1
|
Zhou E, Yan S, Zhang X, Rehman Baloch AU, Hui Y, Wang F, Jiao L, Xie J, Yuan D, Wang Y. Artificial Photosynthetic Cell with Molecular Biomimetic Thylakoid. Angew Chem Int Ed Engl 2025; 64:e202416289. [PMID: 39288107 DOI: 10.1002/anie.202416289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
The construction of solar-to-chemical conversion system by mimicking the photosynthetic network of the chloroplast holds great promise on efficient solar energy utilization. We developed an artificial photosynthetic cell (APC) based on molecular biomimetic thylakoid (CoTPP-FePy) to split water into hydrogen and oxygen (H2 and O2) at low driving voltage (1.1 V) and neutral condition (pH≈7). The CoTPP-FePy can emulate the light reaction in thylakoids to produce O2 by coupling light harvesting, photocatalysis, and electron/energy storage (FeIII/FeII-Py). Subsequently, a membrane electrode assembly (MEA) were employed to simulate the dark reaction, wherein the proton, electron and energy generated by the light reaction can drive the H2 producing process. By a temporally and spatially coupling of the light and dark reactions, the resulting APC achieved a solar conversion efficiency of 3.1 %, exceeding that of natural photosynthetic systems and demonstrating the potential of artificial photosynthesis.
Collapse
Affiliation(s)
- Enbo Zhou
- Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P. R. China
| | - Shichen Yan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
| | - Xiang Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ateeq Ur Rehman Baloch
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yangdan Hui
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
| | - Futong Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
| | - Lei Jiao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiafang Xie
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
| | - Daqiang Yuan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, P. R. China
| |
Collapse
|
2
|
Shee M, Schleisiek J, Maity N, Das G, Montesdeoca N, Ha-Thi MH, Gore KR, Karges J, Singh NDP. Exploring Excited-State Intramolecular Proton-Coupled Electron Transfer in Dinuclear Ir(III)-Complex via Covalently Tagged Hydroquinone: Phototherapy Through Futile Redox Cycling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408437. [PMID: 39711252 DOI: 10.1002/smll.202408437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Indexed: 12/24/2024]
Abstract
Anticipating intramolecular excited-state proton-coupled electron transfer (PCET) process within dinuclear Ir2-photocatalytic system via the covalent linkage is seminal, yet challenging. Indeed, the development of various dinuclear complexes is also promising for studying integral photophysics and facilitating applications in catalysis or biology. Herein, this study reports dinuclear [Ir2(bis{imidazo-phenanthrolin-2-yl}-hydroquinone)(ppy)4]2+ (12+) complex by leveraging both ligand-centered redox property and intramolecular H-bonding for exploring dual excited-state proton-transfer assisted PCET process. The vital role of covalently placed hydroquinone in bridged ligand is investigated as electron-proton transfer (ET-PT) mediator in intramolecular PCET and validated from triplet spin density plot. Moreover, bimolecular photoinduced ET reaction is studied in acetonitrile/water medium, forging the lowest energy triplet charge separated (3CSPhen-Im) state of 12+ with methyl viologen via favorably concerted-PCET pathway. The result indicates strong donor-acceptors coupling, which limits charge recombination and enhances catalytic efficiency. To showcase the potential application, this bioinspired PCET-based photocatalytic platform is studied for phototherapeutics, indicating significant mitochondrial localization and leading to programmed cell death (apoptosis) through futile redox cycling. Indeed, the consequences of effective internalization (via energy-dependent endocytosis), better safety profile, and higher photoinduced antiproliferative activity of 12+ compared to Cisplatin, as explored in 3D tumor spheroids, this study anticipates it to be a potential lead compound.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Julia Schleisiek
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Nishith Maity
- Université Paris-Saclay, CNRS, Institut des Sciences Molécu-laires d'Orsay, Orsay, 91405, France
| | - Gourav Das
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Minh-Huong Ha-Thi
- Université Paris-Saclay, CNRS, Institut des Sciences Molécu-laires d'Orsay, Orsay, 91405, France
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
3
|
Wang C, Wu B, Li Y, Jiang Y, Dong T, Zhou S, Wang C, Bai C. Photoinduced ultrafast multielectron transfer and long-lived charge-accumulated state in a fullerene-indacenodithiophene dumbbell triad. Proc Natl Acad Sci U S A 2024; 121:e2414671121. [PMID: 39636861 DOI: 10.1073/pnas.2414671121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Photoinduced ultrafast multielectron transfer (m-ET) and long-lived charge-accumulated states in single molecules hold promise for light-energy conversion and utilization. However, compared to single-electron transfer (s-ET), m-ET tends to be thermodynamically and kinetically unfavorable. Here, we construct a dumbbell-shaped fullerene-indacenodithiophene triad, IT2, modified with two C60 units in the donor indacenodithiophene. Exciting the C60 units, ultrafast m-ET occurs with a time constant of 0.5 ps, accumulating two holes with a lifetime of 10 μs. Benefitting from a larger driving force, lower reorganization energy, and smaller structural changes, the rate of m-ET is 23 times faster than that of s-ET, and the lifetime of the m-ET product is 1.4 × 105 times longer than that of the s-ET products. These attributes endow IT2 with superior photocatalytic performance in multielectron oxidation reactions. This is an instance of achieving faster m-ET and a longer m-ET product lifetime than s-ET in a single molecule. This finding provides unique insights for the construction and application of intramolecular m-ET and charge accumulation systems in photocatalysis and molecular devices.
Collapse
Affiliation(s)
- Chong Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Ying Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyang Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Zhou
- College of Science, Hunan Key Laboratory of Mechanism and Technology of Quantum Information, National University of Defense Technology, Changsha 410003, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Yuan H, Ming M, Yang S, Guo K, Chen B, Jiang L, Han Z. Molecular Copper-Anthraquinone Photocatalysts for Robust Hydrogen Production. J Am Chem Soc 2024; 146:31901-31910. [PMID: 39508387 DOI: 10.1021/jacs.4c11223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The development of robust and inexpensive photocatalysts for H2 production under visible light irradiation remains a significant challenge. This study presents a series of square planar copper anthraquinone complexes (R4N)CuL2 (R = ethyl, L = alizarin dianion (CuAA); R = n-butyl, L = purpurin dianion (CuPP), (2-hydroxyanthraquinone)formamide dianion (CuAHA)) as molecular photocatalysts to achieve high long-term stability in visible-light-driven H2 production. These complexes are self-sensitized by the anthraquinone ligands and serve as proton reduction photocatalysts without additional photosensitizers or catalysts. Under irradiation of blue light, complex CuAA produces H2 in a mixture of H2O/DMF with undiminished activity over 42 days, giving a turnover number exceeding 6800. Electrochemical and UV-vis studies are consistent with an EECC mechanism (E: electron transfer and C: protonation) in the catalytic cycle. The initial photochemical steps involve conversion of both anthraquinone ligands to hydroquinones. Further light-driven reductions of the hydroquinones followed by two protonation steps results in formation of H2. Dependence of the catalytic rate on the concentration of H2O suggests that either the generation of a CuII-H intermediate by protonation or heterocoupling between CuII-H and H+ to produce H2 is the turnover-limiting step in catalysis.
Collapse
Affiliation(s)
- Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Bixian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Long Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Li J, Zhu M, Chen M, Mei Q, Chen W, Tang Y, Wang Q. Natural redox mediator anthraquinone aloe-emodin facilitated the in-situ mineralized γ-FeO(OH) membrane for the removal of tannic acid through photocatalytic-PMS activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135464. [PMID: 39141945 DOI: 10.1016/j.jhazmat.2024.135464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
The growing utilization of Traditional Chinese Medicine (TCM) has resulted in an increase in wastewater. Herein, a new kind of organic-inorganic redox mediator membrane by immobilizing γ-FeO(OH) and aloe-emodin(AE) with the characteristic large π-conjugation anthraquinone structure on PVDF membrane was innovatively achieved. AE exhibiting both electron deficiency and redox activity possesses a co-catalyst role in degradation of tannic acid (TA), aiding in the separation of charge carriers through the sequential hydrogenation and dehydrogenation of AE. The removal rates of TA were 92.8 % in the tannic acid solution and 60.3 % in the simulated rhubarb wastewater by the AE-γ-FeO(OH) membrane under PMS+Vis conditions in 45 min. Also, they show a higher recovery of pure water flux and owning good fouling performance. Overall, this current work presents a novel approach for the design and preparation of organic-inorganic photocatalytic composite membrane using readily available natural products for the purification TCM wastewater.
