1
|
Zhang L, Zhang Y. Unveiling the impact of the fluorophore pyrrole, indole, furan, benzofuran, thiophene, benzothiophene, and pyrene attachments on the C7 atom of the isomorphic fluorescent thieno-guanine: A theoretical investigation. J Mol Graph Model 2025; 137:108999. [PMID: 40058267 DOI: 10.1016/j.jmgm.2025.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/19/2025] [Accepted: 03/01/2025] [Indexed: 03/25/2025]
Abstract
Thieno-guanine (thG) is a prominent emissive surrogate of natural guanine (G), which almost perfectly mimics G in nucleic duplexes. In this paper, to widen the utility of thG, the C7 attachment effects by aromatic pyrrole, indole, furan, benzofuran, thiophene, benzothiophene, and pyrene on the structural, electronic, and photophysical properties of thG were theoretically examined by using the density functional theory (DFT) and the time-dependent DFT (TD-DFT). Calculations were performed employing the hybrid B3LYP and the long-range corrected CAM-B3LYP density functionals in combination with the 6-311++G(d, p) basis set. Rigid scan calculations and optimizations were performed to obtain the most stable rotamers, and totally 14 bases (including thG) were studied. The hole-electron theory and the interfragment charge transfer (IFCT) method were applied to reveal the intrinsic characteristics of the low-lying electron excitation processes. In water solution, all the S1 states of the thG-derivatives are highly allowed ππ∗ states dominated by HOMO (L)→LUMO (L) with some charges (0.028-0.193 e) been transferred from the introduced groups to the thG-moiety. The introduced groups can tune the photophysics of thG resulting in improved fluorescent properties, including visible excitation and emission wavelengths, greater absorption and emission intensities (oscillator strengths), and larger Stokes shifts. In water solution, all substituents display fluorescence wavelength longer than 500 nm and the Stokes shifts are larger than 100 nm. Also examined are the effects of base pairing with cytosine (C), and it was revealed that the S1 states of all the studied base pairs (totally 14) are local excitations of the thG-derivatives. Both the S1 state excitation energies and the fluorescence wavelengths are red-shifted to some extent after base pair with C, with a concomitantly decrease of the corresponding oscillator strength.
Collapse
Affiliation(s)
- Laibin Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, PR China.
| | - Yaping Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, PR China
| |
Collapse
|
2
|
Coulson T, Widom J. Impacts of sequence and structure on pyrrolocytosine fluorescence in RNA. Nucleic Acids Res 2025; 53:gkaf262. [PMID: 40207631 PMCID: PMC11983128 DOI: 10.1093/nar/gkaf262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
Fluorescence spectroscopy encompasses many useful methods for studying the structures and dynamics of biopolymers. Applications to nucleic acids require the use of extrinsic fluorophores such as fluorescent base analogs (FBAs), which mimic the native bases but have enhanced fluorescence quantum yields. In this work, we use multiple complementary methods to systematically investigate the sequence- and structure-dependence of the fluorescence of the FBA pyrrolocytosine (pC) within RNA. We demonstrate that pC is typically brightest in conformations in which it is base-stacked but not base-paired, properties that distinguish it from more widely used FBAs. This effect is strongly sequence-dependent, with adjacent adenosine and cytidine residues conferring the greatest contrast between stacked and unstacked structures. Structural heterogeneity was resolved in single-stranded RNA and fully complementary and mismatched double-stranded RNA using time-resolved fluorescence measurements and fluorescence-detected circular dichroism spectroscopy. Double-stranded contexts are distinguished from single-stranded contexts by the presence of inter-strand energy transfer from opposing bases, while base-paired pC is distinguished by its short excited state lifetime. This work will enhance the value of pC as a structural probe for biologically and medicinally significant RNAs by guiding the selection of labeling sites and interpretation of the resulting data.
Collapse
Affiliation(s)
- Taylor L Coulson
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, United States
| | - Julia R Widom
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, United States
| |
Collapse
|
3
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
4
|
Tor Y. Isomorphic Fluorescent Nucleosides. Acc Chem Res 2024; 57:1325-1335. [PMID: 38613490 PMCID: PMC11079976 DOI: 10.1021/acs.accounts.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
In 1960, Weber prophesied that "There are many ways in which the properties of the excited state can be utilized to study points of ignorance of the structure and function of proteins". This has been realized, illustrating that an intrinsic and highly responsive fluorophore such as tryptophan can alter the course of an entire scientific discipline. But what about RNA and DNA? Adapting Weber's protein photophysics prophecy to nucleic acids requires the development of intrinsically emissive nucleoside surrogates as, unlike Trp, the canonical nucleobases display unusually low emission quantum yields, which render nucleosides, nucleotides, and oligonucleotides practically dark for most fluorescence-based applications.Over the past decades, we have developed emissive nucleoside surrogates that facilitate the monitoring of nucleoside-, nucleotide-, and nucleic acid-based transformations at a nucleobase resolution in real time. The premise underlying our approach is the identification of minimal atomic/structural perturbations that endow the synthetic analogs with favorable photophysical features while maintaining native conformations and pairing. As illuminating probes, the photophysical parameters of such isomorphic nucleosides display sensitivity to microenvironmental factors. Responsive isomorphic analogs that function similarly to their native counterparts in biochemical contexts are defined as isofunctional.Early analogs included pyrimidines substituted with five-membered aromatic heterocycles at their 5 position and have been used to assess the polarity of the major groove in duplexes. Polarized quinazolines have proven useful in assembling FRET pairs with established fluorophores and have been used to study RNA-protein and RNA-small-molecule binding. Completing a fluorescent ribonucleoside alphabet, composed of visibly emissive purine (thA, thG) and pyrimidine (thU, thC) analogs, all derived from thieno[3,4-d]pyrimidine as the heterocyclic nucleus, was a major breakthrough. To further augment functionality, a second-generation emissive RNA alphabet based on an isothiazolo[4,3-d]pyrimidine core (thA, tzG, tzU, and tzC) was fabricated. This single-atom "mutagenesis" restored the basic/coordinating nitrogen corresponding to N7 in the purine skeleton and elevated biological recognition.The isomorphic emissive nucleosides and nucleotides, particularly the purine analogs, serve as substrates for diverse enzymes. Beyond polymerases, we have challenged the emissive analogs with metabolic and catabolic enzymes, opening optical windows into the biochemistry of nucleosides and nucleotides as metabolites as well as coenzymes and second messengers. Real-time fluorescence-based assays for adenosine deaminase, guanine deaminase, and cytidine deaminase have been fabricated and used for inhibitor discovery. Emissive cofactors (e.g., SthAM), coenzymes (e.g., NtzAD+), and second messengers (e.g., c-di-tzGMP) have been enzymatically synthesized, using xyNTPs and native enzymes. Both their biosynthesis and their transformations can be fluorescently monitored in real time.Highly isomorphic and isofunctional emissive surrogates can therefore be fabricated and judiciously implemented. Beyond their utility, side-by-side comparison to established analogs, particularly to 2-aminopurine, the workhorse of nucleic acid biophysics over 5 decades, has proven prudent as they refined the scope and limitations of both the new analogs and their predecessors. Challenges, however, remain. Associated with such small heterocycles are relatively short emission wavelengths and limited brightness. Recent advances in multiphoton spectroscopy and further structural modifications have shown promise for overcoming such barriers.
Collapse
Affiliation(s)
- Yitzhak Tor
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Le HN, Kuchlyan J, Baladi T, Albinsson B, Dahlén A, Wilhelmsson LM. Synthesis and photophysical characterization of a pH-sensitive quadracyclic uridine (qU) analogue. Chemistry 2024:e202303539. [PMID: 38230625 DOI: 10.1002/chem.202303539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Fluorescent base analogues (FBAs) have become useful tools for applications in biophysical chemistry, chemical biology, live-cell imaging, and RNA therapeutics. Herein, two synthetic routes towards a novel FBA of uracil named qU (quadracyclic uracil/uridine) are described. The qU nucleobase bears a tetracyclic fused ring system and is designed to allow for specific Watson-Crick base pairing with adenine. We find that qU absorbs light in the visible region of the spectrum and emits brightly with a quantum yield of 27 % and a dual-band character in a wide pH range. With evidence, among other things, from fluorescence lifetime measurements we suggest that this dual emission feature results from an excited-state proton transfer (ESPT) process. Furthermore, we find that both absorption and emission of qU are highly sensitive to pH. The high brightness in combination with excitation in the visible and pH responsiveness makes qU an interesting native-like nucleic acid label in spectroscopy and microscopy applications in, for example, the field of mRNA and antisense oligonucleotide (ASO) therapeutics.
