1
|
Chen X, Fu P, Woloszyn K, Zhang Y, Hu H, Hou L, Li X, Liu J, Jiang W, Wang L, Vecchioni S, Ohayon YP, Sha R, Zheng J, Zhou F. Precision Self-assembly of 3D DNA Crystals Using Microfluidics. J Am Chem Soc 2025; 147:11915-11924. [PMID: 40025696 DOI: 10.1021/jacs.4c17455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Controlling the uniformity in size and quantity of macroscopic three-dimensional (3D) DNA crystals is essential for their integration into complex systems and broader applications. However, achieving such control remains a major challenge in DNA nanotechnology. Here, we present a novel strategy for synthesizing monodisperse 3D DNA single crystals using microfluidic double-emulsion droplets as nanoliter-scale microreactors. These uniformly sized droplets can shrink and swell without leaking their inner contents, allowing the concentration of the DNA solution inside to be adjusted. The confined volume ensures that, once a crystal seed forms, it rapidly consumes the available DNA material, preventing the formation of additional crystals within the same droplet. This approach enables precise control over crystal growth, resulting in a yield of one DNA single crystal per droplet, with a success rate of up to 98.6% ± 0.9%. The resulting DNA crystals exhibit controlled sizes, ranging from 19.3 ± 0.9 μm to 56.8 ± 2.6 μm. Moreover, this method can be applied to the controlled growth of various types of DNA crystals. Our study provides a new pathway for DNA crystal self-assembly and microengineering.
Collapse
Affiliation(s)
- Xugen Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Pan Fu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Karol Woloszyn
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Yuemeng Zhang
- Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Huanhuan Hu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Likai Hou
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Xiaoyu Li
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Jia Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Wenting Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
| | - Lebing Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Simon Vecchioni
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Jianping Zheng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| |
Collapse
|
2
|
Zhang Y, Lyu X, Xing Y, Ji Y, Zhang L, Wu G, Liu X, Qin L, Wu Y, Wang X, Wu J, Li Y. Advancing DNA Structural Analysis: A SERS Approach Free from Citrate Interference Combined with Machine Learning. J Phys Chem Lett 2025; 16:1199-1205. [PMID: 39849911 DOI: 10.1021/acs.jpclett.4c03478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become an indispensable tool for biomolecular analysis, yet the detection of DNA signals remains hindered by spectral interference from citrate ions, which overlap with key DNA features. This study introduces an innovative, ultrasensitive SERS platform utilizing thiol-modified silver nanoparticles (Ag@SDCNPs) that overcomes this challenge by eliminating citrate interference. This platform enables direct, interference-free detection and structural characterization of a wide range of DNA conformations, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), i-motif, hairpin, G-quadruplex, and triple-stranded DNA (tsDNA). Employing calcium ions as aggregating agents and deuterated methanol as an internal standard, the system achieved high spectral quality and reproducibility. Machine learning (ML) techniques, such as linear discriminant analysis (LDA) and t-distributed stochastic neighbor embedding (t-SNE), were utilized for spectral classification, alongside support vector machines (SVM) for predictive modeling, yielding accuracies above 99%. These findings establish a robust and versatile platform for DNA structural analysis, offering transformative potential for applications in clinical diagnostics and biomedical research.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Xiaoming Lyu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Yaowen Xing
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Yinghe Ji
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Li Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Guangrun Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Xiaoyu Liu
- School of Physical Science and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, PR China
| | - Lei Qin
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Yanli Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Xiaotong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
| | - Jing Wu
- School of Physical Science and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, PR China
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Pentti kaiteran katu 1, 90570 Oulu, Finland
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150006, China
| |
Collapse
|
3
|
Cai B, Rong X, Sun Y, Liu L, Li Z. Engineered 3D DNA Crystals: A Molecular Design Perspective. SMALL METHODS 2025:e2401455. [PMID: 39777863 DOI: 10.1002/smtd.202401455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Recent advances in biomolecular self-assembly have transformed material science, enabling the creation of novel materials with unparalleled precision and functionality. Among these innovations, 3D DNA crystals have emerged as a distinctive class of macroscopic materials, engineered through the bottom-up approach by DNA self-assembly. These structures uniquely combine precise molecular ordering with high programmability, establishing their importance in advanced material design. This review delves into the molecular design of engineered 3D DNA crystals, classifying current crystal structures based on "crystal bond orientations" and examining key aspects of in-silico molecular design, self-assembly, and crystal modifications. The functionalization of 3D DNA crystals for applications in crystallization scaffolding, biocatalysis, biosensing, electrical and optical devices, as well as in the emerging fields of DNA computing and data storage are explored. Finally, the ongoing challenges are addressed and future directions to advance the field of engineered 3D DNA crystals are proposed.