Collapse
Affiliation(s)
- Jiajia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China; School of Water and Environment, Chang'an University, Xi'an 710064, China.
| | - Mengzhen Zhu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Manhua Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Qiong Mei
- School of Water and Environment, Chang'an University, Xi'an 710064, China
| | - Wenzhuo Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China.
| | - Qizhao Wang
- School of Water and Environment, Chang'an University, Xi'an 710064, China.
| |
Collapse
|
6
|
Li D, Li Q, Zhou Y, Zhang Q, Ye Q, Yang R, Jiang D. Shaping and Doping Metal-Organic Framework-Derived TiO 2 to Steer the Selectivity of Photocatalytic CO 2 Reduction toward CH 4. Inorg Chem 2024; 63:15398-15408. [PMID: 39096309 DOI: 10.1021/acs.inorgchem.4c02407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Steering selectivity in photocatalytic conversion of CO2, especially toward deep reduction products, is vital to energy and environmental goals yet remains a great challenge. In this work, we demonstrate a facet-dependent photocatalytic selective reduction of CO2 to CH4 in Cu-doped TiO2 catalysts exposed with different facets synthesized by a topological transformation from MIL-125 (Ti) precursors. The optimized round cake-like Cu/TiO2 photocatalyst mainly exposed with the (001) facet exhibited a high photocatalytic CO2 reduction performance with a CH4 yield of 40.36 μmol g-1 h-1 with a selectivity of 94.1%, which are significantly higher than those of TiO2 (001) (4.70 μmol g-1 h-1 and 52.6%, respectively), Cu/TiO2 (001 + 101) (18.95 μmol g-1 h-1 and 69.6%, respectively), and Cu/TiO2 (101) (14.73 μmol g-1 h-1 and 78.9%, respectively). The results of experimental and theoretical calculations demonstrate that the Cu doping dominating the promoted separation and migration efficiencies of photogenerated charges and the preferential adsorption on (001) facets synergistically contribute to the selective reduction of CO2 to CH4. This work highlights the significance of synergy between facet engineering and ion doping in the design of high-performance photocatalysts with respect to selective reduction of CO2 to multielectron products.
Collapse
Affiliation(s)
- Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qin Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Yimeng Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhangjiang 212013, China
| | - Qiong Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qianjin Ye
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhangjiang 212013, China
| | - Ran Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhangjiang 212013, China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhangjiang 212013, China
| |
Collapse
|
7
|
Yuan H, Yu Y, Yang S, Lei Q, Yang Z, Lan B, Han Z. Photocatalytic CO 2 reduction with iron porphyrin catalysts and anthraquinone dyes. Chem Commun (Camb) 2024; 60:6292-6295. [PMID: 38809528 DOI: 10.1039/d4cc01950d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Herein we studied visible-light-driven CO2 reduction using a series of tetra-phenylporphyrin iron catalysts and inexpensive anthraquinone dyes. Varying the functional groups on the phenyl moieties of the catalysts significantly enhances the photocatalytic activity, achieving an optimal turnover number (TON) of 10 476 and a selectivity of 100% in the noble-metal-free systems. The highest activity found in a bromo-substituted catalyst is attributed to favorable electron transfer from the photosensitizer to the iron porphyrin.
Collapse
Affiliation(s)
- Huiqing Yuan
- School of Chemistry and Environment, Jiaying University, Meizhou, Guangdong 514015, China.
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yuanhai Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shuang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qinqin Lei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhiwei Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Bang Lan
- School of Chemistry and Environment, Jiaying University, Meizhou, Guangdong 514015, China.
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
8
|
Wang D, Hu W, Liu C, Huang J, Zhang X. Electronic Tuning of Photoexcited Dynamics in Heteroleptic Cu(I) Complex Photosensitizers. J Phys Chem Lett 2023; 14:10137-10144. [PMID: 37922426 DOI: 10.1021/acs.jpclett.3c02503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Photoexcited dynamics of heteroleptic Cu(I) complexes as noble-metal-free photosensitizers are closely intertwined with the nature of their ligands. By utilizing ultrafast optical and X-ray transient absorption spectroscopies, we characterized a new set of heteroleptic Cu(I) complexes [Cu(PPh3)2(BPyR)]+ (R = CH3, H, Br to COOCH3), with an increase in the electron-withdrawing ability of the functional group (R). We found that after the transient photooxidation of Cu(I) to Cu(II), the increasing electron-withdrawing ability of R barely affects the internal conversion (IC) (e.g., Jahn-taller (JT) distortion) between singlet MLCT states. However, it does accelerate the dynamics of intersystem crossing (ISC) between singlet and triplet MLCT states and the subsequent decay from the triplet MLCT state to the ground state. The associated lifetime constants are reduced by up to 300%. Our understanding of the photoexcited dynamics in heteroleptic Cu(I) complexes through ligand electronic tuning provides valuable insight into the rational design of efficient Cu(I) complex photosensitizers.
Collapse
Affiliation(s)
- Denan Wang
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Wenhui Hu
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
- Department of Chemistry and Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| |
Collapse
|
9
|
Xie ZL, Gupta N, Niklas J, Poluektov OG, Lynch VM, Glusac KD, Mulfort KL. Photochemical charge accumulation in a heteroleptic copper(i)-anthraquinone molecular dyad via proton-coupled electron transfer. Chem Sci 2023; 14:10219-10235. [PMID: 37772110 PMCID: PMC10529959 DOI: 10.1039/d3sc03428c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023] Open
Abstract
Developing efficient photocatalysts that perform multi electron redox reactions is critical to achieving solar energy conversion. One can reach this goal by developing systems which mimic natural photosynthesis and exploit strategies such as proton-coupled electron transfer (PCET) to achieve photochemical charge accumulation. We report herein a heteroleptic Cu(i)bis(phenanthroline) complex, Cu-AnQ, featuring a fused phenazine-anthraquinone moiety that photochemically accumulates two electrons in the anthraquinone unit via PCET. Full spectroscopic and electrochemical analyses allowed us to identify the reduced species and revealed that up to three electrons can be accumulated in the phenazine-anthraquinone ring system under electrochemical conditions. Continuous photolysis of Cu-AnQ in the presence of sacrificial electron donor produced doubly reduced monoprotonated photoproduct confirmed unambiguously by X-ray crystallography. Formation of this photoproduct indicates that a PCET process occurred during illumination and two electrons were accumulated in the system. The role of the heteroleptic Cu(i)bis(phenanthroline) moiety participating in the photochemical charge accumulation as a light absorber was evidenced by comparing the photolysis of Cu-AnQ and the free AnQ ligand with less reductive triethylamine as a sacrificial electron donor, in which photogenerated doubly reduced species was observed with Cu-AnQ, but not with the free ligand. The thermodynamic properties of Cu-AnQ were examined by DFT which mapped the probable reaction pathway for photochemical charge accumulation and the capacity for solar energy stored in the process. This study presents a unique system built on earth-abundant transition metal complex to store electrons, and tune the storage of solar energy by the degree of protonation of the electron acceptor.