Collapse
Affiliation(s)
- Hoang-Ngoan Le
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - Jagannath Kuchlyan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Tom Baladi
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Anders Dahlén
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| |
Collapse
|
6
|
Passow KT, Harki DA. 4-Isocyanoindole-2'-deoxyribonucleoside (4ICIN): An Isomorphic Indole Nucleoside Suitable for Inverse Electron Demand Diels-Alder Reactions. Tetrahedron Lett 2023; 132:154807. [PMID: 38009110 PMCID: PMC10673620 DOI: 10.1016/j.tetlet.2023.154807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Isomorphic nucleosides are powerful tool compounds for interrogating a variety of biological processes involving nucleosides and nucleic acids. We previously reported a fluorescent isomorphic indole nucleoside called 4CIN. A distinguishing molecular feature of 4CIN is the presence of a 4-cyano moiety on the indole that functions as the nucleobase. Given the known chemical reactivity of isonitriles with tetrazines through [4+1]-cycloaddition chemistry, we investigated whether conversion of 4CIN to the corresponding isonitrile would confer a useful chemical probe. Here we report the synthesis of 4-isocyanoindole-2'-deoxyribonucleoside (4ICIN) and the propensity of 4ICIN to undergo inverse electron demand Diels-Alder cycloaddition with a model tetrazine.
Collapse
Affiliation(s)
- Kellan T Passow
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, United States
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, United States
| |
Collapse
|
7
|
Monari A, Burger A, Dumont E. Rationalizing the environment-dependent photophysical behavior of a DNA luminescent probe by classical and non-adiabatic molecular dynamics simulations. Photochem Photobiol Sci 2023; 22:2081-2092. [PMID: 37166569 DOI: 10.1007/s43630-023-00431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Environment-sensitive fluorescent nucleoside analogs are of utmost importance to investigate the structure of nucleic acids, their intrinsic flexibility, and sequence-specific DNA- and RNA-binding proteins. The latter play indeed a key role in transcription, translation as well as in the regulation of RNA stability, localization and turnover, and many other cellular processes. The sensitivity of the embedded fluorophore to polarity, hydration, and base stacking is clearly dependent on the specific excited-state relaxation mechanism and can be rationalized combining experimental and computational techniques. In this work, we elucidate the mechanisms leading to the population of the triplet state manifold for a versatile nucleobase surrogate, namely the 2-thienyl-3-hydroxychromone in gas phase, owing to non-adiabatic molecular dynamics simulations. Furthermore, we analyze its behavior in the B-DNA environment via classical molecular dynamics simulations, which evidence a rapid extrusion of the adenine facing the 2-thienyl-3-hydroxychromone nucleobase surrogate. Our simulations provide new insights into the dynamics of this family of chromophores, which could give rise to an integrated view and a fine tuning of their photochemistry, and namely the role of excited-state intramolecular proton transfer for the rational design of the next generation of fluorescent nucleoside analogs.
Collapse
Affiliation(s)
- Antonio Monari
- Université Paris Cité and CNRS, ITODYS, 75006, Paris, France.
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France
| | - Elise Dumont
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France.
- Institut Universitaire de France, 5 Rue Descartes, 75005, Paris, France.
| |
Collapse
|
8
|
Ashraf W, Ahmad T, Reynoird N, Hamiche A, Mély Y, Bronner C, Mousli M. Natural and Synthetic Anticancer Epidrugs Targeting the Epigenetic Integrator UHRF1. Molecules 2023; 28:5997. [PMID: 37630248 PMCID: PMC10459542 DOI: 10.3390/molecules28165997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and its incidence and mortality are increasing each year. Improved therapeutic strategies against cancer have progressed, but remain insufficient to invert this trend. Along with several other risk factors, abnormal genetic and epigenetic regulations play a critical role in the initiation of cellular transformation, as well as tumorigenesis. The epigenetic regulator UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is a multidomain protein with oncogenic abilities overexpressed in most cancers. Through the coordination of its multiple domains and other epigenetic key players, UHRF1 regulates DNA methylation and histone modifications. This well-coordinated dialogue leads to the silencing of tumor-suppressor genes (TSGs) and facilitates tumor cells' resistance toward anticancer drugs, ultimately promoting apoptosis escape and uncontrolled proliferation. Several studies have shown that the downregulation of UHRF1 with natural compounds in tumor cells induces the reactivation of various TSGs, inhibits cell growth, and promotes apoptosis. In this review, we discuss the underlying mechanisms and the potential of various natural and synthetic compounds that can inhibit/minimize UHRF1's oncogenic activities and/or its expression.
Collapse
Affiliation(s)
- Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Tanveer Ahmad
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Nicolas Reynoird
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Ali Hamiche
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| | - Christian Bronner
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Marc Mousli
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| |
Collapse
|
9
|
Hadidi K, Steinbuch KB, Dozier LE, Patrick GN, Tor Y. Inherently Emissive Puromycin Analogues for Live Cell Labelling. Angew Chem Int Ed Engl 2023; 62:e202216784. [PMID: 36973168 PMCID: PMC10213139 DOI: 10.1002/anie.202216784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023]
Abstract
Puromycin derivatives containing an emissive thieno[3,4-d]-pyrimidine core, modified with azetidine and 3,3-difluoroazetidine as Me2 N surrogates, exhibit translation inhibition and bactericidal activity similar to the natural antibiotic. The analogues are capable of cellular puromycylation of nascent peptides, generating emissive products without any follow-up chemistry. The 3,3-difluoroazetidine-containing analogue is shown to fluorescently label newly translated peptides and be visualized in both live and fixed HEK293T cells and rat hippocampal neurons.
Collapse
Affiliation(s)
- Kaivin Hadidi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Kfir B Steinbuch
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Lara E Dozier
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0347, USA
| | - Gentry N Patrick
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0347, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
10
|
Ciaco S, Mazzoleni V, Javed A, Eiler S, Ruff M, Mousli M, Mori M, Mély Y. Inhibitors of UHRF1 base flipping activity showing cytotoxicity against cancer cells. Bioorg Chem 2023; 137:106616. [PMID: 37247564 DOI: 10.1016/j.bioorg.2023.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1) is a nuclear multi-domain protein overexpressed in numerous human cancer types. We previously disclosed the anthraquinone derivative UM63 that inhibits UHRF1-SRA domain base-flipping activity, although having DNA intercalating properties. Herein, based on the UM63 structure, new UHRF1-SRA inhibitors were identified through a multidisciplinary approach, combining molecular modelling, biophysical assays, molecular and cell biology experiments. We identified AMSA2 and MPB7, that inhibit UHRF1-SRA mediated base flipping at low micromolar concentrations, but do not intercalate into DNA, which is a key advantage over UM63. These molecules prevent UHRF1/DNMT1 interaction at replication forks and decrease the overall DNA methylation in cells. Moreover, both compounds specifically induce cell death in numerous cancer cell lines, displaying marginal effect on non-cancer cells, as they preferentially affect cells with high level of UHRF1. Overall, these two compounds are promising leads for the development of anti-cancer drugs targeting UHRF1.
