1
|
Li J, Liu C, Han X, Tian M, Jiang B, Li W, Ou C, Dou N, Han Z, Ji T, Cao X, Zhong X, Zhang L. Supramolecular Electronics: Monolayer Assembly of Nonamphiphilic Molecules via Water Surface-Assisted Molecular Deposition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48438-48447. [PMID: 39109880 DOI: 10.1021/acsami.4c05552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Utilizing softly confined self-assembly at the water surface represents a promising approach for the fabrication of two-dimensional molecular monolayers (2D MMs), which have predominantly been concentrated on amphiphilic organic compounds before. Herein, we introduce a straightforward method termed "water surface-assisted molecular deposition (WSAMD)" to organize nonamphiphilic molecules into dense monolayers with high reproducibility. To underscore the versatility and merit of this methodology in the field of supramolecular electronics, we have successfully fabricated a range of defect-free, uniform semiconducting polymer monolayers, featuring a thickness reflective of molecular architectures. The charge carrier mobility could reach 0.05 cm2 V-1 s-1 for holes and 3.5 × 10-4 cm2 V-1 s-1 for electrons, respectively, in p-type and n-type polymeric monolayers when tested as the active layer in field-effect transistors. Furthermore, in situ polymerization reactions can be exploited to generate conductive monolayers of macromolecules such as polybenzylaniline (PBnANI) and polypyrrole (PPy), where PBnANI monolayers exhibit channel length-dependent conductivity, up to 0.37 S cm-1. The advent of the WSAMD method heralds a significant leap forward in the advancement of molecular 2D materials, catalyzing new avenues of exploration within material chemistry.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chuanhui Liu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiao Han
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Menghan Tian
- School of Physics, Beihang University, Beijing 100191, China
| | - Baichuan Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wenbin Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Cailing Ou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Nannan Dou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zixiao Han
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tingyu Ji
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaoru Cao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaolan Zhong
- School of Physics, Beihang University, Beijing 100191, China
| | - Lei Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
2
|
Zhang C, Chen M, Pan Y, Li Y, Wang K, Yuan J, Sun Y, Zhang Q. Carbon Nanodots Memristor: An Emerging Candidate toward Artificial Biosynapse and Human Sensory Perception System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207229. [PMID: 37072642 PMCID: PMC10238223 DOI: 10.1002/advs.202207229] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/09/2023] [Indexed: 05/03/2023]
Abstract
In the era of big data and artificial intelligence (AI), advanced data storage and processing technologies are in urgent demand. The innovative neuromorphic algorithm and hardware based on memristor devices hold a promise to break the von Neumann bottleneck. In recent years, carbon nanodots (CDs) have emerged as a new class of nano-carbon materials, which have attracted widespread attention in the applications of chemical sensors, bioimaging, and memristors. The focus of this review is to summarize the main advances of CDs-based memristors, and their state-of-the-art applications in artificial synapses, neuromorphic computing, and human sensory perception systems. The first step is to systematically introduce the synthetic methods of CDs and their derivatives, providing instructive guidance to prepare high-quality CDs with desired properties. Then, the structure-property relationship and resistive switching mechanism of CDs-based memristors are discussed in depth. The current challenges and prospects of memristor-based artificial synapses and neuromorphic computing are also presented. Moreover, this review outlines some promising application scenarios of CDs-based memristors, including neuromorphic sensors and vision, low-energy quantum computation, and human-machine collaboration.