Collapse
Affiliation(s)
- Zhu-Lin Xie
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | - Nikita Gupta
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
- Department of Chemistry, University of Illinois at Chicago USA
| | - Jens Niklas
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | - Oleg G Poluektov
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | | | - Ksenija D Glusac
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
- Department of Chemistry, University of Illinois at Chicago USA
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| |
Collapse
|
10
|
Bürgin T, Ogawa T, Wenger OS. Better Covalent Connection in a Molecular Triad Enables More Efficient Photochemical Energy Storage. Inorg Chem 2023; 62:13597-13607. [PMID: 37562775 PMCID: PMC10445269 DOI: 10.1021/acs.inorgchem.3c02008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Indexed: 08/12/2023]
Abstract
Numerous studies have explored the kinetics of light-induced charge separation and thermal charge recombination in donor-acceptor compounds, but quantum efficiencies have rarely been investigated. Here, we report on two essentially isomeric molecular triads, both comprising a π-extended tetrathiafulvalene (ExTTF) donor, a ruthenium(II)-based photosensitizer, and a naphthalene diimide (NDI) acceptor. The key difference between the two triads is how the NDI acceptor is connected. Linkage at the NDI core provides stronger electronic coupling to the other molecular components than connection via the nitrogen atoms of NDI. This change in molecular connectivity is expected to accelerate both energy-storing charge separation and energy-wasting charge recombination processes, but it is not a priori clear how this will affect the triad's ability to store photochemical energy; any gain resulting from faster charge separation could potentially be (over)compensated by losses through accelerated charge recombination. The new key insight emerging from our study is that the quantum yield for the formation of a long-lived charge-separated state increases by a factor of 5 when going from nitrogen- to core-connected NDI, providing the important proof of concept that better molecular connectivity indeed enables more efficient photochemical energy storage. The physical origin of this behavior seems to root in different orbital connectivity pathways for charge separation and charge recombination, as well as in differences in the relevant orbital interactions depending on NDI connection. Our work provides guidelines for how to discriminate between energy-storing and energy-wasting electron transfer reactions in order to improve the quantum yields for photochemical energy storage and solar energy conversion.
Collapse
Affiliation(s)
- Tobias
H. Bürgin
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Tomohiro Ogawa
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
- Graduate
School of Science and Engineering, University
of Toyama, Toyama 930-8555, Japan
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| |
Collapse
|
11
|
Lin W, Lin J, Zhang X, Zhang L, Borse RA, Wang Y. Decoupled Artificial Photosynthesis via a Catalysis-Redox Coupled COF||BiVO 4 Photoelectrochemical Device. J Am Chem Soc 2023; 145:18141-18147. [PMID: 37549025 DOI: 10.1021/jacs.3c06687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Artificial photosynthesis is an attractive approach to direct fuel production from sunlight. However, the simultaneous O2 evolution reaction (OER) and CO2 reduction reaction (CDRR) present challenges for product separation and safety. Herein, we propose a strategy to temporally decouple artificial photosynthesis through photoelectrochemical energy storage. We utilized a covalent organic framework (DTCo-COF) with redox-active electron donors (-C-OH moieties) and catalytically active electron acceptors (cobalt-porphyrin) to enable reversible -C-OH/-C═O redox reaction and redox-promoted CO2-to-CO photoreduction. Integrating the COF photocathode with an OER photoanode in a photoelectrochemical device allows the effective storage of OER-generated electrons and protons by -C═O groups. These stored charges can be later employed for CDRR while regenerating -C═O to complete the loop, thus enabling on-demand and separate production of O2 or solar fuels. Our work sets the stage for advancements in decoupled artificial photosynthesis and the development of more efficient solar fuel production technologies.
Collapse
Affiliation(s)
- Wan Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Xiang Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Linlin Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Rahul Anil Borse
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
12
|
Dey A, Ghorai N, Das A, Ghosh HN. Effects of hydrogen bonding on intramolecular/intermolecular proton-coupled electron transfer using a Ruthenium-anthraquinone dyad in ultrafast time domain. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
13
|
Suremann NF, McCarthy BD, Gschwind W, Kumar A, Johnson BA, Hammarström L, Ott S. Molecular Catalysis of Energy Relevance in Metal-Organic Frameworks: From Higher Coordination Sphere to System Effects. Chem Rev 2023; 123:6545-6611. [PMID: 37184577 DOI: 10.1021/acs.chemrev.2c00587] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The modularity and synthetic flexibility of metal-organic frameworks (MOFs) have provoked analogies with enzymes, and even the term MOFzymes has been coined. In this review, we focus on molecular catalysis of energy relevance in MOFs, more specifically water oxidation, oxygen and carbon dioxide reduction, as well as hydrogen evolution in context of the MOF-enzyme analogy. Similar to enzymes, catalyst encapsulation in MOFs leads to structural stabilization under turnover conditions, while catalyst motifs that are synthetically out of reach in a homogeneous solution phase may be attainable as secondary building units in MOFs. Exploring the unique synthetic possibilities in MOFs, specific groups in the second and third coordination sphere around the catalytic active site have been incorporated to facilitate catalysis. A key difference between enzymes and MOFs is the fact that active site concentrations in the latter are often considerably higher, leading to charge and mass transport limitations in MOFs that are more severe than those in enzymes. High catalyst concentrations also put a limit on the distance between catalysts, and thus the available space for higher coordination sphere engineering. As transport is important for MOF-borne catalysis, a system perspective is chosen to highlight concepts that address the issue. A detailed section on transport and light-driven reactivity sets the stage for a concise review of the currently available literature on utilizing principles from Nature and system design for the preparation of catalytic MOF-based materials.
Collapse
Affiliation(s)
- Nina F Suremann
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Brian D McCarthy
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Wanja Gschwind
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Amol Kumar
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
- Technical University Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Uferstraße 53, 94315 Straubing, Germany
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
14
|
Photocatalytic CO 2 reduction with aminoanthraquinone organic dyes. Nat Commun 2023; 14:1087. [PMID: 36841825 PMCID: PMC9968311 DOI: 10.1038/s41467-023-36784-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/14/2023] [Indexed: 02/27/2023] Open
Abstract
The direct utilization of solar energy to convert CO2 into renewable chemicals remains a challenge. One essential difficulty is the development of efficient and inexpensive light-absorbers. Here we show a series of aminoanthraquinone organic dyes to promote the efficiency for visible light-driven CO2 reduction to CO when coupled with an Fe porphyrin catalyst. Importantly, high turnover numbers can be obtained for both the photosensitizer and the catalyst, which has not been achieved in current light-driven systems. Structure-function study performed with substituents having distinct electronic effects reveals that the built-in donor-acceptor property of the photosensitizer significantly promotes the photocatalytic activity. We anticipate this study gives insight into the continued development of advanced photocatalysts for solar energy conversion.
Collapse
|
15
|
Matsubara Y, Ishitani O. Photochemical formation of hydride using transition metal complexes and its application to photocatalytic reduction of the coenzyme NAD(P)+ and its model compounds. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Schmid L, Fokin I, Brändlin M, Wagner D, Siewert I, Wenger OS. Accumulation of Four Electrons on a Terphenyl (Bis)disulfide. Chemistry 2022; 28:e202202386. [PMID: 36351246 PMCID: PMC10098965 DOI: 10.1002/chem.202202386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/11/2022]
Abstract
The activation of N2 , CO2 or H2 O to energy-rich products relies on multi-electron transfer reactions, and consequently it seems desirable to understand the basics of light-driven accumulation of multiple redox equivalents. Most of the previously reported molecular acceptors merely allow the storage of up to two electrons. We report on a terphenyl compound including two disulfide bridges, which undergoes four-electron reduction in two separate electrochemical steps, aided by a combination of potential compression and inversion. Under visible-light irradiation using the organic super-electron donor tetrakis(dimethylamino)ethylene, a cascade of light-induced reaction steps is observed, leading to the cleavage of both disulfide bonds. Whereas one of them undergoes extrusion of sulfur to result in a thiophene, the other disulfide is converted to a dithiolate. These insights seem relevant to enhance the current fundamental understanding of photochemical energy storage.