Collapse
Affiliation(s)
- Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France; Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Viola Mazzoleni
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Aqib Javed
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Sylvia Eiler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Marc Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Marc Mousli
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
11
|
Li Y, Lan Y, Zheng X, Zhao Y. Insights into Wavelength-Mediated Excited State Intramolecular Proton Transfer in Solution: UV Resonance Raman Spectroscopy and Theoretical Calculation. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Ren Y. Regulatory mechanism and biological function of UHRF1–DNMT1-mediated DNA methylation. Funct Integr Genomics 2022; 22:1113-1126. [DOI: 10.1007/s10142-022-00918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
|
13
|
Bhujbalrao R, Gavvala K, Singh RK, Singh J, Boudier C, Chakrabarti S, Patwari GN, Mély Y, Anand R. Identification of Allosteric Hotspots regulating the ribosomal RNA-binding by Antibiotic Resistance-Conferring Erm Methyltransferases. J Biol Chem 2022; 298:102208. [PMID: 35772496 PMCID: PMC9386465 DOI: 10.1016/j.jbc.2022.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/12/2022] Open
Abstract
Antibiotic resistance via epigenetic methylation of ribosomal RNA is one of the most prevalent strategies adopted by multidrug resistant pathogens. The erythromycin-resistance methyltransferase (Erm) methylates rRNA at the conserved A2058 position and imparts resistance to macrolides such as erythromycin. However, the precise mechanism adopted by Erm methyltransferases for locating the target base within a complicated rRNA scaffold remains unclear. Here, we show that a conserved RNA architecture, including specific bulge sites, present more than 15 Å from the reaction center, is key to methylation at the pathogenic site. Using a set of RNA sequences site-specifically labeled by fluorescent nucleotide surrogates, we show that base flipping is a prerequisite for effective methylation and that distal bases assist in the recognition and flipping at the reaction center. The Erm–RNA complex model revealed that intrinsically flipped-out bases in the RNA serve as a putative anchor point for the Erm. Molecular dynamic simulation studies demonstrated the RNA undergoes a substantial change in conformation to facilitate an effective protein–rRNA handshake. This study highlights the importance of unique architectural features exploited by RNA to impart fidelity to RNA methyltransferases via enabling allosteric crosstalk. Moreover, the distal trigger sites identified here serve as attractive hotspots for the development of combination drug therapy aimed at reversing resistance.
Collapse
Affiliation(s)
- Ruchika Bhujbalrao
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Krishna Gavvala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Reman Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Juhi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France.
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wellcome Trust DBT Indian Alliance Senior Fellow.
| |
Collapse
|
14
|
Dziuba D. Environmentally sensitive fluorescent nucleoside analogues as probes for nucleic acid - protein interactions: molecular design and biosensing applications. Methods Appl Fluoresc 2022; 10. [PMID: 35738250 DOI: 10.1088/2050-6120/ac7bd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are indispensable in studying the interactions of nucleic acids with nucleic acid-binding proteins. By replacing one of the poorly emissive natural nucleosides, FNAs enable real-time optical monitoring of the binding interactions in solutions, under physiologically relevant conditions, with high sensitivity. Besides that, FNAs are widely used to probe conformational dynamics of biomolecular complexes using time-resolved fluorescence methods. Because of that, FNAs are tools of high utility for fundamental biological research, with potential applications in molecular diagnostics and drug discovery. Here I review the structural and physical factors that can be used for the conversion of the molecular binding events into a detectable fluorescence output. Typical environmentally sensitive FNAs, their properties and applications, and future challenges in the field are discussed.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden, Grand Est, 67401, FRANCE
| |
Collapse
|
15
|
Gal JF, Maria PC, Duñach E, Meierhenrich UJ. Evolution of Chemical Research in Nice, Côte d'Azur: From Early Laboratories to the 'Institut de Chimie de Nice'. Chempluschem 2022; 87:e202100532. [PMID: 35312225 DOI: 10.1002/cplu.202100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/23/2022] [Indexed: 02/03/2023]
Abstract
The 'Institut de Chimie de Nice' (ICN), founded in 2012, celebrates its 10th anniversary in 2022. Today, the ICN is part of the University Côte d'Azur (UCA), one out of nine excellence universities in France. ICN is also affiliated to the CNRS. We use the institute's anniversary to reflect on the origins and the successful evolution of research in chemical sciences in Nice, France. We outline research topics and their development towards modern chemistry in Nice that are characterized by innovation and territorial anchoring. At present, four research axes, namely aroma and perfume chemistry, medicinal chemistry, radiochemistry, and material chemistry structure the institute. ICN has created five start-up companies and includes a technological platform. The ICN is central part of the university and contributes to the advancement in chemical sciences as evidenced by both fundamental research and active contributions to local partnerships.
Collapse
Affiliation(s)
- Jean-François Gal
- Université Côte d'Azur, Institut de Chimie de Nice, CNRS UMR 7272, 28 Avenue Valrose, 06108, Nice, France
| | - Pierre-Charles Maria
- Université Côte d'Azur, Institut de Chimie de Nice, CNRS UMR 7272, 28 Avenue Valrose, 06108, Nice, France
| | - Elisabet Duñach
- Université Côte d'Azur, Institut de Chimie de Nice, CNRS UMR 7272, 28 Avenue Valrose, 06108, Nice, France
| | - Uwe J Meierhenrich
- Université Côte d'Azur, Institut de Chimie de Nice, CNRS UMR 7272, 28 Avenue Valrose, 06108, Nice, France
| |
Collapse
|
16
|
Thienoguanosine, a unique non-perturbing reporter for investigating rotational dynamics of DNA duplexes and their complexes with proteins. Int J Biol Macromol 2022; 213:210-225. [DOI: 10.1016/j.ijbiomac.2022.05.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022]
|
17
|
Ciaco S, Gavvala K, Greiner V, Mazzoleni V, Didier P, Ruff M, Martinez-Fernandez L, Improta R, Mely Y. Thienoguanosine brightness in DNA duplexes is governed by the localization of its ππ* excitation in the lowest energy absorption band. Methods Appl Fluoresc 2022; 10. [PMID: 35472854 DOI: 10.1088/2050-6120/ac6ab6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
Thienoguanosine (thG) is an isomorphic fluorescent guanosine (G) surrogate, which almost perfectly mimics the natural G in DNA duplexes and may therefore be used to sensitively investigate for example protein-induced local conformational changes. To fully exploit the information given by the probe, we carefully re-investigated the thG spectroscopic properties in 12-bp duplexes, when the Set and Ring Associated (SRA) domain of UHRF1 flips its 5' flanking methylcytosine (mC). The SRA-induced flipping of mC was found to strongly increase the fluorescence intensity of thG, but this increase was much larger when thG was flanked in 3' by a C residue as compared to an A residue. Surprisingly, the quantum yield and fluorescence lifetime values of thG were nearly constant, regardless of the presence of SRA and the nature of the 3' flanking residue, suggesting that the differences in fluorescence intensities might be related to changes in absorption properties. We evidenced that thG lowest energy absorption band in the duplexes can be deconvoluted into two bands peaking at ~350 nm and ~310 nm, respectively red-shifted and blue-shifted, compared to the spectrum of thG monomer. Using quantum mechanical calculations, we attributed the former to a nearly pure * excitation localized on thG and the latter to excited states with charge transfer character. The amplitude of thG red-shifted band strongly increased when its 3' flanking C residue was replaced by an A residue in the free duplex, or when its 5' flanking mC residue was flipped by SRA. As only the species associated with the red-shifted band were found to be emissive, the highly unusual finding of this work is that the brightness of thG in free duplexes as well as its changes on SRA-induced mC flipping almost entirely depend on the relative population and/or absorption coefficient of the red-shifted absorbing species.
