1
|
Liu H, Chittur PK, Kornfield JA, Tirrell DA. Cohesive Living Bacterial Films with Tunable Mechanical Properties from Cell Surface Protein Display. ACS Synth Biol 2024; 13:3686-3697. [PMID: 39485734 PMCID: PMC11574920 DOI: 10.1021/acssynbio.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Engineered living materials (ELMs) constitute a novel class of functional materials that contain living organisms. The mechanical properties of many such systems are dominated by the polymeric matrices used to encapsulate the cellular components of the material, making it hard to tune the mechanical behavior through genetic manipulation. To address this issue, we have developed living materials in which mechanical properties are controlled by the cell-surface display of engineered proteins. Here, we show that engineered Esherichia coli cells outfitted with surface-displayed elastin-like proteins (ELPs, designated E6) grow into soft, cohesive bacterial films with biaxial moduli around 14 kPa. When subjected to bulge-testing, such films yielded at strains of approximately 10%. Introduction of a single cysteine residue near the exposed N-terminus of the ELP (to afford a protein designated CE6) increases the film modulus 3-fold to 44 kPa and eliminates the yielding behavior. When subjected to oscillatory stress, films prepared from E. coli strains bearing CE6 exhibit modest hysteresis and full strain recovery; in E6 films much more significant hysteresis and substantial plastic deformation are observed. CE6 films heal autonomously after damage, with the biaxial modulus fully restored after a few hours. This work establishes an approach to living materials with genetically programmable mechanical properties and a capacity for self-healing. Such materials may find application in biomanufacturing, biosensing, and bioremediation.
Collapse
Affiliation(s)
- Hanwei Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Priya K Chittur
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Julia A Kornfield
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - David A Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Rapp PB, Baccile JA, Galimidi RP, Vielmetter J. Engineering Antigen-Specific Tolerance to an Artificial Protein Hydrogel. ACS Biomater Sci Eng 2024; 10:2188-2199. [PMID: 38479351 DOI: 10.1021/acsbiomaterials.3c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Artificial protein hydrogels are an emerging class of biomaterials with numerous prospective applications in tissue engineering and regenerative medicine. These materials are likely to be immunogenic due to their frequent incorporation of novel amino acid sequence domains, which often serve a functional role within the material itself. We engineered injectable "self" and "nonself" artificial protein hydrogels, which were predicted to have divergent immune outcomes in vivo on the basis of their primary amino acid sequence. Following implantation in mouse, the nonself gels raised significantly higher antigel antibody titers than the corresponding self gels. Prophylactic administration of a fusion antibody targeting the nonself hydrogel epitopes to DEC-205, an endocytic receptor involved in Treg induction, fully suppressed the elevated antibody titer against the nonself gels. These results suggest that the clinical immune response to artificial protein biomaterials, including those that contain highly antigenic sequence domains, can be tuned through the induction of antigen-specific tolerance.
Collapse
Affiliation(s)
- Peter B Rapp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Joshua A Baccile
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Rachel P Galimidi
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Rao A, Olsen BD. Structural and dynamic heterogeneity in associative networks formed by artificially engineered protein polymers. SOFT MATTER 2023; 19:6314-6328. [PMID: 37560814 DOI: 10.1039/d3sm00150d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
This work investigates static gel structure and cooperative multi-chain motion in associative networks using a well-defined model system composed of artificial coiled-coil proteins. The combination of small-angle and ultra-small-angle neutron scattering provides evidence for three static length scales irrespective of protein gel design which are attributed to correlations arising from the blob length, inter-junction spacing, and multi-chain density fluctuations. Self-diffusion measurements using forced Rayleigh scattering demonstrate an apparent superdiffusive regime in all gels studied, reflecting a transition between distinct "slow" and "fast" diffusive species. The interconversion between the two diffusive modes occurs on a length scale on the order of the largest correlation length observed by neutron scattering, suggesting a possible caging effect. Comparison of the self-diffusive behavior with characteristic molecular length scales and the single-sticker dissociation time inferred from tracer diffusion measurements supports the primarily single-chain mechanisms of self-diffusion as previously conceptualized. The step size of the slow mode is comparable to the root-mean-square length of the midblock strands, consistent with a single-chain walking mode rather than collective motion of multi-chain aggregates. The transition to the fast mode occurs on a timescale 10-1000 times the single-sticker dissociation time, which is consistent with the onset of single-molecule hopping. Finally, the terminal diffusivity depends exponentially on the number of stickers per chain, further suggesting that long-range diffusion occurs by molecular hopping rather than sticky Rouse motion of larger assemblies. Collectively, the results suggest that diffusion of multi-chain clusters is dominated by the single-chain pictures proposed in previous coarse-grained modeling.