Collapse
Affiliation(s)
- Lucius Schmid
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Igor Fokin
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Mathis Brändlin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Dorothee Wagner
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Inke Siewert
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
17
|
Ming M, Yuan H, Yang S, Wei Z, Lei Q, Lei J, Han Z. Efficient Red-Light-Driven Hydrogen Evolution with an Anthraquinone Organic Dye. J Am Chem Soc 2022; 144:19680-19684. [PMID: 36260355 DOI: 10.1021/jacs.2c08171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The direct utilization of the full solar spectrum to obtain renewable fuels remains a challenge because the conversion of the low-energy light (red and near-infrared) is difficult. Current light-driven systems show activity for hydrogen generation with the high-energy part of sunlight. Here we report the use of a simple anthraquinone organic dye in an artificial photosynthetic system that promotes efficient red-light-driven production of hydrogen. The system contains no noble metal and exhibits a turnover number greater than 0.78 million and a quantum yield of 30.6% at 630 nm. A mechanistic study revealed that the excited-state and redox properties of the chromophore are critical to achieving high activity and stability.
Collapse
Affiliation(s)
- Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zuting Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinqin Lei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingxiang Lei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
18
|
Zhou Y, Ye Q, Shi X, Zhang Q, Song Q, Zhou C, Li D, Jiang D. Ni 3B as p-Block Element-Modulated Cocatalyst for Efficient Photocatalytic CO 2 Reduction. Inorg Chem 2022; 61:17268-17277. [PMID: 36259672 DOI: 10.1021/acs.inorgchem.2c02850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to the multiple electron and proton transfer processes involved, the photogenerated charges are easily recombined during the photocatalytic reduction of CO2, making the generation of the eight-electron product CH4 kinetically more difficult. Herein, Ni3B nanoparticles modulated by p-block element were combined with TiO2 nanosheets to construct a novel Schottky junction photocatalyst (Ni3B/TiO2) for the selective photocatalytic conversion of CO2 to CH4. The formed Ni3B/TiO2 photocatalyst with Schottky junction ensures a transfer pathway of photogenerated electrons from TiO2 to Ni3B, which facilitates the accumulation of electrons on the surface of Ni3B and subsequently improves the activity of photocatalytic CO2 reduction to CH4. The optimized Ni3B/TiO2 Schottky junction shows an improved CH4 yield of 30.03 μmol g-1 h-1, which was much higher than those of TiO2 (1.62 μmol g-1 h-1), NiO/TiO2 (2.44 μmol g-1 h-1), and Ni/TiO2 (4.3 μmol g-1 h-1). This work demonstrated that the introduction of p-block elements can alleviate the scaling relationship effect of pure metal cocatalysts to a certain extent, and the modified Ni3B can be used as a promising new cocatalyst to effectively improve the selective photocatalytic of CO2 to CH4.
Collapse
Affiliation(s)
- Yimeng Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianjin Ye
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangli Shi
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qiong Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qi Song
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changjian Zhou
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
19
|
Recent Advances in Metal-Based Molecular Photosensitizers for Artificial Photosynthesis. Catalysts 2022. [DOI: 10.3390/catal12080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Artificial photosynthesis (AP) has been extensively applied in energy conversion and environment pollutants treatment. Considering the urgent demand for clean energy for human society, many researchers have endeavored to develop materials for AP. Among the materials for AP, photosensitizers play a critical role in light absorption and charge separation. Due to the fact of their excellent tunability and performance, metal-based complexes stand out from many photocatalysis photosensitizers. In this review, the evaluation parameters for photosensitizers are first summarized and then the recent developments in molecular photosensitizers based on transition metal complexes are presented. The photosensitizers in this review are divided into two categories: noble-metal-based and noble-metal-free complexes. The subcategories for each type of photosensitizer in this review are organized by element, focusing first on ruthenium, iridium, and rhenium and then on manganese, iron, and copper. Various examples of recently developed photosensitizers are also presented.
Collapse
|
20
|
Müller C, Schwab A, Randell NM, Kupfer S, Dietzek‐Ivanšić B, Chavarot‐Kerlidou M. A Combined Spectroscopic and Theoretical Study on a Ruthenium Complex Featuring a π-Extended dppz Ligand for Light-Driven Accumulation of Multiple Reducing Equivalents. Chemistry 2022; 28:e202103882. [PMID: 35261087 PMCID: PMC9311760 DOI: 10.1002/chem.202103882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/10/2022]
Abstract
The design of photoactive systems capable of storing and relaying multiple electrons is highly demanded in the field of artificial photosynthesis, where transformations of interest rely on multielectronic redox processes. The photophysical properties of the ruthenium photosensitizer [(bpy)2 Ru(oxim-dppqp)]2+ (Ru), storing two electrons coupled to two protons on the π-extended oxim-dppqp ligand under light-driven conditions, are investigated by means of excitation wavelength-dependent resonance Raman and transient absorption spectroscopies, in combination with time-dependent density functional theory; the results are discussed in comparison to the parent [(bpy)2 Ru(dppz)]2+ and [(bpy)2 Ru(oxo-dppqp)]2+ complexes. In addition, this study provides in-depth insights on the impact of protonation or of accumulation of multiple reducing equivalents on the reactive excited states.
Collapse
Affiliation(s)
- Carolin Müller
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Research Department Functional InterfacesLeibniz Institute of Photonic Technology JenaAlbert-Einstein-Straße 907745JenaGermany
| | - Alexander Schwab
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Nicholas M. Randell
- Univ. Grenoble AlpesCNRS, CEA, IRIGLaboratoire de Chimie et Biologie des Métaux17 rue des MartyrsF-38000GrenobleFrance
| | - Stephan Kupfer
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Benjamin Dietzek‐Ivanšić
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Research Department Functional InterfacesLeibniz Institute of Photonic Technology JenaAlbert-Einstein-Straße 907745JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaLessingstraße 807743JenaGermany
| | - Murielle Chavarot‐Kerlidou
- Univ. Grenoble AlpesCNRS, CEA, IRIGLaboratoire de Chimie et Biologie des Métaux17 rue des MartyrsF-38000GrenobleFrance
| |
Collapse
|
21
|
Bürgin T, Wenger OS. Recent Advances and Perspectives in Photodriven Charge Accumulation in Molecular Compounds: A Mini Review. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2021; 35:18848-18856. [PMID: 35873109 PMCID: PMC9302442 DOI: 10.1021/acs.energyfuels.1c02073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The formation of so-called solar fuels from abundant low-energetic compounds, such as carbon dioxide or water, relies on the chemical elementary steps of photoinduced electron transfer and accumulation of multiple redox equivalents. The majority of molecular systems explored to date require sacrificial electron donors to accumulate multiple electrons on a single acceptor unit, but the use of high-energetic sacrificial redox reagents is unsustainable. In recent years, an increasing number of molecular compounds for reversible light-driven accumulation of redox equivalents that do not need sacrificial electron donors has been reported. Those compounds are the focus of this mini review. Different concepts, such as redox potential compression (achieved by proton-coupled electron transfer, Lewis acid-base interactions, or structural rearrangements), hybrids with inorganic nanoparticles, and diffusion-controlled multi-component systems, will be discussed. Newly developed strategies to outcompete unproductive reaction pathways in favor of desired photoproduct formation will be compared, and the importance of identifying reaction intermediates in the course of multiphotonic excitation by different time-resolved spectroscopic techniques will be discussed. The mechanistic insights gained from molecular donor-photosensitizer-acceptor compounds inform the design of next-generation charge accumulation systems for solar energy conversion.