Collapse
Affiliation(s)
- Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Mohan Chen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Yelong Pan
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide SciencesDepartment of ChemistryCollege of ScienceNanjing Agricultural UniversityNanjing210095China
| | - Junwei Yuan
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Yanqiu Sun
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Qichun Zhang
- Department of Materials Science and EngineeringDepartment of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee AvenueHong Kong999077China
| |
Collapse
|
3
|
Zaheer M, Bacha AUR, Nabi I, Lan J, Wang W, Shen M, Chen K, Zhang G, Zhou F, Lin L, Irshad M, Faridullah F, Arifeen A, Li Y. All Solution-Processed Inorganic, Multilevel Memristors Utilizing Liquid Metals Electrodes Suitable for Analog Computing. ACS OMEGA 2022; 7:40911-40919. [PMID: 36406554 PMCID: PMC9670282 DOI: 10.1021/acsomega.2c03893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Herein, we report a solution-processable memristive device based on bismuth vanadate (BiVO4) and titanium dioxide (TiO2) with gallium-based eutectic gallium-indium (EGaIn) and gallium-indium-tin alloy (GaInSn) liquid metal as the top electrode. Scanning electron microscopy (SEM) shows the formation of a nonporous structure of BiVO4 and TiO2 for efficient resistive switching. Additionally, the gallium-based liquid metal (GLM)-contacted memristors exhibit stable memristor behavior over a wide temperature range from -10 to +90 °C. Gallium atoms in the liquid metal play an important role in the conductive filament formation as well as the device's operation stability as elucidated by I-V characteristics. The synaptic behavior of the GLM-memristors was characterized, with excellent long-term potentiation (LTP) and long-term depression (LTD) linearity. Using the performance of our device in a multilayer perceptron (MLP) network, a ∼90% accuracy in the handwriting recognition of modified national institute of standards and technology database (MNIST) was achieved. Our findings pave a path for solution-processed/GLM-based memristors which can be used in neuromorphic applications on flexible substrates in a harsh environment.
Collapse
Affiliation(s)
- Muhammad Zaheer
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Aziz-Ur-Rahim Bacha
- Department
of Environmental Science and Engineering, Fudan University, Shanghai200433, China
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Iqra Nabi
- Department
of Environmental Science and Engineering, Fudan University, Shanghai200433, China
| | - Jun Lan
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Wenhui Wang
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Mei Shen
- SUSTech
Academy for Advanced Interdisciplinary Studies, Shenzhen518055, China
| | - Kai Chen
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Guobiao Zhang
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Feichi Zhou
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Longyang Lin
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Muhammad Irshad
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Faridullah Faridullah
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Awais Arifeen
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Yida Li
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| |
Collapse
|
4
|
Ren J, Liang H, Li J, Li YC, Mi W, Zhou L, Sun Z, Xue S, Cai G, Zhao JS. Polyelectrolyte Bilayer-Based Transparent and Flexible Memristor for Emulating Synapses. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14541-14549. [PMID: 35262345 DOI: 10.1021/acsami.1c24331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Memristors will be critical components in the next generation of digital technology and artificial synapses. Researchers are investigating innovative mechanistic understanding of the memristor devices based on low-cost, solution-processable, and organic materials as promising candidates. Here, we demonstrate a novel polyelectrolyte-based memristor device, which is simply prepared by spin-coating poly(acrylic acid) (PAA) and polyethylenimine (PEI) on an indium tin oxide (ITO) substrate followed by a magnetron sputtering of the ITO as the top electrode. The device has a potential to achieve excellent resistive switching (RS) performance and synapse functionality as well as greater flexibility and transmittance when compared to the oxide-based memories. An on/off resistance ratio of 50 can be maintained without degradation for up to 20 000 cycles (flat state) and over 4000 cycles (bending to a 2 mm radius 10 000 times) in the DC sweep mode. Moreover, the device performs various synaptic functions, including spike-timing-dependent plasticity, pulse pair plasticity, and short-term and long-term plasticity in the potentiation and depression processes. The counterions and two oppositely charged polyelectrolyte chains can move in and out of each other depending on the applied electrical potential (pulse), resulting in a change in the potential drop at the interface of the polyelectrolyte bilayer and its electrodes, which can be attributed to the RS mechanism and various synaptic functions. This insight may accelerate the technological deployment of the organic resistive memories.