Collapse
Affiliation(s)
- Ameya Rao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Kozlowski MT, Zook HN, Chigumba DN, Johnstone CP, Caldera LF, Shih HP, Tirrell DA, Ku HT. A matrigel-free method for culture of pancreatic endocrine-like cells in defined protein-based hydrogels. Front Bioeng Biotechnol 2023; 11:1144209. [PMID: 36970620 PMCID: PMC10033864 DOI: 10.3389/fbioe.2023.1144209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
The transplantation of pancreatic endocrine islet cells from cadaveric donors is a promising treatment for type 1 diabetes (T1D), which is a chronic autoimmune disease that affects approximately nine million people worldwide. However, the demand for donor islets outstrips supply. This problem could be solved by differentiating stem and progenitor cells to islet cells. However, many current culture methods used to coax stem and progenitor cells to differentiate into pancreatic endocrine islet cells require Matrigel, a matrix composed of many extracellular matrix (ECM) proteins secreted from a mouse sarcoma cell line. The undefined nature of Matrigel makes it difficult to determine which factors drive stem and progenitor cell differentiation and maturation. Additionally, it is difficult to control the mechanical properties of Matrigel without altering its chemical composition. To address these shortcomings of Matrigel, we engineered defined recombinant proteins roughly 41 kDa in size, which contain cell-binding ECM peptides derived from fibronectin (ELYAVTGRGDSPASSAPIA) or laminin alpha 3 (PPFLMLLKGSTR). The engineered proteins form hydrogels through association of terminal leucine zipper domains derived from rat cartilage oligomeric matrix protein. The zipper domains flank elastin-like polypeptides whose lower critical solution temperature (LCST) behavior enables protein purification through thermal cycling. Rheological measurements show that a 2% w/v gel of the engineered proteins display material behavior comparable to a Matrigel/methylcellulose-based culture system previously reported by our group to support the growth of pancreatic ductal progenitor cells. We tested whether our protein hydrogels in 3D culture could derive endocrine and endocrine progenitor cells from dissociated pancreatic cells of young (1-week-old) mice. We found that both protein hydrogels favored growth of endocrine and endocrine progenitor cells, in contrast to Matrigel-based culture. Because the protein hydrogels described here can be further tuned with respect to mechanical and chemical properties, they provide new tools for mechanistic study of endocrine cell differentiation and maturation.
Collapse
Affiliation(s)
- Mark T. Kozlowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Heather N. Zook
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, CA, United States
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, United States
| | - Desnor N. Chigumba
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Christopher P. Johnstone
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Luis F. Caldera
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hung-Ping Shih
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, CA, United States
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, United States
| | - David A. Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, CA, United States
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, United States
- *Correspondence: Hsun Teresa Ku,
| |
Collapse
|
5
|
Rapp PB, Silverman BR. Viscoelastic Phase Patterning in Artificial Protein Hydrogels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter B. Rapp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Bradley R. Silverman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Meng Q, Xie B, Yu H, Shen K, Deng X, Zhou HB, Dong C. Estrogen Receptor β-Targeted Near-Infrared Inherently Fluorescent Probe: A Potent Tool for Estrogen Receptor β Research. ACS Sens 2022; 7:109-115. [PMID: 34914372 DOI: 10.1021/acssensors.1c01771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Estrogen receptor β (ERβ) is associated with many diseases, and ERβ probes can help to reveal the complex role of ERβ and promote the development of ERβ-targeted therapy. Herein, we designed and synthesized the first ERβ-targeted near-infrared (NIR) inherently fluorescent probe P5, which showed the advantages of high ERβ selectivity, good optical properties, and excellent ERβ imaging capability in living cells. The probe was successfully utilized to explore ERβ motion characteristic, and for the first time, the diffusion coefficient of ERβ was obtained. Moreover, P5 was also successfully applied to the in vivo imaging of ERβ in the prostate cancer mice model. Therefore, this ERβ-targeted NIR probe might be employed as a potential tool for the research of ERβ and related diseases.