Collapse
Affiliation(s)
- Tobias
H. Bürgin
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
22
|
Thum MD, Hong D, Zeppuhar AN, Falvey DE. Visible-Light Photocatalytic Oxidation of DMSO for RAFT Polymerization †. Photochem Photobiol 2021; 97:1335-1342. [PMID: 34129686 DOI: 10.1111/php.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022]
Abstract
The solvent is an important, yet often forgotten part of a reaction mechanism. Many photochemical polymerizations are carried out using dimethyl sulfoxide (DMSO) as a way to promote the solubility of both the reactants and products, but its reactivity is rarely considered when initiation mechanisms are proposed. Herein, the oxidation of DMSO by an excited-state quinone is used to form initiating radicals resulting in the polymerization of methacrylate monomers, and the polymerization can be controlled with the addition of a chain transfer agent. This process leads to the formation of polymers with narrow molecular weight distribution, and the polymerization is able to be carried out in the presence of oxygen. A visible light absorbing substituted anthraquinone is synthesized, and nanosecond transient absorption spectroscopy is used to monitor the intermediates involved in the initiation mechanism. Photoproduct analysis indicates formation of methyl radicals as a result of DMSO oxidation. Furthermore, we show that the solvent outcompetes the chain transfer agent for interacting with the excited-state anthraquinone. These observations have a broad impact on photoinduced polymerizations performed in DMSO as many photocatalysts are strong oxidants in the excited state and are capable of reacting with the solvent. Therefore, the role of the solvent needs to be more carefully considered when proposing mechanisms for photoinduced polymerizations in DMSO.
Collapse
Affiliation(s)
- Matthew D Thum
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD
| | - Donald Hong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD
| | - Andrea N Zeppuhar
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD
| | - Daniel E Falvey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD
| |
Collapse
|
23
|
Benazzi E, Karlsson J, Ben M'Barek Y, Chabera P, Blanchard S, Alves S, Proust A, Pullerits T, Izzet G, Gibson EA. Acid-triggering of light-induced charge-separation in hybrid organic/inorganic molecular photoactive dyads for harnessing solar energy. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01368d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
H+ modulated charge-transfer in photoexcited covalently linked W and Mo Keggin-bodipy conjugates is demonstrated using transient absorption spectroscopy and photoluminescence. Adding acid switches on (W) or accelerates (Mo) charge separation.
Collapse
|
24
|
Dey A, Ghorai N, Das A, Ghosh HN. Proton-Coupled Electron Transfer for Photoinduced Generation of Two-Electron Reduced Species of Quinone. J Phys Chem B 2020; 124:11165-11174. [PMID: 33241933 DOI: 10.1021/acs.jpcb.0c07809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose-built molecules that follow the fundamental process of photosynthesis have significance in developing better insight into the natural photosynthesis process. Quinones have a significant role as electron acceptors in natural photosynthesis, and their reduction is assisted through H-bond donation or protonation. The major challenge in such studies is to couple the multielectron and proton-transfer process and to achieve a reasonably stable charge-separated state for the elucidation of the mechanistic pathway. We have tried to address this issue through the design of a donor-acceptor-donor molecular triad (2RuAQ) derived from two equivalent [Ru(bpy)3]2+ derivatives and a bridging anthraquinone moiety (AQ). Photoinduced proton-coupled electron transfer (PCET) for this molecular triad was systematically investigated in the absence and presence of hexafluoroisopropanol and p-toluenesulfonic acid (PTSA) using time-resolved absorption spectroscopy in the ultrafast time domain. Results reveal the generation of a relatively long-lived charge-separated state in this multi-electron transfer reaction, and we could confirm the generation of AQ2- and RuIII as the transient intermediates. We could rationalize the mechanistic pathway and the dynamics associated with photoinduced processes and the role of H-bonding in stabilizing charge-separated states. Transient absorption spectroscopic studies reveal that the rates of intramolecular electron transfer and the mechanistic pathways associated with the PCET process are significantly different in different solvent compositions having different polarities. In acetonitrile, a concerted PCET mechanism prevails, whereas the stepwise PCET reaction process is observed in the presence of PTSA. The results of the present study represent a unique model for the mechanistic diversity of PCET reactions.
Collapse
Affiliation(s)
- Ananta Dey
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364 002, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Nandan Ghorai
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Amitava Das
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India.,Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
25
|
Chowdhury B, Sinha S, Dutta R, Mondal S, Karmakar S, Ghosh P. Discriminative Behavior of a Donor-Acceptor-Donor Triad toward Cyanide and Fluoride: Insights into the Mechanism of Naphthalene Diimide Reduction by Cyanide and Fluoride. Inorg Chem 2020; 59:13371-13382. [PMID: 32870665 DOI: 10.1021/acs.inorgchem.0c01738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new molecular donor-acceptor-donor (D-A-D) triad, comprised of an electron deficient 1,4,5,8-naphthalene tetracarboxylic diimide (NDI) unit covalently connected to two flanking photosensitizers, i.e., a bis-heteroleptic Ru(II) complex of 1,10-phenanthroline and pyridine triazole hybrid ligand, is described. The single crystal X-ray structure of the perchlorate salt of the triad demonstrates that the electron deficient NDI unit can act as a host for anions via anion-π interaction. Detailed solution-state studies indicate that fluoride selectively interacts with the D-A-D triad to form a dianionic NDI, NDI2-, via a radical anion, NDI•-. On the contrary, cyanide reduces the NDI moiety to NDI•-, as confirmed by UV-vis, NMR, and EPR spectroscopy. Further, femtosecond transient absorption spectroscopic studies reveal a low luminescence quantum yield of the D-A-D triad attributable to the photoinduced electron transfer (PET) process from the photoactive Ru(II) center to the NDI unit. Interestingly, the triad displays "OFF-ON" luminescence behavior in the presence of fluoride by restoring the Ru(II) to phenanthroline/pyridine-triazole-based MLCT emission, whereas cyanide fails to show a similar property due to a different redox process operational in the latter. The reduction of NDI in the presence of fluoride and cyanide in different polar solvents indicates that involvement of such deprotonated solvents in the electron transfer mechanism may not be operative in our present system. Low-temperature kinetic studies support the formation of a charge transfer associative transient species, which likely allows overcoming the thermodynamically uphill barrier for the direct electron transfer mechanism.
Collapse
Affiliation(s)
- Bijit Chowdhury
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Sanghamitra Sinha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Ranjan Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Sahidul Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Shreetama Karmakar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road Colaba, Mumbai 400005, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India
| |
Collapse
|
26
|
Luo Y, Maloul S, Wächtler M, Winter A, Schubert US, Streb C, Dietzek B. Is electron ping-pong limiting the catalytic hydrogen evolution activity in covalent photosensitizer-polyoxometalate dyads? Chem Commun (Camb) 2020; 56:10485-10488. [PMID: 32766633 DOI: 10.1039/d0cc04509h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Understanding the limitations of catalytic processes enables the design of optimized catalysts. Here, femtosecond transient absorption spectroelectrochemistry is used to explore the photophysics of polyoxometalate-based covalent photosensitizer-hydrogen evolution catalyst dyads. The study shows that the presence of light-driven forward and backward electron transfer, i.e. "electron ping-pong", is a limiting factor for charge accumulation on the polyoxometalate. Based on this insight, chemical means of optimizing catalyst performance are proposed.
Collapse
Affiliation(s)
- Yusen Luo
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany and Department Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany.
| | - Salam Maloul
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Maria Wächtler
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany and Department Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany.