Collapse
Affiliation(s)
- Baoshuo Cai
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao Rong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yifan Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Longfei Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06484, USA
- Nanobiology Institute, Yale University, West Haven, CT, 06484, USA
| | - Zhe Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
5
|
Kong H, Sun B, Yu F, Wang Q, Xia K, Jiang D. Exploring the Potential of Three-Dimensional DNA Crystals in Nanotechnology: Design, Optimization, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302021. [PMID: 37327311 PMCID: PMC10460852 DOI: 10.1002/advs.202302021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Indexed: 06/18/2023]
Abstract
DNA has been used as a robust material for the building of a variety of nanoscale structures and devices owing to its unique properties. Structural DNA nanotechnology has reported a wide range of applications including computing, photonics, synthetic biology, biosensing, bioimaging, and therapeutic delivery, among others. Nevertheless, the foundational goal of structural DNA nanotechnology is exploiting DNA molecules to build three-dimensional crystals as periodic molecular scaffolds to precisely align, obtain, or collect desired guest molecules. Over the past 30 years, a series of 3D DNA crystals have been rationally designed and developed. This review aims to showcase various 3D DNA crystals, their design, optimization, applications, and the crystallization conditions utilized. Additionally, the history of nucleic acid crystallography and potential future directions for 3D DNA crystals in the era of nanotechnology are discussed.
Collapse
Affiliation(s)
- Huating Kong
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Bo Sun
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Feng Yu
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Kai Xia
- Shanghai Frontier Innovation Research InstituteShanghai201108China
- Shanghai Stomatological HospitalFudan UniversityShanghai200031China
| | - Dawei Jiang
- Wuhan Union HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
- Key Laboratory of Biological Targeted Therapythe Ministry of EducationWuhan430022China
| |
Collapse
|
6
|
Li Z, Zheng M, Liu L, Seeman NC, Mao C. 5'-Phosphorylation Strengthens Sticky-End Cohesions. J Am Chem Soc 2021; 143:14987-14991. [PMID: 34516099 DOI: 10.1021/jacs.1c07279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sticky-end cohesion plays a critical role in molecular biology and nucleic acid nanotechnology. Although free energy calculations and molecular mechanics can predict these interactions, chemical modification would compromise such predictions. Herein, we have used rationally designed 3D DNA crystals as a tool to experimentally investigate the modulation of 5'-phosphorylation on sticky-end cohesions. We have found that 5'-phosphorylation strengthens the sticky-end cohesion: in a DNA crystal self-assembled exclusively via sticky-end cohesions, 5'-phosphorylation not only promotes the crystallization process, in general, but also accelerates the crystal growth along designed directions. Such a finding allows the fine-tuning of DNA crystallization kinetics and the control of DNA crystal morphology. It also suggests a potential difference in self-assembly kinetics between natural DNA (with 5'-phosphorylation) and synthetic DNA (without 5'-phosphorylation).
Collapse
Affiliation(s)
- Zhe Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mengxi Zheng
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Longfei Liu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Eki H, Abe K, Sugiyama H, Endo M. Nanoscopic observation of a DNA crystal surface and its dynamic formation and degradation using atomic force microscopy. Chem Commun (Camb) 2021; 57:1651-1654. [PMID: 33463641 DOI: 10.1039/d0cc07458f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the direct observation of the formation and degradation of tensegrity triangle DNA crystals using atomic force microscopy (AFM). We observed the crystal surface by AFM and characterized the lattice coordination of the assembled triangle units at a molecular level. We visualized dynamic formation and degradation of the crystals and characterized them at nano-scale resolution.