Collapse
Affiliation(s)
- Qiuyu Meng
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Baohua Xie
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Huiguang Yu
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Kang Shen
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xiangping Deng
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Hai-Bing Zhou
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chune Dong
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
7
|
Shao J, Jiang N, Zhang H, Yang Y, Tang P. Sticky Rouse Model and Molecular Dynamics Simulation for Dual Polymer Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingyu Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Nuofei Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Hongdong Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuliang Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ping Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Rao A, Ramírez J, Olsen BD. Mechanisms of Self-Diffusion of Linear Associative Polymers Studied by Brownian Dynamics Simulation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ameya Rao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jorge Ramírez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid 28006, Spain
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
10
|
Tong Z, Jin L, Oliveira JM, Reis RL, Zhong Q, Mao Z, Gao C. Adaptable hydrogel with reversible linkages for regenerative medicine: Dynamic mechanical microenvironment for cells. Bioact Mater 2021; 6:1375-1387. [PMID: 33210030 PMCID: PMC7658331 DOI: 10.1016/j.bioactmat.2020.10.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Hydrogels are three-dimensional platforms that serve as substitutes for native extracellular matrix. These materials are starting to play important roles in regenerative medicine because of their similarities to native matrix in water content and flexibility. It would be very advantagoues for researchers to be able to regulate cell behavior and fate with specific hydrogels that have tunable mechanical properties as biophysical cues. Recent developments in dynamic chemistry have yielded designs of adaptable hydrogels that mimic dynamic nature of extracellular matrix. The current review provides a comprehensive overview for adaptable hydrogel in regenerative medicine as follows. First, we outline strategies to design adaptable hydrogel network with reversible linkages according to previous findings in supramolecular chemistry and dynamic covalent chemistry. Next, we describe the mechanism of dynamic mechanical microenvironment influence cell behaviors and fate, including how stress relaxation influences on cell behavior and how mechanosignals regulate matrix remodeling. Finally, we highlight techniques such as bioprinting which utilize adaptable hydrogel in regenerative medicine. We conclude by discussing the limitations and challenges for adaptable hydrogel, and we present perspectives for future studies.
Collapse
Affiliation(s)
- Zongrui Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
11
|
Quesada-Pérez M, Martín-Molina A. Solute diffusion in gels: Thirty years of simulations. Adv Colloid Interface Sci 2021; 287:102320. [PMID: 33296722 DOI: 10.1016/j.cis.2020.102320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
In this review, we present a summary of computer simulation studies on solute diffusion in gels carried out in the last three decades. Special attention is paid to coarse-grained simulations in which the role of steric and electrostatic interactions on the particle diffusion can be evaluated. In addition, other important characteristics of particle diffusion in gels, such as the stiffness of the gel structure and hydrodynamic interactions, can be taken into account through coarse-grained simulations. Emphasis is placed on how simulation results help to test phenomenological models and to improve the interpretation interof experimental results. Finally, coarse-grained simulations have also been employed to study the diffusion controlled release of drugs from gels. We believe that scientific advances in this line will be useful to better understand the mechanisms that control the diffusive transport of molecules in a wide variety of biological systems.
Collapse
Affiliation(s)
- Manuel Quesada-Pérez
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, 23700 Jaén, Spain
| | - Alberto Martín-Molina
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, 18071 Granada, Spain; Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Campus de Fuentenueva sn, 18071 Granada, Spain.
