/j.bios.2022.115031] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Electrochemiluminescence (ECL) has several advantages, such as a near-zero background signal, high sensitivity, wide dynamic range, simplicity, and is widely used for sensing, imaging, and single cell analysis. ECL luminophores are the key factors in the performance of various applications. Among various luminophores, small organic luminophores exhibit many intriguing features including good biocompatibility, facile modification, well-defined molecular structure, and sustainable raw materials, making small organic luminophores attractive for the use in the ECL field. Although many great achievements have been made in the synthesis of new small organic luminophores, solving various challenges, and expanding new applications, there are almost no comprehensive reviews on small organic ECL luminophores. In this review, we briefly introduce the advantages and emission mechanisms of small organic ECL luminophores, summarize the main types, molecular characteristics, and ECL properties of most existing small organic ECL luminophores, and present the important applications and design principles in sensors, imaging, single cell analysis, sterilization, and other fields. Finally, the challenges and outlook of organic ECL luminophores to be popularized in biosensing applications are also discussed.
Collapse
Affiliation(s)
- Kaiqing Wu
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Yongjun Zheng
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Ran Chen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Zhixin Zhou
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China.
| | - Songqin Liu
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Fu H, Xu Z, Liu T, Lei J. In situ coordination interactions between metal-organic framework nanoemitters and coreactants for enhanced electrochemiluminescence in biosensing. Biosens Bioelectron 2023; 222:114920. [PMID: 36470062 DOI: 10.1016/j.bios.2022.114920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Coreactant electrochemiluminescence (ECL) is one of the most popular pathways in commercial analysis, which can provide simplicity and convenience for getting intense ECL emission. However, the low efficiency of intermolecular electron transfer could weaken ECL intensity. In this work, we developed an enhanced ECL strategy through in situ coordination interactions between metal-organic framework emitters and coreactants. First, a metal-organic framework (MOF) emitter was synthesized with 1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)ethane (TPPE) as aggregation-induced emission linkers and Zn as nodes. Interestingly, compared to TPPE ligand, the resulted MOF nanoemitters demonstrated 49.5 folds enhancement of ECL emission in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as the coreactant. More significantly, different from the constant ECL intensity using TPrA coreactant, DABCO exhibited time-dependent ECL intensity due to the intrareticular electron transfer through coordination interaction between DABCO and Zn2+, which was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectral experiments. The enhanced ECL was then applied to construct a sensitive ECL method to detect dopamine in serum samples. The coordination interaction between emitters and coreactants not only provides a universal way to enhance ECL, but also expands the applications of coreactant ECL system in convenience route.
Collapse
Affiliation(s)
- Haomin Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhiyuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
13
|
Gil-Martínez A, López-Molina S, Galiana-Roselló C, Lázaro-Gómez A, Schlüter F, Rizzo F, González-García J. Modulating the G-Quadruplex and Duplex DNA Binding by Controlling the Charge of Fluorescent Molecules. Chemistry 2023; 29:e202203094. [PMID: 36318180 PMCID: PMC10107164 DOI: 10.1002/chem.202203094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022]
Abstract
Two fluorescent and non-toxic spirobifluorene molecules bearing either positive (Spiro-NMe3) or negative (Spiro-SO3) charged moieties attached to the same aromatic structure have been investigated as binders for DNA. The novel Spiro-NMe3 containing four alkylammonium substituents interacts with G-quadruplex (G4) DNA structures and shows preference for G4s over duplex by means of FRET melting and fluorescence experiments. The interaction is governed by the charged substituents of the ligands as deduced from the lower binding of the sulfonate analogue (Spiro-SO3). On the contrary, Spiro-SO3 exhibits higher binding affinity to duplex DNA structure than to G4. Both molecules show a moderate quenching of the fluorescence upon DNA binding. The confocal microscopy evaluation shows the internalization of both molecules in HeLa cells and their lysosomal accumulation.
Collapse
Affiliation(s)
- Ariadna Gil-Martínez
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Sònia López-Molina
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Cristina Galiana-Roselló
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Andrea Lázaro-Gómez
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Friederike Schlüter
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Fabio Rizzo
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany.,Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche (CNR), via G. Fantoli 16/15, 20138, Milano, Italy
| | - Jorge González-García
- Institute of Molecular Science (ICMol) Department of Inorganic Chemistry, University of Valencia Catedrático José Beltrán 2, 46980, Paterna, Spain
| |
Collapse
|
14
|
Yu S, Du Y, Niu X, Li G, Zhu D, Yu Q, Zou G, Ju H. Arginine-modified black phosphorus quantum dots with dual excited states for enhanced electrochemiluminescence in bioanalysis. Nat Commun 2022; 13:7302. [PMID: 36435863 PMCID: PMC9701201 DOI: 10.1038/s41467-022-35015-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
The electrochemiluminescence (ECL) is generally emitted via radiative transition of singlet or triplet excited state (S1 or T1). Herein, an ECL mechanism with the transitions of both S1 and T1 of black phosphorus quantum dots (BPQDs) is found, and an arginine (Arg) modification strategy is proposed to passivate the surface oxidation defects of BPQDs, which could modulate the excited states for enhancing the ECL efficiency of BPQDs. The Arg modification leads to greater spatial overlap of highest and lowest occupied molecular orbitals, and spectral shift of radiative transitions, and improves the stability of anion radical of BPQDs. To verify the application of the proposed mechanism, it is used to construct a sensitive method for conveniently evaluating the inhibiting efficiency of cyclo-arginine-glycine-aspartic acid-d-tyrosine-lysine to cell surface integrin by using Arg containing peptide modified BPQDs as signal tag. The dual excited states mediated ECL emitters provide a paradigm for adjustable ECL generation and extend the application of ECL analysis.