Collapse
Affiliation(s)
- Jiuzhou Ren
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No. 391 Binshui Xidao, Xiqing District Tianjin 300384, P. R. China
| | - Hui Liang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No. 391 Binshui Xidao, Xiqing District Tianjin 300384, P. R. China
| | - Jiacheng Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No. 391 Binshui Xidao, Xiqing District Tianjin 300384, P. R. China
| | - Ying Chen Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No. 391 Binshui Xidao, Xiqing District Tianjin 300384, P. R. China
| | - Wei Mi
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No. 391 Binshui Xidao, Xiqing District Tianjin 300384, P. R. China
| | - Liwei Zhou
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No. 391 Binshui Xidao, Xiqing District Tianjin 300384, P. R. China
| | - Zhe Sun
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No. 391 Binshui Xidao, Xiqing District Tianjin 300384, P. R. China
| | - Song Xue
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No. 391 Binshui Xidao, Xiqing District Tianjin 300384, P. R. China
| | - Gangri Cai
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No. 391 Binshui Xidao, Xiqing District Tianjin 300384, P. R. China
| | - Jin Shi Zhao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, No. 391 Binshui Xidao, Xiqing District Tianjin 300384, P. R. China
| |
Collapse
|
5
|
Martínez-Abadía M, Dubey RK, Fernández M, Martín-Arroyo M, Aguirresarobe R, Saeki A, Mateo-Alonso A. Molecular nanoribbon gels. Chem Sci 2022; 13:10773-10778. [PMID: 36320686 PMCID: PMC9491176 DOI: 10.1039/d2sc02637f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, we show that twisted molecular nanoribbons with as many as 322 atoms in the aromatic core are efficient gelators capable of self-assembling into ordered π-gels with morphologies and sol–gel transitions that vary with the length of the nanoribbon. In addition, the nanoribbon gels show a red fluorescence and also pseudoconductivity values in the same range as current state-of-the-art π-gels. Herein, we show that twisted molecular nanoribbons with as many as 322 atoms in the aromatic core are efficient gelators capable of self-assembling into ordered π-gels with morphologies and sol–gel transitions that vary with the length of the nanoribbon.![]()
Collapse
Affiliation(s)
- Marta Martínez-Abadía
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Rajeev K. Dubey
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Mercedes Fernández
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Miguel Martín-Arroyo
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Robert Aguirresarobe
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
6
|
Chowdhury S, Reynard-Feytis Q, Roizard C, Frath D, Chevallier F, Bucher C, Gibaud T. Light-Controlled Aggregation and Gelation of Viologen-Based Coordination Polymers. J Phys Chem B 2021; 125:12063-12071. [PMID: 34677961 DOI: 10.1021/acs.jpcb.1c06090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ditopic bis-(triazole/pyridine)viologens are bidentate ligands that self-assemble into coordination polymers. In such photo-responsive materials, light irradiation initiates photo-induced electron transfer to generate π-radicals that can self-associate to form π-dimers. This leads to a cascade of events: processes at the supramolecular scale associated with mechanical and structural transition at the macroscopic scale. By tuning the irradiation power and duration, we evidence the formation of aggregates and gels. Using microscopy, we show that the aggregates are dense, polydisperse, micron-sized, spindle-shaped particles which grow in time. Using microscopy and time-resolved micro-rheology, we follow the gelation kinetics which leads to a gel characterized by a correlation length of a few microns and a weak elastic modulus. The analysis of the aggregates and the gel states vouch for an arrested phase separation process, a new scenario to supramolecular systems.