| |
Collapse
|
12
|
Gelain F, Luo Z, Zhang S. Self-Assembling Peptide EAK16 and RADA16 Nanofiber Scaffold Hydrogel. Chem Rev 2020; 120:13434-13460. [DOI: 10.1021/acs.chemrev.0c00690] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fabrizio Gelain
- Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Italy
- Center for Nanomedicine and Tissue Engineering, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, Milan 20162, Italy
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
13
|
Meng Q, Ma X, Xie B, Deng X, Huang J, Zhou HB, Dong C. Establishment of evaluation criteria for the development of high quality ERα-targeted fluorescent probes. Analyst 2020; 145:5989-5995. [PMID: 32856648 DOI: 10.1039/d0an01172j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ERα-targeted fluorescent probes are important tools for ERα study. In order to develop high quality ERα-targeted probes, a sound and complete evaluation system is essential but has not been established yet. Herein, we set up a series of evaluation criteria for ERα-targeted fluorescent probes including ERα binding affinity, fluorescence quantum yield, cytotoxicity, ERα tracking capacity, ERα selectivity and ERα labeling ability. To verify the practicability of the evaluation criteria, we designed and synthesized two ERα-targeted fluorescent probes and fully characterized their properties based on the proposed evaluation criteria. It showed that the probes exhibited better performance. Moreover, we applied the probes in MCF-7 cells to study the ERα motion characteristics for the first time. We hope that our evaluation criteria could be helpful for the establishment of a complete evaluation system for ERα-targeted fluorescent probes.
Collapse
Affiliation(s)
- Qiuyu Meng
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Hubei Provincial Key Laboratory of Developmentally Originated Disease, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Li Y, Xue B, Cao Y. 100th Anniversary of Macromolecular Science Viewpoint: Synthetic Protein Hydrogels. ACS Macro Lett 2020; 9:512-524. [PMID: 35648497 DOI: 10.1021/acsmacrolett.0c00109] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our bodies are composed of soft tissues made of various proteins. In contrast, most hydrogels designed for biological applications are made of synthetic polymers. Recently, it is increasingly recognized that genetically synthesized proteins can be tailored as building blocks of hydrogels with biological, chemical, and mechanical properties similar to native soft tissues. In this Viewpoint, we summarize recent progress in synthetic protein hydrogels. We compare the structural and mechanical properties of different protein building blocks. We discuss various biocompatible cross-linking strategies based on covalent chemical reactions and noncovalent physical interactions. We introduce how stimulus-responsive conformational changes or intermolecular interactions at the molecular level can be used to engineer responsive hydrogels. We highlight that hydrogel network structures are as important as the protein sequences for the properties and functions of protein hydrogels and should be carefully designed. Despite great progress and potentials of synthetic protein hydrogels, there are still quite a few unsettled challenges and unexploited opportunities, providing abundant room for future investigation and development, particularly as this field is quickly expanding beyond its initial stage. We discuss a number of possible directions, including optimizing protein production and reducing cost, engineering anisotropic hydrogels to better mimic native tissues, rationally designing hydrogel mechanical properties, investigating interplays of hydrogels and residing cells for 3D cell culture and organoid construction, and evaluating long-term cytotoxicity and immune response.
Collapse
Affiliation(s)
- Ying Li
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology (NUIST), Nanjing, China 210044
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China 210093
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China 210093
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China, 210023
- Institute of Brain Science, Nanjing University, Nanjing, China, 210023
| |
Collapse
|
15
|
Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. SOFT MATTER 2020; 16:1404-1454. [PMID: 31984400 DOI: 10.1039/c9sm02127b] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this review, we focus on the very recent developments on the use of the stimuli responsive properties of polymer hydrogels for targeted drug delivery, tissue engineering, and biosensing utilizing their different optoelectronic properties. Besides, the stimuli-responsive hydrogels, the conducting polymer hydrogels are discussed, with specific attention to the energy generation and storage behavior of the xerogel derived from the hydrogel. The electronic and ionic conducting gels have been discussed that have applications in various electronic devices, e.g., organic field effect transistors, soft robotics, ionic skins, and sensors. The properties of polymer hybrid gels containing carbon nanomaterials have been exemplified here giving attention to applications in supercapacitors, dye sensitized solar cells, photocurrent switching, etc. Recent trends in the properties and applications of some natural polymer gels to produce thermal and acoustic insulating materials, drug delivery vehicles, self-healing material, tissue engineering, etc., are discussed. Besides the polymer gels, peptide gels of different dipeptides, tripeptides, oligopeptides, polypeptides, cyclic peptides, etc., are discussed, giving attention mainly to biosensing, bioimaging, and drug delivery applications. The properties of peptide-based hybrid hydrogels with polymers, nanoparticles, nucleotides, fullerene, etc., are discussed, giving specific attention to drug delivery, cell culture, bio-sensing, and bioimaging properties. Thus, the present review delineates, in short, the preparation, properties, and applications of different polymer and peptide hydrogels prepared in the past few years.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Polymer Science Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