Collapse
Affiliation(s)
- Siqi Yu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
| | - Yu Du
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
| | - Xianghong Niu
- grid.453246.20000 0004 0369 3615School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P. R. China
| | - Guangming Li
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
| | - Da Zhu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
| | - Qian Yu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
| | - Guizheng Zou
- grid.27255.370000 0004 1761 1174School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
| | - Huangxian Ju
- grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
| |
Collapse
|
15
|
Yang E, Yang H, Ning Z, Fang Y, Chen M, Zheng Y, Xu W, Wu G, Zhang Y, Shen Y. Construction of Carbon Dots with Wavelength-Tunable Electrochemiluminescence and Enhanced Efficiency. Anal Chem 2022; 94:16510-16518. [DOI: 10.1021/acs.analchem.2c04387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Erli Yang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
| | - Hong Yang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
| | - Zhenqiang Ning
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
| | - Yanfeng Fang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
| | - Mengyuan Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
| | - Yongjun Zheng
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao266003, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing210009, China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing210009, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing210009, China
| |
Collapse
|
16
|
Wang C, Wu J, Huang H, Xu Q, Ju H. Electrochemiluminescence of Polymer Dots Featuring Thermally Activated Delayed Fluorescence for Sensitive DNA Methylation Detection. Anal Chem 2022; 94:15695-15702. [DOI: 10.1021/acs.analchem.2c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Hao Huang
- Research & Development Center, Canon Medical Systems (China) Co., Ltd.Beijing, 100015, China
| | - Qiqi Xu
- Research & Development Center, Canon Medical Systems (China) Co., Ltd.Beijing, 100015, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
17
|
Electrochemistry and Electrochemiluminescence of Resorufin Dye: Synergetic Reductive-Oxidation Boosted by Hydrogen Peroxide. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Kim KM, Kim J, Kim J, Hong JI. Efficient blue organic electrochemiluminescence luminophore based on a pyrenyl-phenanthroimidazole conjugate. Chem Commun (Camb) 2022; 58:7542-7545. [PMID: 35703380 DOI: 10.1039/d2cc01762h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A pyrenyl-phenanthroimidazole (Py-PI) conjugate emitted strong blue electrochemiluminescence (ECL) emission via the reductive-oxidation co-reactant pathway, with an ECL efficiency 3.3 times higher than that of the 9,10-diphenylanthracene (DPA) reference compound.
Collapse
Affiliation(s)
- Kwang-Myeong Kim
- Department of Chemistry, College of National Sciences, Seoul National University, Seoul 08826, Korea.
| | - Jiwoo Kim
- Department of Chemistry, Research Institute for Basic Sciences, KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Jong-In Hong
- Department of Chemistry, College of National Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
19
|
Li Z, Zhou Y, Cui Y, Liang G. Dual-potential electrochemiluminescent film constructed from single AIE luminogens for the sensitive detection of malachite green. NANOSCALE 2022; 14:7711-7719. [PMID: 35579044 DOI: 10.1039/d2nr01009g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exploiting efficient electrochemiluminescent (ECL) luminogens is crucial for the development of high-performance ECL sensors. Herein, a kind of efficient luminogen (BTPEBT) consisting of benzothiadiazole (BTD) as an electron acceptor and tetraphenylethylene (TPE) as an electron donor was facilely synthesized through a one-step Suzuki reaction. BTPEBT showed typical aggregation-induced emission (AIE) effects with a high solid-state quantum yield of 69.8%. The fabricated solid-state ECL film that is based on single AIE luminogens presented unique dual-potential ECL properties for the first time. The bright ECL of this film could be observed by the naked eye with a satisfactory ECL efficiency of 22.8%. The dense ECL film showed a low electron-transfer resistance, which favors electron transfer among AIE luminogens, electrolytes and the electrode, giving rise to bright ECL emission. The bright ECL film was developed as an ECL sensor for the sensitive and selective detection of malachite green (MG) in a broad linear range from 10-10 to 10-5 M. The limit of detection (LOD) was as low as 7.6 × 10-11 M. Moreover, the ECL sensing platform was further employed to detect MG in a real fish tissue sample with high sensitivity and good specificity. More importantly, the recycled BTPEBT film had good reproducibility for MG detection. The novel dual-potential ECL film constructed from single AIE luminogens provides a promising platform for the sensitive detection of MG in the food industry.
Collapse
Affiliation(s)
- Zihua Li
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yusheng Zhou
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yuhan Cui
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Guodong Liang
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
20
|
Zheng Y, Yang H, Zhao L, Bai Y, Chen X, Wu K, Liu S, Shen Y, Zhang Y. Lighting Up Electrochemiluminescence-Inactive Dyes via Grafting Enabled by Intramolecular Resonance Energy Transfer. Anal Chem 2022; 94:3296-3302. [PMID: 35143169 DOI: 10.1021/acs.analchem.1c05235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to near-zero optical background and photobleaching, electrochemiluminescence (ECL), an optical phenomenon excited by electrochemical reactions, has drawn extensive attention, especially for ultrasensitive bioassays. Developing diverse ECL emitters is crucial to unlocking their multiformity and performances but remains a formidable challenge due to the rigorous requirements for ECL. Herein, we report a general strategy to light up ECL-inactive dyes in an aqueous solution via grafting, a well-developed concept for plant propagation since 500 BCE. As a proof of concept, a series of luminol donor-dye acceptor-based ECL emitters were grafted with near-unity resonance energy transfer (RET) efficiency and coarse/fine-tunable emission wavelengths. Rather than the sophisticated design of new skeleton-based molecules to meet all of the prerequisites for ECL in a constrained manner, each unit in the proposed ECL ensemble performed its functions maximally. As a result, beyond traditional two-dimensional (2D) ones, a three-dimensional (3D) coordinate biosensing system, simultaneously showing a calibration curve and selectivity, was established using the new ECL emitter. This lighting up strategy would generally address the scarcity of ECL emitters and enable unprecedented functions.