Collapse
Affiliation(s)
- Shagor Chowdhury
- Laboratoire de Chimie, Université de Lyon, Ens de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Quentin Reynard-Feytis
- Laboratoire de Chimie, Université de Lyon, Ens de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Clément Roizard
- Laboratoire de Chimie, Université de Lyon, Ens de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Denis Frath
- Laboratoire de Chimie, Université de Lyon, Ens de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Floris Chevallier
- Laboratoire de Chimie, Université de Lyon, Ens de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Christophe Bucher
- Laboratoire de Chimie, Université de Lyon, Ens de Lyon, CNRS UMR 5182, F69342 Lyon, France
| | - Thomas Gibaud
- Laboratoire de Physique, Université de Lyon, Ens de Lyon, University Claude Bernard, CNRS, F69342 Lyon, France
| |
Collapse
|
7
|
Galangau O, Daou D, El Beyrouti N, Caytan E, Mériadec C, Artzner F, Rigaut S. Molecular Engineering onto Ru II Bis(1,2-diphenylphosphinoethane) Synthon: Toward an Original Organometallic Gelator. Inorg Chem 2021; 60:11474-11484. [PMID: 34292721 DOI: 10.1021/acs.inorgchem.1c01488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this article, we report the successful molecular engineering of Ru bis-acetylides that led for the first time to a gelator and more specifically in aromatic solvents. By means of a nonlinear ligand and an extended aromatic platform, the bulky Ru bis-acetylides were able to self-assemble into lamellar structures as evidenced by scanning electron microscopy (SEM) in benzene, toluene, and o- and m-xylene, which in turn induced gelation of the solution with a critical gelation concentration of 30 mg/mL. Nuclear magnetic resonance (NMR), variable temperature (VT)-NMR, and Fourier transform infrared (FT-IR) spectroscopies evidenced that hydrogen bonds are mainly responsible for the self-organization. VT-NMR and small-angle X-ray scattering (SAXS) have also suggested that the pro-ligand and the complex stack in different ways.
Collapse
Affiliation(s)
- Olivier Galangau
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes F-35000, France
| | - Dania Daou
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes F-35000, France
| | - Nour El Beyrouti
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes F-35000, France
| | - Elsa Caytan
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes F-35000, France
| | - Cristelle Mériadec
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes F-35000, France
| | - Franck Artzner
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes F-35000, France
| | - Stéphane Rigaut
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes F-35000, France
| |
Collapse
|
8
|
Huda MM, Rai N. Probing Early-Stage Aggregation of Low Molecular Weight Gelator in an Organic Solvent. J Phys Chem B 2020; 124:2277-2288. [PMID: 32105082 DOI: 10.1021/acs.jpcb.9b11865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Md Masrul Huda
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State 39762, Mississippi, United States
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State 39762, Mississippi, United States
| |
Collapse
|
9
|
Li YF, Li Z, Lin Q, Yang YW. Functional supramolecular gels based on pillar[n]arene macrocycles. NANOSCALE 2020; 12:2180-2200. [PMID: 31916548 DOI: 10.1039/c9nr09532b] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular gels constructed from low-molecular-weight gelators via noncovalent interactions have received increasing attention. The rapid development of stimuli-responsive supramolecular gels with attractive properties is highly desirable to meet the ever-growing demand of materials science and chemistry. The inherent reversible and dynamic nature of noncovalent interactions in supramolecular gels endows the materials with sensing, processing, and actuating functions in response to specific environmental changes and offers them great potential in flexible biomaterials and intelligent devices. In particular, pillar[n]arenes with symmetrical pillar-shaped architectures have been recognized as an emerging class of synthetic macrocycles after crown ethers, cyclodextrins, calixarenes, and cucurbiturils, and proven to be excellent candidates for the fabrication of functional supramolecular gels due to their many advantages including facile synthesis, diverse functionalization, and appealing host-guest properties. This review provides a comprehensive overview of recent progress in supramolecular gels involving pillar[n]arenes and their derivatives as synthetic macrocyclic arenes, from the viewpoints of the synthetic approach, controllable assembly, stimuli-responsiveness, and functions. Perspectives of this burgeoning field of research are also given at the end.