16
|
Kou S, Yang X, Yang Z, Liu X, Wegner SV, Sun F. Cobalt-Cross-Linked, Redox-Responsive Spy Network Protein Hydrogels. ACS Macro Lett 2019; 8:773-778. [PMID: 35619508 DOI: 10.1021/acsmacrolett.9b00333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although assembly of recombinant proteins by SpyTag/SpyCatcher chemistry has proven to be a versatile approach for creating bioactive hydrogels, the resulting Spy networks often exhibit weak mechanics due to the poor efficiency of interchain cross-linking. Here we leverage metal/ligand (i.e., cobalt/His6-tag) coordination interactions to modulate the bulk mechanics of the protein networks. The drastic difference between the Co2+ and Co3+ complexes in thermodynamic and kinetic properties enabled us to regulate the materials' properties and to immobilize and release recombinant proteins in a redox-dependent manner. The resulting hydrogels are capable of not only supporting cell growth and proliferation, but also influencing specific cell signaling via immobilized growth factors such as leukemia inhibitory factor (LIF). The integrated use of stimuli-responsive metal coordination and SpyTag/SpyCatcher chemistry opens up a new dimension for designing bioactive protein materials.
Collapse
Affiliation(s)
- Songzi Kou
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Xin Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhongguang Yang
- Department of Chemical and Biological Engineering and Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiaotian Liu
- Department of Chemical and Biological Engineering and Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | - Fei Sun
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- Department of Chemical and Biological Engineering and Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
17
|
Casalini T, Perale G. From Microscale to Macroscale: Nine Orders of Magnitude for a Comprehensive Modeling of Hydrogels for Controlled Drug Delivery. Gels 2019; 5:E28. [PMID: 31096685 PMCID: PMC6631542 DOI: 10.3390/gels5020028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/14/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022] Open
Abstract
Because of their inherent biocompatibility and tailorable network design, hydrogels meet an increasing interest as biomaterials for the fabrication of controlled drug delivery devices. In this regard, mathematical modeling can highlight release mechanisms and governing phenomena, thus gaining a key role as complementary tool for experimental activity. Starting from the seminal contribution given by Flory-Rehner equation back in 1943 for the determination of matrix structural properties, over more than 70 years, hydrogel modeling has not only taken advantage of new theories and the increasing computational power, but also of the methods offered by computational chemistry, which provide details at the fundamental molecular level. Simulation techniques such as molecular dynamics act as a "computational microscope" and allow for obtaining a new and deeper understanding of the specific interactions between the solute and the polymer, opening new exciting possibilities for an in silico network design at the molecular scale. Moreover, system modeling constitutes an essential step within the "safety by design" paradigm that is becoming one of the new regulatory standard requirements also in the field-controlled release devices. This review aims at providing a summary of the most frequently used modeling approaches (molecular dynamics, coarse-grained models, Brownian dynamics, dissipative particle dynamics, Monte Carlo simulations, and mass conservation equations), which are here classified according to the characteristic length scale. The outcomes and the opportunities of each approach are compared and discussed with selected examples from literature.
Collapse
Affiliation(s)
- Tommaso Casalini
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, SUPSI-University of Applied Sciences and Arts of Southern Switzerland, Via Cantonale 2C, Galleria 2, 6928 Manno, Switzerland.
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland.
| | - Giuseppe Perale
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, SUPSI-University of Applied Sciences and Arts of Southern Switzerland, Via Cantonale 2C, Galleria 2, 6928 Manno, Switzerland.
- Department of Surgical Sciences and Integrated Diagnostics, Orthopaedic Clinic-IRCCS Ospedale Policlinico San Martino, Faculty of Biomedical Sciences, University of Genova, Largo R. Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
18
|
Carter NA, Grove TZ. Functional protein materials: beyond elastomeric and structural proteins. Polym Chem 2019. [DOI: 10.1039/c9py00337a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past two decades researchers have shown great interest in mimicking biological structures and their complex structure–property relationships. Herein we highlight examples of hydrogels and bioelectronic materials that illustrate the rational design of material properties and function.