Collapse
Affiliation(s)
- Yongjun Zheng
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Hong Yang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Lufang Zhao
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Yuhan Bai
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Xinghua Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Kaiqing Wu
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Songqin Liu
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
21
|
Pankhade YA, Pandey R, Fatma S, Ahmad F, Anand RV. TfOH-Catalyzed Intramolecular Annulation of 2-(Aryl)-Phenyl-Substituted p-Quinone Methides under Continuous Flow: Total Syntheses of Selaginpulvilin I and Isoselagintamarlin A. J Org Chem 2022; 87:3363-3377. [PMID: 35107013 DOI: 10.1021/acs.joc.1c02980] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this article, we describe a convenient method to access 9-aryl fluorene derivatives through a TfOH-catalyzed intramolecular 1,6-conjugate arylation of 2-(aryl)-phenyl-substituted p-quinone methides (QMs) under continuous flow using the microreaction technique. This method was found to be very effective for most of the p-QMs, and the corresponding 9-aryl fluorene derivatives were obtained in moderate to excellent yields. Moreover, this protocol was further elaborated to the first total syntheses of selaginpulvilin I and isoselagintamarlin A.
Collapse
Affiliation(s)
- Yogesh A Pankhade
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Rajat Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Shaheen Fatma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Feroz Ahmad
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| |
Collapse
|
22
|
Nasrollahpour H, Khalilzadeh B, Naseri A, Sillanpää M, Chia CH. Homogeneous Electrochemiluminescence in the Sensors Game: What Have We Learned from Past Experiments? Anal Chem 2021; 94:349-365. [PMID: 34878242 DOI: 10.1021/acs.analchem.1c03909] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664-14766, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664-14766, Iran
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, 70000 Ho Chi Minh City, Vietnam.,Faculty of Environment and Labour Safety, Ton Duc Thang University, 70000 Ho Chi Minh City, Vietnam
| | - Chin Hua Chia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| |
Collapse
|
23
|
Intrareticular charge transfer regulated electrochemiluminescence of donor-acceptor covalent organic frameworks. Nat Commun 2021; 12:6808. [PMID: 34815403 PMCID: PMC8611053 DOI: 10.1038/s41467-021-27127-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 11/03/2021] [Indexed: 11/08/2022] Open
Abstract
The control of charge transfer between radical anions and cations is a promising way for decoding the emission mechanism in electrochemiluminescence (ECL) systems. Herein, a type of donor-acceptor (D-A) covalent organic framework (COF) with triphenylamine and triazine units is designed as a highly efficient ECL emitter with tunable intrareticular charge transfer (IRCT). The D-A COF demonstrates 123 folds enhancement in ECL intensity compared with its benzene-based COF with small D-A contrast. Further, the COF's crystallinity- and protonation-modulated ECL behaviors confirm ECL dependence on intrareticular charge transfer between donor and acceptor units, which is rationalized by density functional theory. Significantly, dual-peaked ECL patterns of COFs are achieved through an IRCT mediated competitive oxidation mechanism: the coreactant-mediated oxidation at lower potential and the direct oxidation at higher potential. This work provides a new fundamental and approach to improve the ECL efficiency for designing next-generation ECL devices.
Collapse
|
24
|
Liu JL, Zhang JQ, Zhou Y, Xiao DR, Zhuo Y, Chai YQ, Yuan R. Crystallization-Induced Enhanced Electrochemiluminescence from Tetraphenyl Alkene Nanocrystals for Ultrasensitive Sensing. Anal Chem 2021; 93:10890-10897. [PMID: 34313108 DOI: 10.1021/acs.analchem.1c01258] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organic materials with diverse structures and brilliant glowing colors have been attracting extensive attention in optical electronic devices and electrochemiluminescence (ECL) fields and are currently faced with the issue of low ECL efficiency. Herein, a series of tetraphenyl alkene nanocrystals (TPA NCs) with an ordered molecular structure were synthesized to explore regularities in the crystallization-induced enhanced (CIE) ECL emission effects by altering the number and position of vinyl on the backbone of TPA molecules. Among those TPA NCs, tetraphenyl-1,3-butadiene (TPB) NCs exhibit the brightest ECL emission via a coreactant pathway, with the relative ECL efficiency of up to 31.53% versus the standard [Ru(bpy)3]2+/TEA system, which is thousands of times higher than that of free TPB molecules. The high ECL efficiency of TPB NCs originates from the effective electron transfer of unique J-aggregates on the a axis of the nanocrystals to notably promote radiative transition and the restriction on the free rotation of TPB molecules to further suppress the nonradiative transition, which has exhibited great potential in ultrasensitive biosensing, efficient light-emitting devices, and clear ECL imaging fields. As a proof of concept, since dopamine (DA) can form benzoquinone species by electrochemical oxidation to realize intermediate radical quenching and excited-state quenching on the TPB NCs/TEA system, the TPB NCs with the CIE ECL effect are used to construct an ultrasensitive ECL-sensing platform for the determination of DA with a lower detection limit of 3.1 nM.