Collapse
Affiliation(s)
- Yong-Fu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Zheng Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China. and The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
10
|
Wei TB, Zhang QP, Fan YQ, Mao PP, Wang J, Guan XW, Zhang YM, Yao H, Lin Q. A novel supramolecular AIE π-gel for fluorescence detection and separation of metal ions from aqueous solution. SOFT MATTER 2019; 15:6530-6535. [PMID: 31348474 DOI: 10.1039/c9sm01270b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel supramolecular aggregation induced emission (AIE) π-gel (ONT) was constructed by using a functionalized trimesic amide (TCP) molecule assembled with a bis-pyridine functionalized naphthalene diimide (ND) molecule using a non-covalent interaction. The ONT showed strong AIE at 468 nm. Furthermore, the ONT could detect and adsorb ferric (Fe3+) or cupric (Cu2+) ions from water. Meanwhile, a thin film based on supramolecular AIE π-gel ONT was prepared, which could be used as a fluorescent security display material for detecting Fe3+ or Cu2+. Thus, the AIE π-gel ONT shows potential for practical applications in efficient multi-analyte detection and separation and as a fluorescent display material.
Collapse
Affiliation(s)
- Tai-Bao Wei
- Key Laboratory of Polymer Materials of Gansu Province, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Qin-Peng Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yan-Qing Fan
- Key Laboratory of Polymer Materials of Gansu Province, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Peng-Peng Mao
- Key Laboratory of Polymer Materials of Gansu Province, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Jiao Wang
- Key Laboratory of Polymer Materials of Gansu Province, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xiao-Wen Guan
- Key Laboratory of Polymer Materials of Gansu Province, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - You-Ming Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Hong Yao
- Key Laboratory of Polymer Materials of Gansu Province, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Qi Lin
- Key Laboratory of Polymer Materials of Gansu Province, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
11
|
Yao Y, Zhang L, Orgiu E, Samorì P. Unconventional Nanofabrication for Supramolecular Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900599. [PMID: 30941813 DOI: 10.1002/adma.201900599] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/20/2019] [Indexed: 06/09/2023]
Abstract
The scientific effort toward achieving a full control over the correlation between structure and function in organic and polymer electronics has prompted the use of supramolecular interactions to drive the formation of highly ordered functional assemblies, which have been integrated into real devices. In the resulting field of supramolecular electronics, self-assembly of organic semiconducting materials constitutes a powerful tool to generate low-dimensional and crystalline functional architectures. These include 1D nanostructures (nanoribbons, nanotubes, and nanowires) and 2D molecular crystals with tuneable and unique optical, electronic, and mechanical properties. Optimizing the (opto)electronic properties of organic semiconducting materials is imperative to harness such supramolecular structures as active components for supramolecular electronics. However, their integration in real devices currently represents a significant challenge to the advancement of (opto)electronics. Here, an overview of the unconventional nanofabrication techniques and device configurations to enable supramolecular electronics to become a real technology is provided. A particular focus is put on how single and multiple supramolecular fibers and gels as well as supramolecularly engineered 2D materials can be integrated into novel vertical or horizontal junctions to realize flexible and high-density multifunctional transistors, photodetectors, and memristors, exhibiting a set of new properties and excelling in their performances.