Collapse
Affiliation(s)
- Nathan A. Carter
- Department of Mechanical Engineering
- University of Minnesota
- Minneapolis
- USA
| | - Tijana Z. Grove
- Department of Chemistry
- Virginia Tech
- Blacksburg
- USA
- Zarkovic Grove Consulting
| |
Collapse
|
19
|
|
20
|
Rapp PB, Omar AK, Silverman BR, Wang ZG, Tirrell DA. Mechanisms of Diffusion in Associative Polymer Networks: Evidence for Chain Hopping. J Am Chem Soc 2018; 140:14185-14194. [PMID: 30272969 PMCID: PMC8997312 DOI: 10.1021/jacs.8b07908] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Networks assembled by reversible association of telechelic polymers constitute a common class of soft materials. Various mechanisms of chain migration in associative networks have been proposed; yet there remains little quantitative experimental data to discriminate among them. Proposed mechanisms for chain migration include multichain aggregate diffusion as well as single-chain mechanisms such as "walking" and "hopping", wherein diffusion is achieved by either partial ("walking") or complete ("hopping") disengagement of the associated chain segments. Here, we provide evidence that hopping can dominate the effective diffusion of chains in associative networks due to a strong entropic penalty for bridge formation imposed by local network structure; chains become conformationally restricted upon association with two or more spatially separated binding sites. This restriction decreases the effective binding strength of chains with multiple associative domains, thereby increasing the probability that a chain will hop. For telechelic chains this manifests as binding asymmetry, wherein the first association is effectively stronger than the second. We derive a simple thermodynamic model that predicts the fraction of chains that are free to hop as a function of tunable molecular and network properties. A large set of self-diffusivity measurements on a series of model associative polymers finds good agreement with this model.
Collapse
Affiliation(s)
| | | | - Bradley R. Silverman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 210-41, Pasadena, CA, 91125
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 210-41, Pasadena, CA, 91125
| | - David A. Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 210-41, Pasadena, CA, 91125
| |
Collapse
|
21
|
Chambers JE, Dickens JA, Marciniak SJ. Measuring the effects of α 1 -antitrypsin polymerisation on the structure and biophysical properties of the endoplasmic reticulum. Biol Cell 2018; 110:249-255. [PMID: 30129166 DOI: 10.1111/boc.201800023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/29/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022]
Abstract
An important function of the endoplasmic reticulum (ER) is to serve as a site of secretory protein folding. When the accumulation of misfolded proteins threatens to disturb luminal homoeostasis, the cell is said to experience ER stress. By contrast, the accumulation of well-folded proteins inside the ER leads to a distinct form of strain called ER overload. The serpins comprise a large family of proteins whose folding has been studied in great detail. Some mutant serpins misfold to cause ER stress, whereas others fold but then polymerise to cause ER overload. We discuss recent advances in the use of dynamic fluorescence imaging to study these phenomena. We also discuss a new technique that we recently published, rotor-based organelle viscosity imaging (ROVI), which promises to shed more light on the biophysical features of ER stress and ER overload.