Collapse
Affiliation(s)
- Stefano Ciaco
- UMR 7021, University of Strasbourg, 74 route du Rhin, CS 60024, 67401 ILLKIRCH Cedex, Strasbourg, Grand Est, 67070, FRANCE
| | - Krishna Gavvala
- UMR 7021, University of Strasbourg, 74 route du Rhin, CS 60024, 67401 ILLKIRCH Cedex, Strasbourg, Grand Est, 67070, FRANCE
| | - Vanille Greiner
- UMR 7021, University of Strasbourg, 74 route du Rhin, CS 60024, 67401 ILLKIRCH Cedex, Strasbourg, Grand Est, 67070, FRANCE
| | - Viola Mazzoleni
- UMR 7021, University of Strasbourg, 74 route du Rhin, CS 60024, 67401 ILLKIRCH Cedex, Strasbourg, Grand Est, 67070, FRANCE
| | - Pascal Didier
- UMR 7021, University of Strasbourg, 74 route du Rhin, CS 60024, 67401 ILLKIRCH Cedex, Strasbourg, Grand Est, 67070, FRANCE
| | - Marc Ruff
- IGBMC, University of Strasbourg, 1 Rue Laurent Fries, 67400 ILLKIRCH Cedex, Strasbourg, Grand Est, 67070, FRANCE
| | - Lara Martinez-Fernandez
- Departamento de Química, Universidad Autónoma de Madrid, Facultad de Ciencias and Institute for Advanced Research in Chemistry, Madrid, Madrid, 28049, SPAIN
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini Consiglio Nazionale delle Ricerche, Consiglio Nazionale delle Ricerche, Napoli, Campania, 80134, ITALY
| | - Yves Mely
- UMR 7021, University of Strasbourg, 74 route du Rhin, CS 60024, 67401 ILLKIRCH Cedex, Strasbourg, Grand Est, 67070, FRANCE
| |
Collapse
|
18
|
HAUSP Is a Key Epigenetic Regulator of the Chromatin Effector Proteins. Genes (Basel) 2021; 13:genes13010042. [PMID: 35052383 PMCID: PMC8774506 DOI: 10.3390/genes13010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
HAUSP (herpes virus-associated ubiquitin-specific protease), also known as Ubiquitin Specific Protease 7, plays critical roles in cellular processes, such as chromatin biology and epigenetics, through the regulation of different signaling pathways. HAUSP is a main partner of the “Epigenetic Code Replication Machinery,” ECREM, a large protein complex that includes several epigenetic players, such as the ubiquitin-like containing plant homeodomain (PHD) and an interesting new gene (RING), finger domains 1 (UHRF1), as well as DNA methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), histone methyltransferase G9a, and histone acetyltransferase TIP60. Due to its deubiquitinase activity and its ability to team up through direct interactions with several epigenetic regulators, mainly UHRF1, DNMT1, TIP60, the histone lysine methyltransferase EZH2, and the lysine-specific histone demethylase LSD1, HAUSP positions itself at the top of the regulatory hierarchies involved in epigenetic silencing of tumor suppressor genes in cancer. This review highlights the increasing role of HAUSP as an epigenetic master regulator that governs a set of epigenetic players involved in both the maintenance of DNA methylation and histone post-translational modifications.
Collapse
|
19
|
Qin W, Scicluna BP, van der Poll T. The Role of Host Cell DNA Methylation in the Immune Response to Bacterial Infection. Front Immunol 2021; 12:696280. [PMID: 34394088 PMCID: PMC8358789 DOI: 10.3389/fimmu.2021.696280] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Host cells undergo complex transcriptional reprogramming upon infection. Epigenetic changes play a key role in the immune response to bacteria, among which DNA modifications that include methylation have received much attention in recent years. The extent of DNA methylation is well known to regulate gene expression. Whilst historically DNA methylation was considered to be a stable epigenetic modification, accumulating evidence indicates that DNA methylation patterns can be altered rapidly upon exposure of cells to changing environments and pathogens. Furthermore, the action of proteins regulating DNA methylation, particularly DNA methyltransferases and ten-eleven translocation methylcytosine dioxygenases, may be modulated, at least in part, by bacteria. This review discusses the principles of DNA methylation, and recent insights about the regulation of host DNA methylation during bacterial infection.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
21
|
Passow KT, Antczak NM, Sturla SJ, Harki DA. Synthesis of 4-Cyanoindole Nucleosides, 4-Cyanoindole-2'-Deoxyribonucleoside-5'-Triphosphate (4CIN-TP), and Enzymatic Incorporation of 4CIN-TP into DNA. ACTA ACUST UNITED AC 2021; 80:e101. [PMID: 31909864 DOI: 10.1002/cpnc.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
4-Cyanoindole-2'-deoxyribonucleoside (4CIN) is a fluorescent isomorphic nucleoside analogue with superior spectroscopic properties in terms of Stokes shift and quantum yield in comparison to the widely utilized isomorphic nucleoside analogue, 2-aminopurine-2'-deoxyribonucleoside (2APN). Notably, when inserted into single- or double-stranded DNA, 4CIN experiences substantially less in-strand fluorescence quenching compared to 2APN. Given the utility of these properties for a spectrum of research applications involving oligonucleotides and oligonucleotide-protein interactions (e.g., enzymatic processes, DNA hybridization, DNA damage), we envision that additional reagents based on 4-cyanoindole nucleosides may be widely utilized. This protocol expands on the previously published synthesis of 4CIN to include synthetic routes to both 4-cyanoindole-ribonucleoside (4CINr) and 4-cyanoindole-2'-deoxyribonucleoside-5'-triphosphate (4CIN-TP), as well as a method for the enzymatic incorporation of 4CIN-TP into DNA by a polymerase. These methods are anticipated to further enable the utilization of 4CIN in diverse applications involving DNA and RNA oligonucleotides. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Synthesis of 4-cyanoindole-2'-deoxyribonucleoside (4CIN) and 4CIN phosphoramidite 4 Basic Protocol 2: Synthesis of 4-cyanoindole-ribonucleoside (4CINr) Basic Protocol 3: Synthesis of 4-cyanoindole-2'-deoxyribonucleoside-5'-triphosphate (4CIN-TP) Basic Protocol 4: Steady state incorporation kinetics of 2AP-TP and 4CIN-TP by a DNA polymerase.
Collapse
Affiliation(s)
- Kellan T Passow
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Nicole M Antczak
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
22
|
Abdullah O, Omran Z, Hosawi S, Hamiche A, Bronner C, Alhosin M. Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex. Genes (Basel) 2021; 12:genes12050622. [PMID: 33922029 PMCID: PMC8143546 DOI: 10.3390/genes12050622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Silencing of tumor suppressor genes (TSGs) through epigenetic mechanisms, mainly via abnormal promoter DNA methylation, is considered a main mechanism of tumorigenesis. The abnormal DNA methylation profiles are transmitted from the cancer mother cell to the daughter cells through the involvement of a macromolecular complex in which the ubiquitin-like containing plant homeodomain (PHD), and an interesting new gene (RING) finger domains 1 (UHRF1), play the role of conductor. Indeed, UHRF1 interacts with epigenetic writers, such as DNA methyltransferase 1 (DNMT1), histone methyltransferase G9a, erasers like histone deacetylase 1 (HDAC1), and functions as a hub protein. Thus, targeting UHRF1 and/or its partners is a promising strategy for epigenetic cancer therapy. The natural compound thymoquinone (TQ) exhibits anticancer activities by targeting several cellular signaling pathways, including those involving UHRF1. In this review, we highlight TQ as a potential multitarget single epidrug that functions by targeting the UHRF1/DNMT1/HDAC1/G9a complex. We also speculate on the possibility that TQ might specifically target UHRF1, with subsequent regulatory effects on other partners.