Collapse
Affiliation(s)
- Yifan Yao
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| | - Lei Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Emanuele Orgiu
- Institut national de la recherche scientifique (INRS), EMT Center, 1650 Blvd. Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
12
|
Shan Y, Li S, Wang R, Zhu SY, Wu F, Fu Y, Zhu L. Spontaneously hierarchical self-assembly of nanofibres into fluorescent spherical particles: a leap from organogels to macroscopic solid spheres. SOFT MATTER 2019; 15:470-476. [PMID: 30574991 DOI: 10.1039/c8sm02106f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The spontaneous hierarchical self-assembly of organic small molecules into macroscopic architectures with excellent photophysical properties and highly-ordered structures has rarely been reported to date. In this work, we find that the organogel of SY1 formed in ethyl acetate could spontaneously assemble into macroscopic spherical particles with a unique morphology and photophysical properties. Upon increasing the aging time, the gel gradually collapsed and then transformed into many macroscopic spheres (SY1-balls) with an average diameter of ca. 500 μm and strong yellow emission. In view of the emission properties and the porous structure of the SY1-balls, they were successfully applied in the adsorption and detection of heavy metal ions. More interestingly, SY1 shows different assembly behaviours in toluene solution when mixed with a triphenylamine derivative (TPA1). Macroscopic particles (ST-balls) with a core-shell structure were obtained, which were quite different from the SY1-balls in morphology and emission colour. So far as we know, many studies have focused on the change of the micromorphology of a gel, while the spontaneous self-assembly of organogels into macroscopic particles has been reported in this work for the first time. This work enriches the present study on organogels and plays an important role in further understanding the hierarchical self-assembly of organogels.
Collapse
Affiliation(s)
- Yahan Shan
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, Faculty of Materials & Energy, Southwest University, Chongqing 400715, P. R. China.
| | - Shiwen Li
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, Faculty of Materials & Energy, Southwest University, Chongqing 400715, P. R. China.
| | - Rui Wang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, Faculty of Materials & Energy, Southwest University, Chongqing 400715, P. R. China.
| | - Si Yi Zhu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, P. R. China
| | - Fei Wu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, Faculty of Materials & Energy, Southwest University, Chongqing 400715, P. R. China.
| | - Yang Fu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, P. R. China
| | - Linna Zhu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, Faculty of Materials & Energy, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
13
|
Lin Q, Guan XW, Song SS, Fan H, Yao H, Zhang YM, Wei TB. A novel supramolecular polymer π-gel based on bis-naphthalimide functionalized-pillar[5]arene for fluorescence detection and separation of aromatic acid isomers. Polym Chem 2019. [DOI: 10.1039/c8py01299g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A pillar[5]arene-based supramolecular polymer π-gel, BPN-G, can selectively identify and separate benzoic acid isomers through rationally introduced multi-intermolecular interactions.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Xiao-Wen Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Shan-Shan Song
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Haiyan Fan
- Chemistry Department
- School of Science and Technology
- Nazarbayev University Astana 010000
- Kazakhstan
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|
14
|
Bu Y, Ahmed Z, Yobas L. A nanofluidic memristor based on ion concentration polarization. Analyst 2019; 144:7168-7172. [DOI: 10.1039/c9an01561b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The very first nanofluidic memristor based on the principle of ion concentration polarization (ICP).
Collapse
Affiliation(s)
- Yang Bu
- Dept. of Electronic and Computer Engineering
- The Hong Kong University of Science and Technology
- China
| | - Zisun Ahmed
- Division of Biomedical Engineering
- The Hong Kong University of Science and Technology
- China
| | - Levent Yobas
- Dept. of Electronic and Computer Engineering
- The Hong Kong University of Science and Technology
- China
- Division of Biomedical Engineering
- The Hong Kong University of Science and Technology
| |
Collapse
|
15
|
|
16
|
Sun J, Qian C, Xu S, Jia X, Zhai L, Zhao J, Lu R. H- and J-aggregates formed from a nontraditional π-gelator depending on the solvent polarity for the detection of amine vapors. Org Biomol Chem 2018; 16:7438-7445. [PMID: 30264839 DOI: 10.1039/c8ob01596a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A tert-butyl carbazole-modified difluoroboron β-diketonate complex (TCbzB) has been synthesized. Although no traditional gelation group was involved in TCbzB, it could form organogels in the mixed solvents of o-dichlorobenzene/cyclohexane (v/v = 1/5 or 1/2), toluene/cyclohexane (v/v = 1/2) and chlorobenzene/cyclohexane (v/v = 1/2). Interestingly, an orange organogel was obtained in o-dichlorobenzene/cyclohexane (v/v = 1/2) with relatively high polarity and red organogels were gained in the other three mixed solvents with relatively low polarity. TCbzB self-assembled into H-aggregates and J-aggregates in orange and red organogels, respectively, and the corresponding xerogels emitted yellow and red light, respectively, under UV illumination. The red emission of the xerogel-based film could be quenched significantly by gaseous n-propylamine and aniline because of the decomplexation of the difluoroboron β-diketonate complex by n-propylamine and the weak interactions between aniline and boron difluoride units.