Collapse
Affiliation(s)
- Joseph E Chambers
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK
| | - Jennifer A Dickens
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK
| |
Collapse
|
22
|
Yang YJ, Mai DJ, Dursch TJ, Olsen BD. Nucleopore-Inspired Polymer Hydrogels for Selective Biomolecular Transport. Biomacromolecules 2018; 19:3905-3916. [DOI: 10.1021/acs.biomac.8b00556] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yun Jung Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Danielle J. Mai
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas J. Dursch
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Jangizehi A, Ghaffarian SR, Schmolke W, Seiffert S. Dominance of Chain Entanglement over Transient Sticking on Chain Dynamics in Hydrogen-Bonded Supramolecular Polymer Networks in the Melt. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02180] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amir Jangizehi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran 15875-4413, Iran
- Institute of Physical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - S. Reza Ghaffarian
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran 15875-4413, Iran
| | - Willi Schmolke
- Institute of Physical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - Sebastian Seiffert
- Institute of Physical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| |
Collapse
|
24
|
Ramirez J, Dursch TJ, Olsen BD. A Molecular Explanation for Anomalous Diffusion in Supramolecular Polymer Networks. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02465] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jorge Ramirez
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Thomas J. Dursch
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Fang KY, Lieblich SA, Tirrell DA. Incorporation of Non-Canonical Amino Acids into Proteins by Global Reassignment of Sense Codons. Methods Mol Biol 2018; 1798:173-186. [PMID: 29868959 DOI: 10.1007/978-1-4939-7893-9_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Non-canonical amino acids are finding increasing use in basic and applied research. Proteins that evolved naturally for biological function did so by exploiting the chemistries of the canonical amino acids; however, when proteins are repurposed for biomedical and pharmacological applications, they are often subject to conditions different from those characteristic of their original biological environments. Non-canonical amino acids can impart properties that are inaccessible within canonical protein sequence space, and can thereby lead to improved or new functionality. We describe simple methods for global replacement of canonical amino acids by their non-canonical counterparts in recombinant proteins made in high yield in bacterial expression hosts. These methods can be used to engineer both chemical and physical properties of recombinant proteins.
Collapse
Affiliation(s)
- Katharine Y Fang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Seth A Lieblich
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David A Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
26
|
Sing MK, Ramírez J, Olsen BD. Mechanical response of transient telechelic networks with many-part stickers. J Chem Phys 2017; 147:194902. [PMID: 29166120 DOI: 10.1063/1.4993649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A central question in soft matter is understanding how several individual, weak bonds act together to produce collective interactions. Here, gel-forming telechelic polymers with multiple stickers at each chain end are studied through Brownian dynamics simulations to understand how collective interaction of the bonds affects mechanical response of the gels. These polymers are modeled as finitely extensible dumbbells using an explicit tau-leap algorithm and the binding energy of these associations was kept constant regardless of the number of stickers. The addition of multiple bonds to the associating ends of telechelic polymers increases or decreases the network relaxation time depending on the relative kinetics of association but increases both shear stress and extensional viscosity. The relationship between the rate of association and the Rouse time of dangling chains results in two different regimes for the equilibrium stress relaxation of associating physical networks. In case I, a dissociated dangling chain is able to fully relax before re-associating to the network, resulting in two characteristic relaxation times and a non-monotonic terminal relaxation time with increasing number of bonds per polymer endgroup. In case II, the dissociated dangling chain is only able to relax a fraction of the way before it re-attaches to the network, and increasing the number of bonds per endgroup monotonically increases the terminal relaxation time. In flow, increasing the number of stickers increases the steady-state shear and extensional viscosities even though the overall bond kinetics and equilibrium constant remain unchanged. Increased dissipation in the simulations is primarily due to higher average chain extension with increasing bond number. These results indicate that toughness and dissipation in physically associating networks can both be increased by breaking single, strong bonds into smaller components.
Collapse
Affiliation(s)
- Michelle K Sing
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jorge Ramírez
- Departamento de Ingeniería Química Industrial Y Medio Ambiente, Universidad Politécnica de Madrid, Madrid 28006, Spain
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
27
|
Sheikhi A, van de Ven TGM. Squishy nanotraps: hybrid cellulose nanocrystal-zirconium metallogels for controlled trapping of biomacromolecules. Chem Commun (Camb) 2017; 53:8747-8750. [DOI: 10.1039/c7cc02844j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A brick-and-mortar-like ultrasoft nanocomposite metallogel is formed by crosslinking cellulose nanocrystals (CNC) with ammonium zirconium carbonate (AZC) to trap and reconfigure dextran, a model biomacromolecule.
Collapse
Affiliation(s)
- A. Sheikhi
- Department of Chemistry
- Centre for Self-Assembled Chemical Structures
- Pulp and Paper Research Centre
- McGill University
- Montreal
| | - T. G. M. van de Ven
- Department of Chemistry
- Centre for Self-Assembled Chemical Structures
- Pulp and Paper Research Centre
- McGill University
- Montreal
| |
Collapse
|