Collapse
Affiliation(s)
- Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: ; Tel.: +966-597-959-354
| |
Collapse
|
23
|
Kotandeniya D, Rogers MS, Fernandez J, Kanugula S, Hudson RHE, Rodriguez F, Lipscomb JD, Tretyakova N. 6-phenylpyrrolocytosine as a fluorescent probe to examine nucleotide flipping catalyzed by a DNA repair protein. Biopolymers 2020; 112:e23405. [PMID: 33098572 DOI: 10.1002/bip.23405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/05/2022]
Abstract
Cellular exposure to tobacco-specific nitrosamines causes formation of promutagenic O6 -[4-oxo-4-(3-pyridyl)but-1-yl]guanine (O6 -POB-G) and O6 -methylguanine (O6 -Me-G) adducts in DNA. These adducts can be directly repaired by O6 -alkylguanine-DNA alkyltransferase (AGT). Repair begins by flipping the damaged base out of the DNA helix. AGT binding and base-flipping have been previously studied using pyrrolocytosine as a fluorescent probe paired to the O6 -alkylguanine lesion, but low fluorescence yield limited the resolution of steps in the repair process. Here, we utilize the highly fluorescent 6-phenylpyrrolo-2'-deoxycytidine (6-phenylpyrrolo-C) to investigate AGT-DNA interactions. Synthetic oligodeoxynucleotide duplexes containing O6 -POB-G and O6 -Me-G adducts were placed within the CpG sites of codons 158, 245, and 248 of the p53 tumor suppressor gene and base-paired to 6-phenylpyrrolo-C in the opposite strand. Neighboring cytosine was either unmethylated or methylated. Stopped-flow fluorescence measurements were performed by mixing the DNA duplexes with C145A or R128G AGT variants. We observe a rapid, two-step, nearly irreversible binding of AGT to DNA followed by two slower steps, one of which is base-flipping. Placing 5-methylcytosine immediately 5' to the alkylated guanosine causes a reduction in rate constant of nucleotide flipping. O6 -POB-G at codon 158 decreased the base flipping rate constant by 3.5-fold compared with O6 -Me-G at the same position. A similar effect was not observed at other codons.
Collapse
Affiliation(s)
- Delshanee Kotandeniya
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melanie S Rogers
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jenna Fernandez
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sreenivas Kanugula
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Robert H E Hudson
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | - Freddys Rodriguez
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
24
|
Kuchlyan J, Martinez-Fernandez L, Mori M, Gavvala K, Ciaco S, Boudier C, Richert L, Didier P, Tor Y, Improta R, Mély Y. What Makes Thienoguanosine an Outstanding Fluorescent DNA Probe? J Am Chem Soc 2020; 142:16999-17014. [PMID: 32915558 DOI: 10.1021/jacs.0c06165] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thienoguanosine (thG) is an isomorphic guanosine (G) surrogate that almost perfectly mimics G in nucleic acids. To exploit its full potential and lay the foundation for future applications, 20 DNA duplexes, where the bases facing and neighboring thG were systematically varied, were thoroughly studied using fluorescence spectroscopy, molecular dynamics simulations, and mixed quantum mechanical/molecular mechanics calculations, yielding a comprehensive understanding of its photophysics in DNA. In matched duplexes, thG's hypochromism was larger for flanking G/C residues but its fluorescence quantum yield (QY) and lifetime values were almost independent of the flanking bases. This was attributed to high duplex stability, which maintains a steady orientation and distance between nucleobases, so that a similar charge transfer (CT) mechanism governs the photophysics of thG independently of its flanking nucleobases. thG can therefore replace any G residue in matched duplexes, while always maintaining similar photophysical features. In contrast, the local destabilization induced by a mismatch or an abasic site restores a strong dependence of thG's QY and lifetime values on its environmental context, depending on the CT route efficiency and solvent exposure of thG. Due to this exquisite sensitivity, thG appears ideal for monitoring local structural changes and single nucleotide polymorphism. Moreover, thG's dominant fluorescence lifetime in DNA is unusually long (9-29 ns), facilitating its selective measurement in complex media using a lifetime-based or a time-gated detection scheme. Taken together, our data highlight thG as an outstanding emissive substitute for G with good QY, long fluorescence lifetimes, and exquisite sensitivity to local structural changes.
Collapse
Affiliation(s)
- Jagannath Kuchlyan
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Mattia Mori
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Krishna Gavvala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France.,Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto Biostrutture e Bioimmagini, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
25
|
Didier P, Kuchlyan J, Martinez-Fernandez L, Gosset P, Léonard J, Tor Y, Improta R, Mély Y. Deciphering the pH-dependence of ground- and excited-state equilibria of thienoguanine. Phys Chem Chem Phys 2020; 22:7381-7391. [PMID: 32211689 DOI: 10.1039/c9cp06931c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The thienoguanine nucleobase (thGb) is an isomorphic fluorescent analogue of guanine. In aqueous buffer at neutral pH, thGb exists as a mixture of two ground-state H1 and H3 keto-amino tautomers with distinct absorption and emission spectra and high quantum yield. In this work, we performed the first systematic photophysical characterization of thGb as a function of pH (2 to 12). Steady-state and time-resolved fluorescence spectroscopies, supplemented with theoretical calculations, enabled us to identify three additional thGb forms, resulting from pH-dependent ground-state and excited-state reactions. Moreover, a thorough analysis allowed us to retrieve their individual absorption and emission spectra as well as the equilibrium constants which govern their interconversion. From these data, the complete photoluminescence pathway of thGb in aqueous solution and its dependence as a function of pH was deduced. As the identified forms differ by their spectra and fluorescence lifetime, thGb could be used as a probe for sensing local pH changes under acidic conditions.
Collapse
Affiliation(s)
- Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Michel BY, Dziuba D, Benhida R, Demchenko AP, Burger A. Probing of Nucleic Acid Structures, Dynamics, and Interactions With Environment-Sensitive Fluorescent Labels. Front Chem 2020; 8:112. [PMID: 32181238 PMCID: PMC7059644 DOI: 10.3389/fchem.2020.00112] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Fluorescence labeling and probing are fundamental techniques for nucleic acid analysis and quantification. However, new fluorescent probes and approaches are urgently needed in order to accurately determine structural and conformational dynamics of DNA and RNA at the level of single nucleobases/base pairs, and to probe the interactions between nucleic acids with proteins. This review describes the means by which to achieve these goals using nucleobase replacement or modification with advanced fluorescent dyes that respond by the changing of their fluorescence parameters to their local environment (altered polarity, hydration, flipping dynamics, and formation/breaking of hydrogen bonds).
Collapse
Affiliation(s)
- Benoît Y. Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
| | - Dmytro Dziuba
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
- Mohamed VI Polytechnic University, UM6P, Ben Guerir, Morocco
| | - Alexander P. Demchenko
- Laboratory of Nanobiotechnologies, Palladin Institute of Biochemistry, Kyiv, Ukraine
- Institute of Physical, Technical and Computer Science, Yuriy Fedkovych National University, Chernivtsi, Ukraine
| | - Alain Burger
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
| |
Collapse
|
27
|
Schneider M, Trummer C, Stengl A, Zhang P, Szwagierczak A, Cardoso MC, Leonhardt H, Bauer C, Antes I. Systematic analysis of the binding behaviour of UHRF1 towards different methyl- and carboxylcytosine modification patterns at CpG dyads. PLoS One 2020; 15:e0229144. [PMID: 32084194 PMCID: PMC7034832 DOI: 10.1371/journal.pone.0229144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/30/2020] [Indexed: 01/24/2023] Open
Abstract
The multi-domain protein UHRF1 is essential for DNA methylation maintenance and binds DNA via a base-flipping mechanism with a preference for hemi-methylated CpG sites. We investigated its binding to hemi- and symmetrically modified DNA containing either 5-methylcytosine (mC), 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), or 5-carboxylcytosine (caC). Our experimental results indicate that UHRF1 binds symmetrically carboxylated and hybrid methylated/carboxylated CpG dyads in addition to its previously reported substrates. Complementary molecular dynamics simulations provide a possible mechanistic explanation of how the protein could differentiate between modification patterns. First, we observe different local binding modes in the nucleotide binding pocket as well as the protein's NKR finger. Second, both DNA modification sites are coupled through key residues within the NKR finger, suggesting a communication pathway affecting protein-DNA binding for carboxylcytosine modifications. Our results suggest a possible additional function of the hemi-methylation reader UHRF1 through binding of carboxylated CpG sites. This opens the possibility of new biological roles of UHRF1 beyond DNA methylation maintenance and of oxidised methylcytosine derivates in epigenetic regulation.