Collapse
Affiliation(s)
- Jingbo Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Martínez‐Abadía M, Antonicelli G, Saeki A, Mateo‐Alonso A. Readily Processable Hole‐Transporting Peropyrene Gels. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Marta Martínez‐Abadía
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Gabriella Antonicelli
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Akinori Saeki
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- IkerbasqueBasque Foundation for Science 48011 Bilbao Spain
| |
Collapse
|
18
|
Martínez‐Abadía M, Antonicelli G, Saeki A, Mateo‐Alonso A. Readily Processable Hole‐Transporting Peropyrene Gels. Angew Chem Int Ed Engl 2018; 57:8209-8213. [DOI: 10.1002/anie.201804453] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/29/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Marta Martínez‐Abadía
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Gabriella Antonicelli
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Akinori Saeki
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- IkerbasqueBasque Foundation for Science 48011 Bilbao Spain
| |
Collapse
|
19
|
Zhang L, Pasthukova N, Yao Y, Zhong X, Pavlica E, Bratina G, Orgiu E, Samorì P. Self-Suspended Nanomesh Scaffold for Ultrafast Flexible Photodetectors Based on Organic Semiconducting Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801181. [PMID: 29782659 DOI: 10.1002/adma.201801181] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Self-standing nanostructures are of fundamental interest in materials science and nanoscience and are widely used in (opto-)electronic and photonic devices as well as in micro-electromechanical systems. To date, large-area and self-standing nanoelectrode arrays assembled on flexible substrates have not been reported. Here the fabrication of a hollow nanomesh scaffold on glass and plastic substrates with a large surface area over 1 mm2 and ultralow leakage current density (≈1-10 pA mm-2 @ 2 V) across the empty scaffold is demonstrated. Thanks to the continuous sub-micrometer space formed in between the nanomesh and the bottom electrode, highly crystalline and dendritic domains of 6,13-bis(triisopropylsilylethinyl)pentacene growing within the hollow cavity can be observed. The high degree of order at the supramolecular level leads to efficient charge and exciton transport; the photovoltaic detector supported on flexible polyethylene terephthalate substrates exhibits an ultrafast photoresponse time as short as 8 ns and a signal-to-noise ratio approaching 105 . Such a hollow scaffold holds great potential as a novel device architecture toward flexible (opto-)electronic applications based on self-assembled micro/nanocrystals.