Collapse
Affiliation(s)
- Haruhiko Eki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
8
|
Zhao J, Zhao Y, Li Z, Wang Y, Sha R, Seeman NC, Mao C. Modulating Self-Assembly of DNA Crystals with Rationally Designed Agents. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiemin Zhao
- Department of Chemistry; Purdue University; West Lafayette IN 47907 USA
| | - Yue Zhao
- Department of Chemistry; New York University; New York NY 10003 USA
| | - Zhe Li
- Department of Chemistry; Purdue University; West Lafayette IN 47907 USA
| | - Yong Wang
- Department of Chemistry; Purdue University; West Lafayette IN 47907 USA
- College of Chemistry; Nanchang University; Nanchang Jiangxi 330031 China
| | - Ruojie Sha
- Department of Chemistry; New York University; New York NY 10003 USA
| | | | - Chengde Mao
- Department of Chemistry; Purdue University; West Lafayette IN 47907 USA
| |
Collapse
|
9
|
Zhao J, Zhao Y, Li Z, Wang Y, Sha R, Seeman NC, Mao C. Modulating Self-Assembly of DNA Crystals with Rationally Designed Agents. Angew Chem Int Ed Engl 2018; 57:16529-16532. [PMID: 30240115 DOI: 10.1002/anie.201809757] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 11/08/2022]
Abstract
This manuscript reports a strategy for controlling the crystallization kinetics and improving the quality of engineered self-assembled 3D DNA crystals. Growing large, high-quality biomacromolecule crystals is critically important for determining the 3D structures of biomacromolecules. It often presents a great challenge to structural biologists. Herein, we introduce a rationally designed agent to modulate the crystallization process. Under such conditions, fewer, but larger, crystals that yield diffraction patterns of modestly higher resolution are produced compared with the crystals from conditions without the modulating agent. We attribute the improvement to a smaller number of nuclei and slow growth rate of crystallization. This strategy is expected to be generally applicable for crystallization of other biomacromolecules.
Collapse
Affiliation(s)
- Jiemin Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yue Zhao
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Zhe Li
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yong Wang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.,College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
10
|
Shi H, Xiao Y, Huang X, Bao Y, Xie C, Hao H. Homogeneous and Heterogeneous Nucleation of Potash Alum in Drop-Based Microfluidic Device. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Huanhuan Shi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Yan Xiao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Ying Bao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Chuang Xie
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
11
|
McNeil R, Paukstelis PJ. Core-Shell and Layer-by-Layer Assembly of 3D DNA Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701019. [PMID: 28520255 DOI: 10.1002/adma.201701019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/23/2017] [Indexed: 06/07/2023]
Abstract
A long-standing goal of DNA nanotechnology has been to assemble 3D crystals to be used as molecular scaffolds. The DNA 13-mer, BET66, self-assembles via Crick-Watson and noncanonical base pairs to form crystals. The crystals contain solvent channels that run through them in multiple directions, allowing them to accommodate tethered guest molecules. Here, the first example of biomacromolecular core-shell crystal growth is described, by showing that these crystals can be assembled with two or more discrete layers. This approach leads to structurally identical layers on the DNA level, but with each layer differentiated based on the presence or absence of conjugated guest molecules. The crystal solvent channels also allow layer-specific postcrystallization covalent attachment of guest molecules. Through controlling the guest-molecule identity, concentration, and layer thickness, this study opens up a new method for using DNA to create multifunctional periodic biomaterials with tunable optical, chemical, and physical properties.
Collapse
Affiliation(s)
- Ronald McNeil
- Chemistry & Biochemistry Department, Center for Biomolecular Structure and Organization, Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| | - Paul J Paukstelis
- Chemistry & Biochemistry Department, Center for Biomolecular Structure and Organization, Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|