Collapse
Affiliation(s)
- Markus Schneider
- Center for Integrated Protein Science Munich at the TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Carina Trummer
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Andreas Stengl
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Peng Zhang
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Cell Biology and Epigenetics at the Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Aleksandra Szwagierczak
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics at the Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Heinrich Leonhardt
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Christina Bauer
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Iris Antes
- Center for Integrated Protein Science Munich at the TUM School of Life Sciences, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
28
|
Sougnabé A, Lissouck D, Fontaine-Vive F, Nsangou M, Mély Y, Burger A, Kenfack CA. Electronic transitions and ESIPT kinetics of the thienyl-3-hydroxychromone nucleobase surrogate in DNA duplexes: a DFT/MD-TDDFT study. RSC Adv 2020; 10:7349-7359. [PMID: 35492175 PMCID: PMC9049942 DOI: 10.1039/c9ra10419d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
The fluorescent nucleobase surrogate M (2-thienyl-3-hydroxychromone fluorophore) when imbedded in DNA opposite an abasic site exhibits a two colour response highly sensitive to environment changes and base composition. Its two colour emission originates from an excited state intramolecular proton transfer (ESIPT), which converts the excited normal N* form into its T* tautomer. To get deeper insight on the spectroscopic properties of M in DNA duplexes, quantum chemical calculations were performed on M stacked with different base pairs in model trimers extracted from MD simulations. The photophysics of M in duplexes appeared to be governed by stacking interactions as well as charge and hole transfer. Indeed, stacking of M in DNA screens M from H-bonding with water molecules, which favours ESIPT and thus, the emission of the T* form. With A and T flanking bases, the electronic densities in the frontier MOs were localized on M, in line with its effective absorption and emission. In addition, reduction of the free rotation between the thienyl and chromone groups together with the shielding of the dye from water molecules largely explain its enhanced quantum yield in comparison to the free M in solution. By contrast, the localisation of the electron density on the flanking G residues in the ground state and the energetically favorable hole transfer from M to G in the excited state explains the reduced quantum yield of M sandwiched between CG pairs. Finally, the much higher brightness of M as compared to 2-aminopurine when flanked by A and T residues could be related to the much stronger oscillator strength of its S0 → S1 transition and the ineffective charge transfer from M to A or T residues. The fluorescent nucleobase surrogate M (2-thienyl-3-hydroxychromone fluorophore) when imbedded in DNA opposite an abasic site exhibits a two colour response highly sensitive to environment changes and base composition.![]()
Collapse
Affiliation(s)
- Alain Sougnabé
- Laboratoire d'Optique et Applications
- Centre de Physique Atomique Moléculaire et Optique Quantique
- Faculté des Sciences Université de Douala
- B. P. 8580 Douala
- Cameroon
| | - Daniel Lissouck
- Laboratoire d'Optique et Applications
- Centre de Physique Atomique Moléculaire et Optique Quantique
- Faculté des Sciences Université de Douala
- B. P. 8580 Douala
- Cameroon
| | | | - Mama Nsangou
- Département de Physique
- Faculté des Sciences Physiques
- Ecole Normale Supérieure de Maroua
- Université de Maroua
- Cameroon
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies
- UMR 7021 du CNRS
- Faculté de Pharmacie Faculté de Pharmacie
- Université de Strasbourg
- Illkirch Cedex
| | - Alain Burger
- Institut de Chimie de Nice
- UMR 7272
- Université Côte d'Azur
- CNRS
- Parc Valrose
| | - Cyril A. Kenfack
- Laboratoire d'Optique et Applications
- Centre de Physique Atomique Moléculaire et Optique Quantique
- Faculté des Sciences Université de Douala
- B. P. 8580 Douala
- Cameroon
| |
Collapse
|
29
|
Mariam J, Krishnamoorthy G, Anand R. Use of 6‐Methylisoxanthopterin, a Fluorescent Guanine Analog, to Probe Fob1‐Mediated Dynamics at the Stalling Fork Barrier DNA Sequences. Chem Asian J 2019; 14:4760-4766. [DOI: 10.1002/asia.201901061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jessy Mariam
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 Maharashtra India
| | | | - Ruchi Anand
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 Maharashtra India
| |
Collapse
|
30
|
Zaayter L, Mori M, Ahmad T, Ashraf W, Boudier C, Kilin V, Gavvala K, Richert L, Eiler S, Ruff M, Botta M, Bronner C, Mousli M, Mély Y. A Molecular Tool Targeting the Base-Flipping Activity of Human UHRF1. Chemistry 2019; 25:13363-13375. [PMID: 31322780 DOI: 10.1002/chem.201902605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/18/2019] [Indexed: 12/12/2022]
Abstract
During DNA replication, ubiquitin-like, containing PHD and RING fingers domains 1 (UHRF1) plays key roles in the inheritance of methylation patterns to daughter strands by recognizing through its SET and RING-associated domain (SRA) the methylated CpGs and recruiting DNA methyltransferase 1 (DNMT1). Herein, our goal is to identify UHRF1 inhibitors targeting the 5'-methylcytosine (5mC) binding pocket of the SRA domain to prevent the recognition and flipping of 5mC and determine the molecular and cellular consequences of this inhibition. For this, we used a multidisciplinary strategy combining virtual screening and molecular modeling with biophysical assays in solution and cells. We identified an anthraquinone compound able to bind to the 5mC binding pocket and inhibit the base-flipping process in the low micromolar range. We also showed in cells that this hit impaired the UHRF1/DNMT1 interaction and decreased the overall methylation of DNA, highlighting the critical role of base flipping for DNMT1 recruitment and providing the first proof of concept of the druggability of the 5mC binding pocket. The selected anthraquinone appears thus as a key tool to investigate the role of UHRF1 in the inheritance of methylation patterns, as well as a starting point for hit-to-lead optimizations.
Collapse
Affiliation(s)
- Liliyana Zaayter
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Mattia Mori
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Tanveer Ahmad
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Waseem Ashraf
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Vasyl Kilin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Krishna Gavvala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Sylvia Eiler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Marc Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Maurizio Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Marc Mousli
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| |
Collapse
|
31
|
Polepalli S, George SM, Valli Sri Vidya R, Rodrigues GS, Ramachandra L, Chandrashekar R, M DN, Rao PP, Pestell RG, Rao M. Role of UHRF1 in malignancy and its function as a therapeutic target for molecular docking towards the SRA domain. Int J Biochem Cell Biol 2019; 114:105558. [DOI: 10.1016/j.biocel.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 01/07/2023]
|
32
|
Martinez-Fernandez L, Gavvala K, Sharma R, Didier P, Richert L, Segarra Martì J, Mori M, Mely Y, Improta R. Excited-State Dynamics of Thienoguanosine, an Isomorphic Highly Fluorescent Analogue of Guanosine. Chemistry 2019; 25:7375-7386. [PMID: 30882930 DOI: 10.1002/chem.201900677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Indexed: 12/27/2022]
Abstract
Thienoguanosine (th G) is an isomorphic analogue of guanosine with promising potentialities as fluorescent DNA label. As a free probe in protic solvents, th G exists in two tautomeric forms, identified as the H1, being the only one observed in nonprotic solvents, and H3 keto-amino tautomers. We herein investigate the photophysics of th G in solvents of different polarity, from water to dioxane, by combining time-resolved fluorescence with PCM/TD-DFT and CASSCF calculations. Fluorescence lifetimes of 14.5-20.5 and 7-13 ns were observed for the H1 and H3 tautomers, respectively, in the tested solvents. In methanol and ethanol, an additional fluorescent decay lifetime (≈3 ns) at the blue emission side (λ≈430 nm) as well as a 0.5 ns component with negative amplitude at the red edge of the spectrum, typical of an excited-state reaction, were observed. Our computational analysis explains the solvent effects observed on the tautomeric equilibrium. The main radiative and nonradiative deactivation routes have been mapped by PCM/TD-DFT calculations in solution and CASSCF in the gas phase. The most easily accessible conical intersection, involving an out-of plane motion of the sulfur atom in the five-membered ring of th G, is separated by a sizeable energy barrier (≥0.4 eV) from the minimum of the spectroscopic state, which explains the large experimental fluorescence quantum yield.