Collapse
Affiliation(s)
- Lei Zhang
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000, Strasbourg, France
| | - Nadiia Pasthukova
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 11c, SI-5270, Ajdovščina, Slovenia
| | - Yifan Yao
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000, Strasbourg, France
| | - Xiaolan Zhong
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000, Strasbourg, France
| | - Egon Pavlica
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 11c, SI-5270, Ajdovščina, Slovenia
| | - Gvido Bratina
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 11c, SI-5270, Ajdovščina, Slovenia
| | - Emanuele Orgiu
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000, Strasbourg, France
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
20
|
Cao X, Zhao N, Gao A, Ding Q, Li Y, Chang X. Terminal Molecular Isomer-Effect on Supramolecular Self-Assembly System Based on Naphthalimide Derivative and Its Sensing Application for Mercury(II) and Iron(III) Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7404-7415. [PMID: 29874461 DOI: 10.1021/acs.langmuir.8b00991] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A series of naphthalimide derivative gelators (G-o, G-m, and G-p) with three molecular isomers as their terminal groups were designed and synthesized. Only G-m and G-p could form stable organogels in some solvents including methanol, acetonitrile, n-hexane, toluene, ethanol, DMSO, DMF, and mixed solvents of acetonitrile/H2O (1/1, v/v). The different self-assembly structures were obtained from the self-assembly process of G-o, G-m, and G-p such as structures like a Chinese chestnut formed by irregular micrometer pieces, microbelts, and microbelt structures mingled with the bird's nest structures which exhibited different surface hydrophobicity with water contact angles of 121-139° due to their different intermolecular noncovalent interactions. To our surprise, G-p acetonitrile solution emitted 492 nm light with a red-shift of 72 nm compared with that emitted from G-o and G-m acetonitrile solution under 350 nm light excitation. Three gelators showed different detection abilities toward metal ions. G-o did not have any ability for sensitive and selective detection toward any ion. In contrast, G-m and G-p could sensitively and selectively detect Hg2+ and Fe3+. The detection limits for Fe3+ and Hg 2+ by G-m were 4.76 × 10-5 M and 7.01 × 10-6 M with the corresponding association constants ( K) of 1.64 × 104 and 3.79 × 104 M-1, respectively. The detection limits for Fe3+ and Hg2+ by G-p were 3.26 × 10-5 and 1.77 × 10-6 M with the corresponding K of 1.44 × 105 and 1.99 × 104 M-1, respectively. More interestingly, the back-titration of SCN- could distinguish Hg2+ from Fe3+. At the same time, xerogels G-m and G-p also exhibited responsiveness toward Fe3+ and Hg2+ through fluorescence changes. The photophysical properties, gel formation, hierarchical structures, surface wettability, and their function in this self-assembly system could be tuned through the molecular isomer effect. This work provides a new research paradigm for molecular isomer tuned supramolecular self-assembly materials from noncovalent interaction to molecular function.
Collapse
Affiliation(s)
- Xinhua Cao
- College of Chemistry and Chemical Engineering and Henan Province Key laboratory of Utilization of Non-metallic Mineral in the South of Henan, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains , Xinyang Normal University , Xinyang 464000 , China
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha 410082 , P.R. China
| | - Na Zhao
- College of Chemistry and Chemical Engineering and Henan Province Key laboratory of Utilization of Non-metallic Mineral in the South of Henan, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains , Xinyang Normal University , Xinyang 464000 , China
| | - Aiping Gao
- College of Chemistry and Chemical Engineering and Henan Province Key laboratory of Utilization of Non-metallic Mineral in the South of Henan, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains , Xinyang Normal University , Xinyang 464000 , China
| | - Qianqian Ding
- College of Chemistry and Chemical Engineering and Henan Province Key laboratory of Utilization of Non-metallic Mineral in the South of Henan, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains , Xinyang Normal University , Xinyang 464000 , China
| | - Yiran Li
- College of Chemistry and Chemical Engineering and Henan Province Key laboratory of Utilization of Non-metallic Mineral in the South of Henan, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains , Xinyang Normal University , Xinyang 464000 , China
| | - Xueping Chang
- College of Chemistry and Chemical Engineering and Henan Province Key laboratory of Utilization of Non-metallic Mineral in the South of Henan, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains , Xinyang Normal University , Xinyang 464000 , China
| |
Collapse
|
21
|
Jia X, Zhao J, Xu S, Zhang F, Sun J, Lu R. Luminescent Organogels Generated from Nucleosides Functionalized with Carbazole: Synthesis and Probing for F-. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoyu Jia
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 130012 Changchun P. R. China
| | - Jinyu Zhao
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 130012 Changchun P. R. China
| | - Shenzheng Xu
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 130012 Changchun P. R. China
| | - Fushuang Zhang
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 130012 Changchun P. R. China
| | - Jingbo Sun
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 130012 Changchun P. R. China
| | - Ran Lu
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 130012 Changchun P. R. China
| |
Collapse
|