Collapse
Affiliation(s)
- Jia-Li Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jia-Qi Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
25
|
Label-free immunosensor for cardiac troponin I detection based on aggregation-induced electrochemiluminescence of a distyrylarylene derivative. Biosens Bioelectron 2021; 192:113532. [PMID: 34330035 DOI: 10.1016/j.bios.2021.113532] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023]
Abstract
Herein, the aggregation-induced electrochemiluminescence (AIECL) of a distyrylarylene derivative, 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl (DPVBi), was investigated for the first time. This luminophore exhibits significantly enhanced photoluminescence (PL) and electrochemiluminescence (ECL) emission with the increases of water content in organic/water mixtures. This high luminescence efficiency of DPVBi in aggregate state is due to the fact that the aggregates can reduce the energy loss by restricting the intramolecular motions. The ECL behavior of DPVBi in acetonitrile was investigated by ECL transients and so-called "half-scan" technology, where singlet-singlet annihilation ECL was generated under continuous potential switching. The DPVBi nanobulks (DPVBi NBs) were prepared to improve its application in aqueous media, which could be conveniently cast on electrode surface for developing sensing platform due to its good film-forming nature. The constructed heterogeneous AIECL platform can produce reductive-oxidative and oxidative-reductive ECL by using trimethylamine (TEA) and potassium peroxodisulfate (K2S2O8) as coreactant. On the basis of the higher ECL efficiency of DPVBi NBs/TEA system, a label free immunosensor for cardiac troponin I (cTnI) was developed with the assistance of electrodeposited gold nanoparticles, and it showed a wide linear range of 20 ng/mL~100 fg/mL and low detection limit of 43 fg/mL. Moreover, the constructed immunosensor also exhibited good specificity, stability and satisfied performance in practical sample analysis.
Collapse
|
26
|
Gong C, Zhang X, Shi M, Li F, Wang S, Wang Y, Wang Y, Wei W, Ma G. Tumor Exosomes Reprogrammed by Low pH Are Efficient Targeting Vehicles for Smart Drug Delivery and Personalized Therapy against their Homologous Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002787. [PMID: 34026432 PMCID: PMC8132050 DOI: 10.1002/advs.202002787] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/08/2021] [Indexed: 05/17/2023]
Abstract
As membrane-bound extracellular vesicles, exosomes have targeting ability for specific cell types, and the cellular environment strongly impacts their content and uptake efficiency. Inspired by these natural properties, the impacts of various cellular stress conditions on the uptake efficiency of tumor iterated exosomes are evaluated, and low-pH treatment caused increased uptake efficiency and retained cell-type specificity is found. Lipidomics analyses and molecular dynamics simulations reveal a glycerolipid self-aggregation-based mechanism for the enhanced homologous uptake. Furthermore, these low-pH reprogrammed exosomes are developed into a smart drug delivery platform, which is capable of specifically targeting tumor cells and selectively releasing diverse chemodrugs in response to the exosome rupture by the near-infrared irradiance-triggered burst of reactive oxygen species. This platform exerts safe and enhanced antitumor effects demonstrated by multiple model mice experiments. These results open a new avenue to reprogram exosomes for smart drug delivery and potentially personalized therapy against their homologous tumor.
Collapse
Affiliation(s)
- Changguo Gong
- Department of GastroenterologyTongren HospitalShanghai Jiao Tong University School of MedicineNo. 1111 Xianxia Road, Changning DistrictShanghai200336P. R. China
| | - Xiao Zhang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesNo. 1 Bei‐Er‐Tiao, Zhong‐Guan‐Cun, Haidian DistrictBeijing100190P. R. China
| | - Min Shi
- Department of GastroenterologyTongren HospitalShanghai Jiao Tong University School of MedicineNo. 1111 Xianxia Road, Changning DistrictShanghai200336P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesNo. 1 Bei‐Er‐Tiao, Zhong‐Guan‐Cun, Haidian DistrictBeijing100190P. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesNo. 1 Bei‐Er‐Tiao, Zhong‐Guan‐Cun, Haidian DistrictBeijing100190P. R. China
| | - Yan Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesNo. 1 Bei‐Er‐Tiao, Zhong‐Guan‐Cun, Haidian DistrictBeijing100190P. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049P. R. China
| | - Yugang Wang
- Department of GastroenterologyTongren HospitalShanghai Jiao Tong University School of MedicineNo. 1111 Xianxia Road, Changning DistrictShanghai200336P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesNo. 1 Bei‐Er‐Tiao, Zhong‐Guan‐Cun, Haidian DistrictBeijing100190P. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesNo. 1 Bei‐Er‐Tiao, Zhong‐Guan‐Cun, Haidian DistrictBeijing100190P. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049P. R. China
| |
Collapse
|
27
|
Recent advances in electrochemiluminescence luminophores. Anal Bioanal Chem 2021; 414:131-146. [PMID: 33893832 DOI: 10.1007/s00216-021-03329-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Electrochemiluminescence (ECL) has continued to receive considerable attention in various applications, owing to its intrinsic advantages such as near-zero background response, wide dynamic range, high sensitivity, simple instrumentation, and low cost. The ECL luminophore is one of the most significant components during the light generation processes. Despite significant progress that has been made in the synthesis of new luminophores and their roles in resolving various challenges, there are few comprehensive summaries on ECL luminophores. In this review, we discuss some of the recent advances in organic, metal complexes, nanomaterials, metal oxides, and near-infrared ECL luminophores. We also emphasize their roles in tackling various challenges with illustrative examples that have been reported in the last few years. Finally, perspective and some unresolved challenges in ECL that can potentially be addressed by introducing new luminophores have also been discussed. Graphical abstract.
Collapse
|
28
|
Pereira-Cameselle R, Peña-Gallego Á, Cid-Seara KM, Alonso-Gómez JL, Talavera M, Bolaño S. Chemoselectivity on the synthesis of iridacycles: A theoretical and experimental study. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Zhang Y, Zhao Y, Han Z, Zhang R, Du P, Wu Y, Lu X. Switching the Photoluminescence and Electrochemiluminescence of Liposoluble Porphyrin in Aqueous Phase by Molecular Regulation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yinpan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Yaqi Zhao
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Zhengang Han
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences Department of Chemistry Tianjin University Tianjin 300072 China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences Department of Chemistry Tianjin University Tianjin 300072 China
| | - Yanxia Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| |
Collapse
|
30
|
Mandal M, Sakthivel S, Balamurugan R. Brønsted/Lewis Acid-Promoted Site-Selective Intramolecular Cycloisomerizations of Aryl-Fused 1,6-Diyn-3-ones for Diversity-Oriented Synthesis of Benzo-Fused Fluorenes and Fluorenones and Naphthyl Ketones. J Org Chem 2020; 86:333-351. [PMID: 33253563 DOI: 10.1021/acs.joc.0c02131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, a facile diversity-oriented approach to access functionalized benzo[a]fluorenes, benzo[b]fluorenones, and naphthyl ketones has been demonstrated via site-selective intramolecular cyclization of aryl-fused 1,6-diyn-3-ones. Synthesis of benzo[a]fluorenes and naphthyl ketones has been achieved selectively using TfOH and AgBF4, respectively, via in situ-formed acetals. Aryl-fused 1,6-diyn-3-ones undergo triflic acid-mediated intramolecular cyclization, leading to benzo[b]fluorenone derivatives via a radical intermediate as supported by EPR studies. Kinetic studies of these transformations have also been performed by UV-visible spectroscopic analysis to shed light on the reaction profile.