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany and Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany and Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany and Department Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany. and Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
27
|
Glaser F, Kerzig C, Wenger OS. Multiphotonen‐Anregung in der Photoredoxkatalyse: Konzepte, Anwendungen und Methoden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915762] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Felix Glaser
- Departement Chemie Universität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Christoph Kerzig
- Departement Chemie Universität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Oliver S. Wenger
- Departement Chemie Universität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| |
Collapse
|
28
|
Glaser F, Kerzig C, Wenger OS. Multi-Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods. Angew Chem Int Ed Engl 2020; 59:10266-10284. [PMID: 31945241 DOI: 10.1002/anie.201915762] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/16/2020] [Indexed: 01/28/2023]
Abstract
The energy of visible photons and the accessible redox potentials of common photocatalysts set thermodynamic limits to photochemical reactions that can be driven by traditional visible-light irradiation. UV excitation can be damaging and induce side reactions, hence visible or even near-IR light is usually preferable. Thus, photochemistry currently faces two divergent challenges, namely the desire to perform ever more thermodynamically demanding reactions with increasingly lower photon energies. The pooling of two low-energy photons can address both challenges simultaneously, and whilst multi-photon spectroscopy is well established, synthetic photoredox chemistry has only recently started to exploit multi-photon processes on the preparative scale. Herein, we have a critical look at currently developed reactions and mechanistic concepts, discuss pertinent experimental methods, and provide an outlook into possible future developments of this rapidly emerging area.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
29
|
Hua SA, Cattaneo M, Oelschlegel M, Heindl M, Schmid L, Dechert S, Wenger OS, Siewert I, González L, Meyer F. Electrochemical and Photophysical Properties of Ruthenium(II) Complexes Equipped with Sulfurated Bipyridine Ligands. Inorg Chem 2020; 59:4972-4984. [PMID: 32142275 DOI: 10.1021/acs.inorgchem.0c00220] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of new solar-to-fuel scenarios is of great importance, but the construction of molecular systems that convert sunlight into chemical energy represents a challenge. One specific issue is that the molecular systems have to be able to accumulate redox equivalents to mediate the photodriven transformation of relevant small molecules, which mostly involves the orchestrated transfer of multiple electrons and protons. Disulfide/dithiol interconversions are prominent 2e-/2H+ couples and can play an important role for redox control and charge storage. With this background in mind, a new photosensitizer [Ru(S-Sbpy)(bpy)2]2+ (12+) equipped with a disulfide functionalized bpy ligand (S-Sbpy, bpy = 2,2'-bipyridine) was synthesized and has been comprehensively studied, including structural characterization by X-ray diffraction. In-depth electrochemical studies show that the S-Sbpy ligand in 12+ can be reduced twice at moderate potentials (around -1.1 V vs Fc+/0), and simulation of the cyclic voltammetry (CV) traces revealed potential inversion (E2 > E1) and allowed to derive kinetic parameters for the sequential electron-transfer processes. However, reduction at room temperature also triggers the ejection of one sulfur atom from 12+, leading to the formation of [Ru(Sbpy)(bpy)2]2+(22+). This chemical reaction can be suppressed by decreasing the temperature from 298 to 248 K. Compared to the archetypical photosensitizer [Ru(bpy)3]2+, 12+ features an additional low energy optical excitation in the MLCT region, originating from charge transfer from the metal center to the S-Sbpy ligand (aka MSCT) according to time-dependent density functional theory (TD-DFT) calculations. Analysis of the excited states of 12+ on the basis of ground-state Wigner sampling and using charge-transfer descriptors has shown that bpy modification with a peripheral disulfide moiety leads to an energy splitting between charge-transfer excitations to the S-Sbpy and the bpy ligands, offering the possibility of selective charge transfer from the metal to either type of ligands. Compound 12+ is photostable and shows an emission from a 3MLCT state in deoxygenated acetonitrile with a lifetime of 109 ns. This work demonstrates a rationally designed system that enables future studies of photoinduced multielectron, multiproton PCET chemistry.
Collapse
Affiliation(s)
- Shao-An Hua
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Mauricio Cattaneo
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Manuel Oelschlegel
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Moritz Heindl
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Lucius Schmid
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Sebastian Dechert
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Inke Siewert
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Franc Meyer
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
30
|
Kumar G, Paul K, Luxami V. Deciphering the excited state intramolecular charge-coupled double proton transfer in an asymmetric quinoline–benzimidazole system. NEW J CHEM 2020. [DOI: 10.1039/d0nj01651a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetrical H-bonding responsible for charge coupled-excited state intramolecular double proton transfer.
Collapse
Affiliation(s)
- Gulshan Kumar
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology
- Patiala-147001
- India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology
- Patiala-147001
- India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology
- Patiala-147001
- India
| |
Collapse
|
31
|
Wu T, Zhu C, Han D, Kang Z, Niu L. Highly selective conversion of CO 2 to C 2H 6 on graphene modified chlorophyll Cu through multi-electron process for artificial photosynthesis. NANOSCALE 2019; 11:22980-22988. [PMID: 31769773 DOI: 10.1039/c9nr07824j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Artificial photosynthesis is a promising strategy for converting carbon dioxide into hydrocarbon fuels through solar energy as it is clean, economical and environmentally friendly. Herein, we developed a selective and stable photocatalyst for CO2 photocatalytic reduction into C2H6 through a multi-electron transfer pathway without the external sacrificial regents. The core component of this composite catalyst was extracted from a silkworm excrement and modified to make chlorophyll Cu (Chl-Cu), which contained a porphyrin structure as an antenna for light absorption and a Cu cation as an active centre. We found that C2 hydrocarbons such as C2H2, C2H4, and C2H6 tended to generate on chlorophyll-a/graphene. After substituting Mg2+ with Cu2+ cations in the centre of the porphyrin and modifying with graphene, only C2H6 was detected in the 18 hours reaction. This photocatalyst presented an outstanding activity and selectivity for the photocatalytic CO2 reduction (CO2RR) with a C2H6 yield rate at 68.23 μmol m-2 h-1 under visible light irradiation and an apparent quantum efficiency of 1.26% at 420 nm. In this system, the porphyrin rings were excited to produce electron-hole pairs by light. The photo-induced holes oxidized water to produce oxygen while graphene worked as an adsorption centre and electron acceptor for the CO2 reduction.
Collapse
Affiliation(s)
- Tongshun Wu
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China.
| | - Cheng Zhu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.
| | - Dongxue Han
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China. and State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.
| | - Li Niu
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China. and State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| |
Collapse
|
32
|
|
33
|
Skaisgirski M, Larsen CB, Kerzig C, Wenger OS. Stepwise Photoinduced Electron Transfer in a Tetrathiafulvalene‐Phenothiazine‐Ruthenium Triad. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Skaisgirski
- Department of Chemistry University of Basel St. Johanns‐Ring 19 4056 Basel Switzerland
| | - Christopher B. Larsen
- Department of Chemistry University of Basel St. Johanns‐Ring 19 4056 Basel Switzerland
| | - Christoph Kerzig
- Department of Chemistry University of Basel St. Johanns‐Ring 19 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel St. Johanns‐Ring 19 4056 Basel Switzerland
| |
Collapse
|
34
|
Randell NM, Rendon J, Demeunynck M, Bayle P, Gambarelli S, Artero V, Mouesca J, Chavarot‐Kerlidou M. Tuning the Electron Storage Potential of a Charge‐Photoaccumulating Ru
II
Complex by a DFT‐Guided Approach. Chemistry 2019; 25:13911-13920. [DOI: 10.1002/chem.201902312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/19/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Nicholas M. Randell
- Univ. Grenoble Alpes, CNRS, CEAIRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Julia Rendon
- Univ. Grenoble Alpes, CNRS, CEAIRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
- Univ. Grenoble Alpes, CEA, CNRSIRIG-DIESE-SyMMES-CAMPE 38000 Grenoble France
| | | | | | - Serge Gambarelli
- Univ. Grenoble Alpes, CEA, CNRSIRIG-DIESE-SyMMES-CAMPE 38000 Grenoble France
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEAIRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Jean‐Marie Mouesca
- Univ. Grenoble Alpes, CEA, CNRSIRIG-DIESE-SyMMES-CAMPE 38000 Grenoble France
| | | |
Collapse
|
35
|
Gu C, Nie X, Jiang J, Chen Z, Dong Y, Zhang X, Liu J, Yu Z, Zhu Z, Liu J, Liu X, Shao Y. Mechanistic Study of Oxygen Reduction at Liquid/Liquid Interfaces by Hybrid Ultramicroelectrodes and Mass Spectrometry. J Am Chem Soc 2019; 141:13212-13221. [PMID: 31353892 DOI: 10.1021/jacs.9b06299] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton-coupled electron transfer (PCET) reactions at various interfaces (liquid/membrane, solid/electrolyte, liquid/liquid) lie at the heart of many processes in biology and chemistry. Mechanistic study can provide profound understanding of PCET and rational design of new systems. However, most mechanisms of PCET reactions at a liquid/liquid interface have been proposed based on electrochemical and spectroscopic data, which lack direct evidence for possible intermediates. Moreover, a liquid/liquid interface as one type of soft interface is dynamic, making the investigation of interfacial reactions very challenging. Herein a novel electrochemistry method coupled to mass spectrometry (EC-MS) was introduced for in situ study of the oxygen reduction reaction (ORR) by ferrocene (Fc) under catalysis from cobalt tetraphenylporphine (CoTPP) at liquid/liquid interfaces. The key units are two types of gel hybrid ultramicroelectrodes (agar-gel/organic hybrid ultramicroelectrodes and water/PVC-gel hybrid ultramicroelectrodes), which were made based on dual micro- or nanopipettes. A solidified liquid/liquid interface can be formed at the tip of these pipettes, and it serves as both an electrochemical cell and a nanospray emitter for mass spectrometry. We demonstrated that the solidified L/L interfaces were very similar to typical L/L interfaces. Key CoTPP intermediates of the ORR at the liquid/liquid interfaces were identified for the first time, and the four-electron oxygen reduction pathway predominated, which provides valuable insights into the mechanism of the ORR. Theoretical simulation has further supported the possibility of formation of intermediates. This type of platform is promising for in situ tracking and identifying intermediates to study complicated reactions at liquid/liquid interfaces or other soft interfaces.