Collapse
Affiliation(s)
- Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias, Modúlo13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Krishna Gavvala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Rajhans Sharma
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Javier Segarra Martì
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ, London, UK
| | - Mattia Mori
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100, Siena, Italy
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto Biostrutture e Bioimmagini, Via Mezzocannone 16, 80134, Napoli, Italy
| |
Collapse
|
33
|
Coordinated Dialogue between UHRF1 and DNMT1 to Ensure Faithful Inheritance of Methylated DNA Patterns. Genes (Basel) 2019; 10:genes10010065. [PMID: 30669400 PMCID: PMC6360023 DOI: 10.3390/genes10010065] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/22/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is an epigenetic mark that needs to be faithfully replicated during mitosis in order to maintain cell phenotype during successive cell divisions. This epigenetic mark is located on the 5′-carbon of the cytosine mainly within cytosine–phosphate–guanine (CpG) dinucleotides. DNA methylation is asymmetrically positioned on both DNA strands, temporarily generating a hemi-methylated state after DNA replication. Hemi-methylation is a particular status of DNA that is recognized by ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1) through its SET- (Su(var)3-9, Enhancer-of-zeste and Trithorax) and RING-associated (SRA) domain. This interaction is considered to be involved in the recruitment of DNMT1 to chromatin in order to methylate the adequate cytosine on the newly synthetized DNA strand. The UHRF1/DNMT1 tandem plays a pivotal role in the inheritance of DNA methylation patterns, but the fine-tuning mechanism remains a mystery. Indeed, because DNMT1 experiences difficulties in finding the cytosine to be methylated, it requires the help of a guide, i.e., of UHRF1, which exhibits higher affinity for hemi-methylated DNA vs. non-methylated DNA. Two models of the UHRF1/DNMT1 dialogue were suggested to explain how DNMT1 is recruited to chromatin: (i) an indirect communication via histone H3 ubiquitination, and (ii) a direct interaction of UHRF1 with DNMT1. In the present review, these two models are discussed, and we try to show that they are compatible with each other.
Collapse
|
34
|
Taka N, Karube I, Yoshida W. Direct Detection of Hemi-methylated DNA by SRA-fused Luciferase Based on Bioluminescence Resonance Energy Transfer. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1533022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Natsumi Taka
- School of Bioscience and Biotechnology, Graduate School of Bionics, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Isao Karube
- School of Bioscience and Biotechnology, Graduate School of Bionics, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Wataru Yoshida
- School of Bioscience and Biotechnology, Graduate School of Bionics, Tokyo University of Technology, Hachioji, Tokyo, Japan
| |
Collapse
|
35
|
Sholokh M, Sharma R, Grytsyk N, Zaghzi L, Postupalenko VY, Dziuba D, Barthes NPF, Michel BY, Boudier C, Zaporozhets OA, Tor Y, Burger A, Mély Y. Environmentally Sensitive Fluorescent Nucleoside Analogues for Surveying Dynamic Interconversions of Nucleic Acid Structures. Chemistry 2018; 24:13850-13861. [PMID: 29989220 DOI: 10.1002/chem.201802297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 11/12/2022]
Abstract
Nucleic acids are characterized by a variety of dynamically interconverting structures that play a major role in transcriptional and translational regulation as well as recombination and repair. To monitor these interconversions, Förster resonance energy transfer (FRET)-based techniques can be used, but require two fluorophores that are typically large and can alter the DNA/RNA structure and protein binding. Additionally, events that do not alter the donor/acceptor distance and/or angular relationship are frequently left undetected. A more benign approach relies on fluorescent nucleobases that can substitute their native counterparts with minimal perturbation, such as the recently developed 2-thienyl-3-hydroxychromone (3HCnt) and thienoguanosine (th G). To demonstrate the potency of 3HCnt and th G in deciphering interconversion mechanisms, we used the conversion of the (-)DNA copy of the HIV-1 primer binding site (-)PBS stem-loop into (+)/(-)PBS duplex, as a model system. When incorporated into the (-)PBS loop, the two probes were found to be highly sensitive to the individual steps both in the absence and the presence of a nucleic acid chaperone, providing the first complete mechanistic description of this critical process in HIV-1 replication. The combination of the two distinct probes appears to be instrumental for characterizing structural transitions of nucleic acids under various stimuli.
Collapse
Affiliation(s)
- Marianna Sholokh
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France.,Department of Chemistry, Kyiv National Taras Shevchenko University, 60 Volodymyrska street, 01033, Kyiv, Ukraine
| | - Rajhans Sharma
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Natalia Grytsyk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Lyes Zaghzi
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Viktoriia Y Postupalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Dmytro Dziuba
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Nicolas P F Barthes
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Benoît Y Michel
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Olga A Zaporozhets
- Department of Chemistry, Kyiv National Taras Shevchenko University, 60 Volodymyrska street, 01033, Kyiv, Ukraine
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| |
Collapse
|
36
|
Passow KT, Harki DA. 4-Cyanoindole-2'-deoxyribonucleoside (4CIN): A Universal Fluorescent Nucleoside Analogue. Org Lett 2018; 20:4310-4313. [PMID: 29989830 PMCID: PMC6168291 DOI: 10.1021/acs.orglett.8b01746] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The synthesis and characterization of a universal and fluorescent nucleoside, 4-cyanoindole-2'-deoxyribonucleoside (4CIN), and its incorporation into DNA is described. 4CIN is a highly efficient fluorophore with quantum yields >0.90 in water. When incorporated into duplex DNA, 4CIN pairs equivalently with native nucleobases and has uniquely high quantum yields ranging from 0.15 to 0.31 depending on sequence and hybridization contexts, surpassing that of 2-aminopurine, the prototypical nucleoside fluorophore. 4CIN constitutes a new isomorphic nucleoside for diverse applications.
Collapse
Affiliation(s)
- Kellan T. Passow
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Daniel A. Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
37
|
Bood M, Füchtbauer AF, Wranne MS, Ro JJ, Sarangamath S, El-Sagheer AH, Rupert DLM, Fisher RS, Magennis SW, Jones AC, Höök F, Brown T, Kim BH, Dahlén A, Wilhelmsson LM, Grøtli M. Pentacyclic adenine: a versatile and exceptionally bright fluorescent DNA base analogue. Chem Sci 2018; 9:3494-3502. [PMID: 29780479 PMCID: PMC5934695 DOI: 10.1039/c7sc05448c] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/01/2018] [Indexed: 12/16/2022] Open
Abstract
A highly fluorescent, non-perturbing, pentacyclic adenine analog was designed, synthesized, incorporated into DNA and photophysical evaluated.
Emissive base analogs are powerful tools for probing nucleic acids at the molecular level. Herein we describe the development and thorough characterization of pentacyclic adenine (pA), a versatile base analog with exceptional fluorescence properties. When incorporated into DNA, pA pairs selectively with thymine without perturbing the B-form structure and is among the brightest nucleobase analogs reported so far. Together with the recently established base analog acceptor qAnitro, pA allows accurate distance and orientation determination via Förster resonance energy transfer (FRET) measurements. The high brightness at emission wavelengths above 400 nm also makes it suitable for fluorescence microscopy, as demonstrated by imaging of single liposomal constructs coated with cholesterol-anchored pA–dsDNA, using total internal reflection fluorescence microscopy. Finally, pA is also highly promising for two-photon excitation at 780 nm, with a brightness (5.3 GM) that is unprecedented for a base analog.
Collapse
Affiliation(s)
- Mattias Bood
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-412 96 Gothenburg , Sweden .
| | - Anders F Füchtbauer
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden .
| | - Moa S Wranne
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden .
| | - Jong Jin Ro
- Department of Chemistry , Division of Advanced Materials Science , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , South Korea
| | - Sangamesh Sarangamath
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden .
| | - Afaf H El-Sagheer
- Chemistry Branch , Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Déborah L M Rupert
- Division of Biological Physics , Department of Physics , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden
| | - Rachel S Fisher
- School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JJ , UK
| | - Steven W Magennis
- WestCHEM , School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , UK
| | - Anita C Jones
- School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JJ , UK
| | - Fredrik Höök
- Division of Biological Physics , Department of Physics , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden
| | - Tom Brown
- Department of Chemistry , Chemistry Research Laboratory , University of Oxford , Oxford , OX1 3TA , UK
| | - Byeang Hyean Kim
- Department of Chemistry , Division of Advanced Materials Science , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , South Korea
| | - Anders Dahlén
- AstraZeneca R&D , Innovative Medicines , Cardiovascular & Metabolic Diseases (CVMD) , Pepparedsleden 1, SE-431 83 Mölndal , Gothenburg , Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden .
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-412 96 Gothenburg , Sweden .
| |
Collapse
|
38
|
Shaya J, Collot M, Bénailly F, Mahmoud N, Mély Y, Michel BY, Klymchenko AS, Burger A. Turn-on Fluorene Push-Pull Probes with High Brightness and Photostability for Visualizing Lipid Order in Biomembranes. ACS Chem Biol 2017; 12:3022-3030. [PMID: 29053920 DOI: 10.1021/acschembio.7b00658] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The rational design of environmentally sensitive dyes with superior properties is critical for elucidating the fundamental biological processes and understanding the biophysical behavior of cell membranes. In this study, a novel group of fluorene-based push-pull probes was developed for imaging membrane lipids. The design of these fluorogenic conjugates is based on a propioloyl linker to preserve the required spectroscopic features of the core dye. This versatile linker allowed the introduction of a polar deoxyribosyl head, a lipophilic chain, and an amphiphilic/anchoring group to tune the cell membrane binding and internalization. It was found that the deoxyribosyl head favored cell internalization and staining of intracellular membranes, whereas an amphiphilic anchor group ensured specific plasma membrane staining. The optimized fluorene probes presented a set of improvements as compared to commonly used environmentally sensitive membrane probe Laurdan such as red-shifted absorption matching the 405 nm diode laser excitation, a blue-green emission range complementary to the red fluorescent proteins, enhanced brightness and photostability, as well as preserved sensitivity to lipid order, as shown in model membranes and living cells.
Collapse
Affiliation(s)
- Janah Shaya
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| | - Mayeul Collot
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Frédéric Bénailly
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| | - Najiba Mahmoud
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| | - Yves Mély
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Benoît Y. Michel
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| | - Andrey S. Klymchenko
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Alain Burger
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| |
Collapse
|
39
|
Zargarian L, Ben Imeddourene A, Gavvala K, Barthes NPF, Michel BY, Kenfack CA, Morellet N, René B, Fossé P, Burger A, Mély Y, Mauffret O. Structural and Dynamical Impact of a Universal Fluorescent Nucleoside Analogue Inserted Into a DNA Duplex. J Phys Chem B 2017; 121:11249-11261. [PMID: 29172512 DOI: 10.1021/acs.jpcb.7b08825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, a 3-hydroxychromone based nucleoside 3HCnt has been developed as a highly environment-sensitive nucleoside surrogate to investigate protein-DNA interactions. When it is incorporated in DNA, the probe is up to 50-fold brighter than 2-aminopurine, the reference fluorescent nucleoside. Although the insertion of 3HCnt in DNA was previously shown to not alter the overall DNA structure, the possibility of the probe inducing local effects cannot be ruled out. Hence, a systematic structural and dynamic study is required to unveil the 3HCnt's limitations and to properly interpret the data obtained with this universal probe. Here, we investigated by NMR a 12-mer duplex, in which a central adenine was replaced by 3HCnt. The chemical shifts variations and nOe contacts revealed that the 3HCnt is well inserted in the DNA double helix with extensive stacking interactions with the neighbor base pairs. These observations are in excellent agreement with the steady-state and time-resolved fluorescence properties indicating that the 3HCnt fluorophore is protected from the solvent and does not exhibit rotational motion. The 3HCnt insertion in DNA is accompanied by the extrusion of the opposite nucleobase from the double helix. Molecular dynamics simulations using NMR-restraints demonstrated that 3HCnt fluorophore exhibits only translational dynamics. Taken together, our data showed an excellent intercalation of 3HCnt in the DNA double helix, which is accompanied by localized perturbations. This confirms 3HCnt as a highly promising tool for nucleic acid labeling and sensing.
Collapse
Affiliation(s)
- Loussiné Zargarian
- LBPA, Ecole normale supérieure Paris-Saclay, UMR 8113 CNRS, Université Paris-Saclay , 61 Avenue du Pdt Wilson 94235 Cachan cedex, France
| | - Akli Ben Imeddourene
- LBPA, Ecole normale supérieure Paris-Saclay, UMR 8113 CNRS, Université Paris-Saclay , 61 Avenue du Pdt Wilson 94235 Cachan cedex, France
| | - Krishna Gavvala
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg , 74 route du Rhin, 67401 Illkirch, France
| | - Nicolas P F Barthes
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS , Parc Valrose, 06108 Nice Cedex 2, France
| | - Benoit Y Michel
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS , Parc Valrose, 06108 Nice Cedex 2, France
| | - Cyril A Kenfack
- Laboratoire d'Optique et Applications, Centre de Physique Atomique Moléculaire et Optique Quantique, Université de Douala , BP 85580, Douala, Cameroon
| | - Nelly Morellet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris Saclay , 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Brigitte René
- LBPA, Ecole normale supérieure Paris-Saclay, UMR 8113 CNRS, Université Paris-Saclay , 61 Avenue du Pdt Wilson 94235 Cachan cedex, France
| | - Philippe Fossé
- LBPA, Ecole normale supérieure Paris-Saclay, UMR 8113 CNRS, Université Paris-Saclay , 61 Avenue du Pdt Wilson 94235 Cachan cedex, France
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS , Parc Valrose, 06108 Nice Cedex 2, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg , 74 route du Rhin, 67401 Illkirch, France
| | - Olivier Mauffret
- LBPA, Ecole normale supérieure Paris-Saclay, UMR 8113 CNRS, Université Paris-Saclay , 61 Avenue du Pdt Wilson 94235 Cachan cedex, France
| |
Collapse
|
40
|
Bronner C, Mousli M, Burger A, Mély Y. La première étape de la transmission d’un caractère épigénétique suivie par fluorescence. Med Sci (Paris) 2017; 33:717-719. [DOI: 10.1051/medsci/20173308010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Ashraf W, Ibrahim A, Alhosin M, Zaayter L, Ouararhni K, Papin C, Ahmad T, Hamiche A, Mély Y, Bronner C, Mousli M. The epigenetic integrator UHRF1: on the road to become a universal biomarker for cancer. Oncotarget 2017; 8:51946-51962. [PMID: 28881702 PMCID: PMC5584303 DOI: 10.18632/oncotarget.17393] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/02/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the deadliest diseases in the world causing record number of mortalities in both developed and undeveloped countries. Despite a lot of advances and breakthroughs in the field of oncology still, it is very hard to diagnose and treat the cancers at early stages. Here in this review we analyze the potential of Ubiquitin-like containing PHD and Ring Finger domain 1 (UHRF1) as a universal biomarker for cancers. UHRF1 is an important epigenetic regulator maintaining DNA methylation and histone code in the cell. It is highly expressed in a variety of cancers and is a well-known oncogene that can disrupt the epigenetic code and override the senescence machinery. Many studies have validated UHRF1 as a powerful diagnostic and prognostic tool to differentially diagnose cancer, predict the therapeutic response and assess the risk of tumor progression and recurrence. Highly sensitive, non-invasive and cost effective approaches are therefore needed to assess the level of UHRF1 in patients, which can be deployed in diagnostic laboratories to detect cancer and monitor disease progression.
Collapse
Affiliation(s)
- Waseem Ashraf
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Abdulkhaleg Ibrahim
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer Metabolism and Epigenetic Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Centre for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Liliyana Zaayter
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Khalid Ouararhni
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Christophe Papin
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Tanveer Ahmad
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Ali Hamiche
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Yves Mély
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Christian Bronner
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Marc Mousli
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| |
Collapse
|