Collapse
Affiliation(s)
- Mou Mandal
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | | |
Collapse
|
31
|
Zhang Y, Zhao Y, Han Z, Zhang R, Du P, Wu Y, Lu X. Switching the Photoluminescence and Electrochemiluminescence of Liposoluble Porphyrin in Aqueous Phase by Molecular Regulation. Angew Chem Int Ed Engl 2020; 59:23261-23267. [PMID: 32888252 DOI: 10.1002/anie.202010216] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/25/2020] [Indexed: 01/10/2023]
Abstract
By a facile peripheral decoration of 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (ATPP) with inherent aggregation-induced emission (AIE) active tetraphenylethene (TPE), a versatile AIEgenic porphyrin derivative (ATPP-TPE) was obtained, which greatly abolishes the detrimental π-π stacking and thus surmounts the notorious aggregation-caused quenching (ACQ) effect of ATPP in aqueous phase. The photoluminescence of ATPP-TPE is 4.5-fold stronger than ATPP at aggregation state. Moreover, an unequivocal aggregation induced electrochemiluminescence (AIECL) of ATPP-TPE was found to be seriously dependent on its aggregation property in aqueous solution with efficiency of 34 %, which is 6 times higher than pure ATPP. The versatility of this molecular structure modulation strategy along with the ACQ-to-AIE transformation in this work provides direction to guide for applying liposoluble porphyrins in aqueous phase by designs of synthetic porphyrin AIEgens.
Collapse
Affiliation(s)
- Yinpan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yaqi Zhao
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Zhengang Han
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Yanxia Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
32
|
Lv W, Yang Q, Li Q, Li H, Li F. Quaternary Ammonium Salt-Functionalized Tetraphenylethene Derivative Boosts Electrochemiluminescence for Highly Sensitive Aqueous-Phase Biosensing. Anal Chem 2020; 92:11747-11754. [DOI: 10.1021/acs.analchem.0c01796] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wenxin Lv
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Qiaoting Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Qian Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| |
Collapse
|
33
|
Voci S, Verlhac JB, Polo F, Clermont G, Daniel J, Castet F, Blanchard-Desce M, Sojic N. Photophysics, Electrochemistry and Efficient Electrochemiluminescence of Trigonal Truxene-Core Dyes. Chemistry 2020; 26:8407-8416. [PMID: 32430923 DOI: 10.1002/chem.202000474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/26/2020] [Indexed: 01/08/2023]
Abstract
We synthesized and characterized a series of dyes built from a spirofluorene or truxene core. The quadrupolar spirofluorene system is the initial building unit for the design and preparation of more complex star-shaped dyes consisting of a truxene core bearing three di- or triphenylamine moieties with or without a thiophene connector. Their photophysical, electrochemical, and electrochemiluminescence (ECL) properties were first investigated in solution. Structure/activity relationships were derived and rationalized by comparing the quadrupolar system and trigonal truxene-core derivatives using computational studies. The photophysical and redox characteristics are drastically tuned by the introduction of a thiophene bridge and electron-donor substituents at their terminal branches. These comparative studies show the essential role of the stability of both radical cations and anions to obtain efficient ECL dyes. The stabilization of the radicals is directly related to the charge delocalization due to the π-conjugation by the thiophene bridge. The brightest ECL is achieved by annihilation and coreactant (benzoyl peroxide) pathways with the blue-emitting truxene dye, which is 2- and 4.5-times greater than that of the quadrupolar compound and reference [Ru(bpy)3 ]2+ emitter, respectively. Such an extensive study on these extended π-conjugated molecules presenting different core structures may guide the design and synthesis of new ECL dyes with a strong efficiency.
Collapse
Affiliation(s)
- Silvia Voci
- Bordeaux INP, ISM, UMR CNRS 5255, University of Bordeaux, 33607, Pessac, France
| | | | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Guillaume Clermont
- Bordeaux INP, ISM, UMR CNRS 5255, University of Bordeaux, 33607, Pessac, France
| | - Jonathan Daniel
- Bordeaux INP, ISM, UMR CNRS 5255, University of Bordeaux, 33607, Pessac, France
| | - Frédéric Castet
- Bordeaux INP, ISM, UMR CNRS 5255, University of Bordeaux, 33607, Pessac, France
| | | | - Neso Sojic
- Bordeaux INP, ISM, UMR CNRS 5255, University of Bordeaux, 33607, Pessac, France
| |
Collapse
|
34
|
Chen M, Ning Z, Chen K, Zhang Y, Shen Y. Recent Advances of Electrochemiluminescent System in Bioassay. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00136-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Li Z, Qin W, Liang G. A mass-amplifying electrochemiluminescence film (MAEF) for the visual detection of dopamine in aqueous media. NANOSCALE 2020; 12:8828-8835. [PMID: 32253405 DOI: 10.1039/d0nr01025a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A bright and metal-free mass-amplifying electrochemiluminescence film (MAEF) performing in aqueous media was reported for the first time. Systematic studies demonstrated that the film substrates have a remarkable influence on the electrochemiluminescence (ECL) performance. Gold substrates promote ECL reactions and the subsequent radiative decay process simultaneously, affording an unconventional 507-fold ECL enhancement. Such a gold-enhanced MAEF is opposite to ECL systems previously reported, in which the use of gold electrodes normally results in decreased ECL intensity due to passivation of the gold surface by oxide formation. More importantly, the ECL intensity of the MAEF is linearly amplified through facilely regulating luminogen loading. Morphological analysis reveals that the film consists of grass-like nanowires with a diameter of 57 nm, which facilitate electrical communication between the luminogen, electrode, and supporting electrolyte, giving rise to the mass-amplifying ECL. The bright ECL of the solid film in aqueous media can be readily observed by the naked eye, entirely different from visible ECL systems reported in which ruthenium complexes dissolved/dispersed in solution are used as the luminogens. The film is further utilized to detect dopamine (DA), an important biomolecule related to nervous diseases, in aqueous media, with a low detection limit of 3.3 × 10-16 M. Furthermore, a facile method based on grayscale analysis of ECL images (GAEI) of the film was developed for visual and ultrasensitive DA detection in aqueous media.