Collapse
Affiliation(s)
- Chaoyue Gu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xin Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jiezhang Jiang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zifei Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yifan Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xin Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Junjie Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences , Peking University Health Science Center , Beijing 100191 , China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
36
|
Pannwitz A, Wenger OS. Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis. Chem Commun (Camb) 2019; 55:4004-4014. [DOI: 10.1039/c9cc00821g] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Photoinduced PCET meets catalysis, and the accumulation of multiple redox equivalents is of key importance.
Collapse
Affiliation(s)
- Andrea Pannwitz
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | | |
Collapse
|
37
|
Pannwitz A, Wenger OS. Recent advances in bioinspired proton-coupled electron transfer. Dalton Trans 2019; 48:5861-5868. [DOI: 10.1039/c8dt04373f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fundamental aspects of PCET continue to attract attention. Understanding this reaction type is desirable for small-molecule activation and solar energy conversion.
Collapse
Affiliation(s)
- Andrea Pannwitz
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | | |
Collapse
|
38
|
Farran R, Le-Quang L, Mouesca JM, Maurel V, Jouvenot D, Loiseau F, Deronzier A, Chauvin J. [Cr(ttpy)2]3+ as a multi-electron reservoir for photoinduced charge accumulation. Dalton Trans 2019; 48:6800-6811. [PMID: 31033972 DOI: 10.1039/c9dt00848a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[Cr(ttpy)2]3+ (ttpy = 4'-(4-methylphenyl)-2,2':6,2''-terpyridine) exhibits rich electrochemical and photophysical properties. Cyclic voltammetry performed in CH3CN shows in the cathodic part the presence of three one-electron reversible systems at -0.47, -0.85 and -1.35 V vs. Ag/AgNO3 10-2 M. These systems are attributed to the reduction of the terpyridine ligands with a partial delocalization of the charge on the tolyl for the last reduction event. The three different reduced species were generated by exhaustive electrolysis and characterized by EPR and UV-visible spectroscopy; DFT calculations were performed to locate the spin density of the electrons added during the reduction. Visible light irradiation of [Cr(ttpy)2]3+ induces the population of a luminescent metal-centered excited state with a lifetime of 270 ns in deoxygenated CH3CN. This excited state can be quenched by an electron transfer process with triphenylphosphine (PPh3) or triethanolamine (TEOA). Using TEOA as a sacrificial electron donor, the doubly reduced species (i.e.[Cr(ttpy)2] +) can be generated under continuous irradiation. In the presence of [Ru(bpy)3]2+ as an additional photosensitizer, the photoreduction of [Cr(ttpy)2]3+ towards [Cr(ttpy)2]+ is accelerated. The trinuclear [{RuII(bpy)2(bpy-O-tpy)}2CrIII]7+ complex ([Ru2Cr]7+) in which a CrIII-bis-terpyridine centre is covalently linked to two RuII-tris-bipyridine moieties by oxo bridges has been synthesised. Its electrochemical, photophysical and photochemical properties were investigated in deoxygenated CH3CN. Cyclic voltammetry indicates only a poor electronic communication between the different subunits, whereas luminescence experiments show a strong quenching of the RuII* excited state by an intramolecular process. Continuous irradiation of [Ru2Cr]7+ under visible conditions in the presence of TEOA leads to [Ru2Cr]4+ where three electrons are stored on the [Cr(ttpy)] subunit.
Collapse
Affiliation(s)
- Rajaa Farran
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sampaio RN, Troian‐Gautier L, Meyer GJ. A Charge‐Separated State that Lives for Almost a Second at a Conductive Metal Oxide Interface. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Renato N. Sampaio
- Department of Chemistry University of North Carolina at Chapel Hill Murray Hall 2202B, 123 South Road 27599-3290 North Carolina USA
| | - Ludovic Troian‐Gautier
- Department of Chemistry University of North Carolina at Chapel Hill Murray Hall 2202B, 123 South Road 27599-3290 North Carolina USA
| | - Gerald J. Meyer
- Department of Chemistry University of North Carolina at Chapel Hill Murray Hall 2202B, 123 South Road 27599-3290 North Carolina USA
| |
Collapse
|
40
|
A Charge‐Separated State that Lives for Almost a Second at a Conductive Metal Oxide Interface. Angew Chem Int Ed Engl 2018; 57:15390-15394. [DOI: 10.1002/anie.201807627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/25/2018] [Indexed: 11/07/2022]
|
41
|
Yamamoto K, Call A, Sakai K. Photocatalytic H2Evolution Using a Ru Chromophore Tethered to Six Viologen Acceptors. Chemistry 2018; 24:16620-16629. [DOI: 10.1002/chem.201803662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Keiya Yamamoto
- Department of Chemistry; Faculty of Science; Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research; (WPI-I CNER); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Arnau Call
- International Institute for Carbon-Neutral Energy Research; (WPI-I CNER); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Ken Sakai
- Department of Chemistry; Faculty of Science; Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research; (WPI-I CNER); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
42
|
Nomrowski J, Guo X, Wenger OS. Charge Accumulation and Multi‐Electron Photoredox Chemistry with a Sensitizer–Catalyst–Sensitizer Triad. Chemistry 2018; 24:14084-14087. [DOI: 10.1002/chem.201804037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Julia Nomrowski
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Xingwei Guo
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
43
|
Ha-Thi MH, Pham VT, Pino T, Maslova V, Quaranta A, Lefumeux C, Leibl W, Aukauloo A. Photoinduced electron transfer in a molecular dyad by nanosecond pump-pump-probe spectroscopy. Photochem Photobiol Sci 2018; 17:903-909. [PMID: 29855023 DOI: 10.1039/c8pp00048d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of robust and inexpensive molecular photocatalysts for the conversion of abundant stable molecules like H2O and CO2 into an energetic carrier is one of the major fundamental questions for scientists nowadays. The outstanding challenge is to couple single photoinduced charge separation events with the sequential accumulation of redox equivalents at the catalytic unit for performing multielectronic catalytic reactions. Herein, double excitation by nanosecond pump-pump-probe experiments was used to interrogate the photoinduced charge transfer and charge accumulation on a molecular dyad composed of a porphyrin chromophore and a ruthenium-based catalyst in the presence of a reversible electron acceptor. An accumulative charge transfer state is unattainable because of rapid reverse electron transfer to the photosensitizer upon the second excitation and the low driving force of the forward photodriven electron transfer reaction. Such a method allows the fundamental understanding of the relaxation mechanism after two sequential photon absorptions, deciphering the undesired electron transfer reactions that limit the charge accumulation efficiency. This study is a step toward the improvement of synthetic strategies of molecular photocatalysts for light-induced charge accumulation and more generally, for solar energy conversion.