Collapse
Affiliation(s)
- Zihua Li
- PCFM and GDHPPC labs, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | | | | |
Collapse
|
36
|
Voci S, Duwald R, Grass S, Hayne DJ, Bouffier L, Francis PS, Lacour J, Sojic N. Self-enhanced multicolor electrochemiluminescence by competitive electron-transfer processes. Chem Sci 2020; 11:4508-4515. [PMID: 34122909 PMCID: PMC8159437 DOI: 10.1039/d0sc00853b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
Controlling electrochemiluminescence (ECL) color(s) is crucial for many applications ranging from multiplexed bioassays to ECL microscopy. This can only be achieved through the fundamental understanding of high-energy electron-transfer processes in complex and competitive reaction schemes. Recently, this field has generated huge interest, but the effective implementation of multicolor ECL is constrained by the limited number of ECL-active organometallic dyes. Herein, the first self-enhanced organic ECL dye, a chiral red-emitting cationic diaza [4]helicene connected to a dimethylamino moiety by a short linker, is reported. This molecular system integrates bifunctional ECL features (i.e. luminophore and coreactant) and each function may be operated either separately or simultaneously. This unique level of control is enabled by integrating but decoupling both molecular functions in a single molecule. Through this dual molecular reactivity, concomitant multicolor ECL emission from red to blue with tunable intensity is readily obtained in aqueous media. This is done through competitive electron-transfer processes between the helicene and a ruthenium or iridium dye. The reported approach provides a general methodology to extend to other coreactant/luminophore systems, opening enticing perspectives for spectrally distinct detection of several analytes, and original analytical and imaging strategies.
Collapse
Affiliation(s)
- Silvia Voci
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
| | - Romain Duwald
- University of Geneva, Department of Organic Chemistry Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Stéphane Grass
- University of Geneva, Department of Organic Chemistry Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - David J Hayne
- Deakin University, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment Waurn Ponds Victoria 3216 Australia
| | - Laurent Bouffier
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
| | - Paul S Francis
- Deakin University, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment Waurn Ponds Victoria 3216 Australia
| | - Jérôme Lacour
- University of Geneva, Department of Organic Chemistry Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
| |
Collapse
|
37
|
Mikysek T, Nikolaou P, Kafexholli M, Šimůnek P, Váňa J, Marková A, Vala M, Valenti G. Photophysical and Electrochemiluminescence of Coumarin‐Based Oxazaborines. ChemElectroChem 2020. [DOI: 10.1002/celc.201902102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomáš Mikysek
- Department of Analytical Chemistry Faculty of Chemical Technology University of Pardubice Studentská 573 CZ-53210 Pardubice Czech Republic
| | - Pavlos Nikolaou
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Mirjeta Kafexholli
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 CZ-53210 Pardubice Czech Republic
| | - Petr Šimůnek
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 CZ-53210 Pardubice Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 CZ-53210 Pardubice Czech Republic
| | - Aneta Marková
- Brno University of Technology, Faculty of Chemistry Materials Research Centre Purkyňova 118 612 00 Brno Czech Republic
| | - Martin Vala
- Brno University of Technology, Faculty of Chemistry Materials Research Centre Purkyňova 118 612 00 Brno Czech Republic
| | - Giovanni Valenti
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
38
|
Affiliation(s)
- Abby Jones
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Lasangi Dhanapala
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Rumasha N. T. Kankanamage
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Challa V. Kumar
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269, United States
- Department of Surgery and Neag Cancer Center, University of Connecticut Health Center, Farmington, Connecticut 06232, United States
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland H91 TK33
| |
Collapse
|
39
|
Voci S, Zinna F, Arrico L, Grass S, Bouffier L, Lacour J, Di Bari L, Sojic N. Chiroptical detection of a model ruthenium dye in water by circularly polarized-electrochemiluminescence. Chem Commun (Camb) 2020; 56:5989-5992. [DOI: 10.1039/d0cc01571g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate the possibility to detect selectively the two single enantiomers of a model [Ru(bpy)3]2+-based dye by circularly polarized-electrochemiluminescence (CP-ECL).