Collapse
Affiliation(s)
- M-H Ha-Thi
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Guo X, Okamoto Y, Schreier MR, Ward TR, Wenger OS. Enantioselective synthesis of amines by combining photoredox and enzymatic catalysis in a cyclic reaction network. Chem Sci 2018; 9:5052-5056. [PMID: 29938035 PMCID: PMC5994792 DOI: 10.1039/c8sc01561a] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/05/2018] [Indexed: 12/19/2022] Open
Abstract
Visible light-driven reduction of imines to enantioenriched amines in aqueous solution is demonstrated for the first time. Excitation of a new water-soluble variant of the widely used [Ir(ppy)3] (ppy = 2-phenylpyridine) photosensitizer in the presence of a cyclic imine affords a highly reactive α-amino alkyl radical that is intercepted by hydrogen atom transfer (HAT) from ascorbate or thiol donors to afford the corresponding amine. The enzyme monoamine oxidase (MAO-N-9) selectively catalyzes the oxidation of one of the enantiomers to the corresponding imine. Upon combining the photoredox and biocatalytic processes under continuous photo-irradiation, enantioenriched amines are obtained in excellent yields. To the best of our knowledge, this is the first demonstration of a concurrent photoredox- and enzymatic catalysis leading to a light-driven asymmetric synthesis of amines.
Collapse
Affiliation(s)
- Xingwei Guo
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Yasunori Okamoto
- Department of Chemistry , University of Basel , Mattenstrasse 24a, BPR 1096 , 4002 Basel , Switzerland .
| | - Mirjam R Schreier
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Thomas R Ward
- Department of Chemistry , University of Basel , Mattenstrasse 24a, BPR 1096 , 4002 Basel , Switzerland .
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| |
Collapse
|
45
|
Kim H, Keller B, Ho-Wu R, Abeyasinghe N, Vázquez RJ, Goodson T, Zimmerman PM. Enacting Two-Electron Transfer from a Double-Triplet State of Intramolecular Singlet Fission. J Am Chem Soc 2018; 140:7760-7763. [DOI: 10.1021/jacs.8b01884] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hyungjun Kim
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bradley Keller
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rosina Ho-Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Neranga Abeyasinghe
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ricardo J. Vázquez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
46
|
Nomrowski J, Wenger OS. Exploiting Potential Inversion for Photoinduced Multielectron Transfer and Accumulation of Redox Equivalents in a Molecular Heptad. J Am Chem Soc 2018; 140:5343-5346. [PMID: 29652485 DOI: 10.1021/jacs.8b02443] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoinduced multielectron transfer and reversible accumulation of redox equivalents is accomplished in a fully integrated molecular heptad composed of four donors, two photosensitizers, and one acceptor. The second reduction of the dibenzo[1,2]dithiin acceptor occurs more easily than the first by 1.3 V, and this potential inversion facilitates the light-driven formation of a two-electron reduced state with a lifetime of 66 ns in deaerated CH3CN. The quantum yield for formation of this doubly charge-separated photoproduct is 0.5%. In acidic oxygen-free solution, the reduction product is a stable dithiol. Under steady-state photoirradiation, our heptad catalyzes the two-electron reduction of an aliphatic disulfide via thiolate-disulfide interchange. Exploitation of potential inversion for the reversible light-driven accumulation of redox equivalents in artificial systems is unprecedented and the use of such a charge-accumulated state for multielectron photoredox catalysis represents an important proof-of-concept.
Collapse
Affiliation(s)
- Julia Nomrowski
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| |
Collapse
|
47
|
Thum MD, Falvey DE. Photoreleasable Protecting Groups Triggered by Sequential Two-Photon Absorption of Visible Light: Release of Carboxylic Acids from a Linked Anthraquinone-N-Alkylpicolinium Ester Molecule. J Phys Chem A 2018. [DOI: 10.1021/acs.jpca.8b00657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew D. Thum
- University of Maryland, College Park, Maryland 20742, United States
| | - Daniel E. Falvey
- University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
48
|
Tran TT, Ha-Thi MH, Pino T, Quaranta A, Lefumeux C, Leibl W, Aukauloo A. Snapshots of Light Induced Accumulation of Two Charges on Methylviologen using a Sequential Nanosecond Pump-Pump Photoexcitation. J Phys Chem Lett 2018; 9:1086-1091. [PMID: 29442519 DOI: 10.1021/acs.jpclett.8b00169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Methylviologen (MV2+) is perhaps the most used component as a reversible electron acceptor in photophysical studies. While MV2+ is most commonly implicated as a reversible one-electron mediator, its electrochemical properties clearly evidence two successive one-electron reduction processes. In this report, we have investigated on the light driven two-charge accumulation on MV2+ using a multicomponent system composed of the prototypical molecular photosensitizer [Ru(bpy)3]2+ and MV2+ in the presence of ascorbate as reversible electron donor. The sequential addition of two electrons on the methylviologen was tracked upon sequential excitation of the [Ru(bpy)3]2+ at optimized concentration of the electron acceptor. The charge accumulated state carries an energy of 0.9 eV above the ground state and has a lifetime of ca. 50 μs. We have reached a fairly good global yield of approximately 9% for the two-charge accumulation. This result clearly demonstrates the potential of this simple approach for applications in artificial photosynthesis.
Collapse
Affiliation(s)
- Thu-Trang Tran
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ Paris Sud, Université Paris-Saclay , F-91405 Orsay, France
| | - Minh-Huong Ha-Thi
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ Paris Sud, Université Paris-Saclay , F-91405 Orsay, France
| | - Thomas Pino
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ Paris Sud, Université Paris-Saclay , F-91405 Orsay, France
| | - Annamaria Quaranta
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRS, UMR 9198 , F-91191, Gif-sur-Yvette, France
| | - Christophe Lefumeux
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ Paris Sud, Université Paris-Saclay , F-91405 Orsay, France
| | - Winfried Leibl
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRS, UMR 9198 , F-91191, Gif-sur-Yvette, France
| | - Ally Aukauloo
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRS, UMR 9198 , F-91191, Gif-sur-Yvette, France
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris Sud, CNRS , F-91405 Orsay Cedex, France
| |
Collapse
|
49
|
Sundin E, Abrahamsson M. Long-lived charge separation in dye–semiconductor assemblies: a pathway to multi-electron transfer reactions. Chem Commun (Camb) 2018; 54:5289-5298. [DOI: 10.1039/c8cc01071d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Key approaches to achieve long-lived charge separation and promote conduction band mediated electron transfer in dye-sensitized semiconductor assemblies.
Collapse
Affiliation(s)
- Elin Sundin
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- 412 96 Gothenburg
- Sweden
| | - Maria Abrahamsson
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- 412 96 Gothenburg
- Sweden
| |
Collapse
|
50
|
Natali M, Amati A, Demitri N, Iengo E. Formation of a long-lived radical pair in a Sn(iv) porphyrin–di(l-tyrosinato) conjugate driven by proton-coupled electron-transfer. Chem Commun (Camb) 2018; 54:6148-6152. [DOI: 10.1039/c8cc03441a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A surprisingly long-lived radical pair state is achieved in a tin-porphyrin/l-tyrosine conjugate by exploiting a photochemical PCET quenching mechanism.
Collapse
Affiliation(s)
- Mirco Natali
- Department of Chemical and Pharmaceutical Sciences
- University of Ferrara and Centro Interuniversitario per la Conversione Chimica dell’Energia Solare (SOLARCHEM)
- 44121 Ferrara
- Italy
| | - Agnese Amati
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- 34127 Trieste
- Italy
| | - Nicola Demitri
- Elettra–Sincrotrone Trieste
- S.S. 14 Km 163.5 in Area Science Park
- 34149 Basovizza, Trieste
- Italy
| | - Elisabetta Iengo
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- 34127 Trieste
- Italy
| |
Collapse
|