Collapse
Affiliation(s)
- Silvia Voci
- Univ. Bordeaux
- Bordeaux INP
- CNRS
- Institut des Sciences Moléculaires
- UMR 5255
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale
- University of Pisa
- via G. Moruzzi 13
- Pisa
- Italy
| | - Lorenzo Arrico
- Dipartimento di Chimica e Chimica Industriale
- University of Pisa
- via G. Moruzzi 13
- Pisa
- Italy
| | - Stéphane Grass
- Department of Organic Chemistry
- University of Geneva
- Quai Ernest Ansermet 30
- 1211 Geneva 4
- Switzerland
| | - Laurent Bouffier
- Univ. Bordeaux
- Bordeaux INP
- CNRS
- Institut des Sciences Moléculaires
- UMR 5255
| | - Jérôme Lacour
- Department of Organic Chemistry
- University of Geneva
- Quai Ernest Ansermet 30
- 1211 Geneva 4
- Switzerland
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale
- University of Pisa
- via G. Moruzzi 13
- Pisa
- Italy
| | - Neso Sojic
- Univ. Bordeaux
- Bordeaux INP
- CNRS
- Institut des Sciences Moléculaires
- UMR 5255
| |
Collapse
|
40
|
Li H, Duwald R, Pascal S, Voci S, Besnard C, Bosson J, Bouffier L, Lacour J, Sojic N. Near-infrared electrochemiluminescence in water through regioselective sulfonation of diaza [4] and [6]helicene dyes. Chem Commun (Camb) 2020; 56:9771-9774. [DOI: 10.1039/d0cc04156d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of water-soluble helicene dyes generating intense electrochemiluminescence (ECL) signal in physiological conditions is reported.
Collapse
Affiliation(s)
- Haidong Li
- Univ. Bordeaux
- Bordeaux INP
- CNRS
- Institut des Sciences Moléculaires
- UMR 5255
| | - Romain Duwald
- Department of Organic Chemistry
- University of Geneva
- Switzerland
| | - Simon Pascal
- Department of Organic Chemistry
- University of Geneva
- Switzerland
| | - Silvia Voci
- Univ. Bordeaux
- Bordeaux INP
- CNRS
- Institut des Sciences Moléculaires
- UMR 5255
| | - Céline Besnard
- Laboratoire de Cristallographie
- University of Geneva
- 1211 Geneva 4
- Switzerland
| | - Johann Bosson
- Department of Organic Chemistry
- University of Geneva
- Switzerland
| | - Laurent Bouffier
- Univ. Bordeaux
- Bordeaux INP
- CNRS
- Institut des Sciences Moléculaires
- UMR 5255
| | - Jérôme Lacour
- Department of Organic Chemistry
- University of Geneva
- Switzerland
| | - Neso Sojic
- Univ. Bordeaux
- Bordeaux INP
- CNRS
- Institut des Sciences Moléculaires
- UMR 5255
| |
Collapse
|
41
|
Ma C, Cao Y, Gou X, Zhu JJ. Recent Progress in Electrochemiluminescence Sensing and Imaging. Anal Chem 2019; 92:431-454. [PMID: 31679341 DOI: 10.1021/acs.analchem.9b04947] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Xiaodan Gou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
42
|
Schlüter F, Ravoo BJ, Rizzo F. Self-assembled multilayer surfaces of highly fluorescent spirobifluorene-based dye for label-free protein recognition. J Mater Chem B 2019; 7:4933-4939. [PMID: 31411615 DOI: 10.1039/c9tb00854c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The preparation of smart surfaces for protein detection is a challenging field of research. With the aim to achieve label-free detection in the solid state, we report on the organic surface functionalization for protein recognition without the need of previous chemical modification of the fluorophore. Layer-by-layer deposition of polyelectrolyte poly(vinyl benzyl tetramethylammonium) chloride (p(VBTMA)Cl) and a tetrasulfonate water-soluble low molecular weight fluorophore (1) based on spirobifluorene leads to modified glass and quartz substrates with outstanding photophysical properties in response to bovine serum albumin (BSA). The absorbance, photoluminescence as well as the fluorescence lifetimes were recorded for all surfaces. The surface structure and height of the different number of bilayers polymer/fluorophore were characterized by atomic force microscopy and ellipsometry. The results show linear trends in the absorption, fluorescence and height of the multilayer with increasing number of functionalization steps. Upon incubation with BSA the multilayer shows an increase in fluorescence up to 3-fold, which is also detectable with the naked eye. In conclusion, we report an easy, fast and biocompatible approach for the construction of protein sensors by self-assembly.
Collapse
Affiliation(s)
- Friederike Schlüter
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany. and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany. and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Fabio Rizzo
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany. and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany and Institute of Molecular Science and Technologies (ISTM) and INSTM, National Research Council (CNR), via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
43
|
Wei X, Zhu MJ, Yan H, Lu C, Xu JJ. Recent Advances in Aggregation-Induced Electrochemiluminescence. Chemistry 2019; 25:12671-12683. [PMID: 31283848 DOI: 10.1002/chem.201902465] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 12/31/2022]
Abstract
The emergence of the rising alliance between aggregation-induced emission (AIE) and electrochemiluminescence (ECL) is defined as aggregation-induced electrochemiluminescence (AIECL). The booming science of AIE has proved to be not only distinguished in luminescent materials but could also inject new possibility into ECL analysis. Especially in the aqueous phase and solid state for hydrophobic materials, AIE helps ECL circumvent the dilemma between substantial emission intensity and biocompatible media. The wide range of analytes makes ECL an overwhelmingly interesting analytical technique. Therefore, AIECL has gained potential in clinical diagnostics, environmental assays, and biomarker detections. This review will focus on introduction of the novel concept of AIECL, current applied luminophores, and related applications developed in recent years.
Collapse
Affiliation(s)
- Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng-Jiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
44
|
Jiménez JR, Doistau B, Cruz CM, Besnard C, Cuerva JM, Campaña AG, Piguet C. Chiral Molecular Ruby [Cr(dqp)2]3+ with Long-Lived Circularly Polarized Luminescence. J Am Chem Soc 2019; 141:13244-13252. [DOI: 10.1021/jacs.9b06524] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Juan-Ramón Jiménez
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Benjamin Doistau
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Carlos M. Cruz
- Departamento de Quı́mica Orgánica, Unidad de Excelencia de Quı́mica Aplicada a Biomedicina y Medioambiente, Universidad de Granada, Avda. Fuentenueva, E-18071 Granada, España
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Juan M. Cuerva
- Departamento de Quı́mica Orgánica, Unidad de Excelencia de Quı́mica Aplicada a Biomedicina y Medioambiente, Universidad de Granada, Avda. Fuentenueva, E-18071 Granada, España
| | - Araceli G. Campaña
- Departamento de Quı́mica Orgánica, Unidad de Excelencia de Quı́mica Aplicada a Biomedicina y Medioambiente, Universidad de Granada, Avda. Fuentenueva, E-18071 Granada, España
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
45
|
Liu JL, Zhang JQ, Tang ZL, Zhuo Y, Chai YQ, Yuan R. Near-infrared aggregation-induced enhanced electrochemiluminescence from tetraphenylethylene nanocrystals: a new generation of ECL emitters. Chem Sci 2019; 10:4497-4501. [PMID: 31057778 PMCID: PMC6482880 DOI: 10.1039/c9sc00084d] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Tetraphenylethylene nanocrystals as new ECL emitters with near-infrared aggregation-induced enhanced electrochemiluminescence exhibited high ECL efficiency and excellent biocompatibility.
Herein, we observed near-infrared electrochemiluminescence (NIR ECL) emission from tetraphenylethylene nanocrystals (TPE NCs), which exhibit high ECL efficiency and excellent biocompatibility compared with the current NIR ECL emitters (such as semiconductor quantum dots and metal nanoclusters). The strong ECL signal of TPE NCs originates from the aggregation-induced enhanced ECL emission via improvement of the efficiency of electron hole recombination and suppression of the nonradiative transition. Impressively, the TPE NCs exhibit an enormous red-shifted ECL emission (678 nm) relative to the blue-light photoluminescence (PL) emission (440 nm). Compared to fluorescence imaging which is limited by photobleaching and autofluorescence, the NIR ECL emission of TPE NCs is highly favorable to diminish background interference over visible light and realize deeper tissue penetration, which expands the ECL emission of organic nanomaterials to the NIR region for broader biological applications.
Collapse
Affiliation(s)
- Jia-Li Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry , Ministry of Education , College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China . ;
| | - Jia-Qi Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry , Ministry of Education , College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China . ;
| | - Zhi-Ling Tang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry , Ministry of Education , College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China . ;
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry , Ministry of Education , College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China . ;
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry , Ministry of Education , College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China . ;
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry , Ministry of Education , College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China . ;
| |
Collapse
|
46
|
Wei X, Zhu M, Cheng Z, Lee M, Yan H, Lu C, Xu J. Aggregation‐Induced Electrochemiluminescence of Carboranyl Carbazoles in Aqueous Media. Angew Chem Int Ed Engl 2019; 58:3162-3166. [DOI: 10.1002/anie.201900283] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/27/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Meng‐Jiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 China
| | - Zhe Cheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Mengjeu Lee
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 China
| |
Collapse
|
47
|
Wei X, Zhu M, Cheng Z, Lee M, Yan H, Lu C, Xu J. Aggregation‐Induced Electrochemiluminescence of Carboranyl Carbazoles in Aqueous Media. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900283] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Meng‐Jiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 China
| | - Zhe Cheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Mengjeu Lee
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic MaterialsNanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 China
| |
Collapse
|
48
|
Pu G, Yang Z, Wu Y, Wang Z, Deng Y, Gao Y, Zhang Z, Lu X. Investigation into the Oxygen-Involved Electrochemiluminescence of Porphyrins and Its Regulation by Peripheral Substituents/Central Metals. Anal Chem 2019; 91:2319-2328. [DOI: 10.1021/acs.analchem.8b05027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guiqiang Pu
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhaofan Yang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Yali Wu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Ze Wang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - YunJing Gao
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaoquan Lu
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
49
|
Moghaddam MR, Carrara S, Hogan CF. Multi-colour bipolar electrochemiluminescence for heavy metal ion detection. Chem Commun (Camb) 2019; 55:1024-1027. [DOI: 10.1039/c8cc08472f] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report a new approach to heavy metal ion detection based on bipolar electrochemiluminescence (BP-ECL), which is simple and low cost yet highly sensitive.
Collapse
Affiliation(s)
- Mohammad Reza Moghaddam
- Dept. of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Serena Carrara
- Dept. of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Conor F. Hogan
- Dept. of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
50
|
Lv Y, Zhou Z, Shen Y, Zhou Q, Ji J, Liu S, Zhang Y. Coupled Fluorometer-Potentiostat System and Metal-Free Monochromatic Luminophores for High-Resolution Wavelength-Resolved Electrochemiluminescent Multiplex Bioassay. ACS Sens 2018; 3:1362-1367. [PMID: 29882407 DOI: 10.1021/acssensors.8b00292] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The sensitive simultaneous detection of multiple biomarkers is critical for the early diagnosis of diseases. Electrochemiluminescence (ECL) offers outstanding advantages, e.g., low background, over other optical sensing techniques. However, multiplexed ECL bioassay is hindered not only by the lack of generally available ECL spectrometers but also by the limited number of biocompatible monochromatic ECL luminophores for decades. Herein, we report addressing these issues by re-examination of the recent tabletop spectrofluorometer coupled potentiostat as a high-resolution ECL spectrum acquisition system and using carbon nitrides as monochromatic luminophores. A wavelength-resolved multiplexing ECL biosensor is demonstrated to simultaneously detect CA19-9 and mesothelin, two pancreatic cancer biomarkers, at a single-electrode interface. This work could initiate new opportunities for more general multiplex ECL biosensors with competitive performances.
Collapse
Affiliation(s)
- Yanqin Lv
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Jingjing Ji
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| |
Collapse
|