1
|
Song X, Li M, Bao H, Hao M, Wang H, Tian Y, Wu Y, Zhou Y, Wan R, Li W, Guan H. Cs 2CO 3-N,N-Dimethylacetamide-Promoted Esterification of Arylformic Acids with a-Bromo Esters via Nucleophilic Substitution. ChemistryOpen 2025:e2500129. [PMID: 40357804 DOI: 10.1002/open.202500129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 03/30/2025] [Indexed: 05/15/2025] Open
Abstract
Herein, a nucleophilic substitution reaction between arylformic acids and α-bromo esters, facilitated by a Cs2CO3-DMA system, is reported. This reaction occurs under mild conditions, yielding a diverse range of valuable lactic acid derivatives (34 examples) with good to excellent yields (up to 97%). Subtle factors, such as the ion-dipole interactions between Cs2CO3, the substrates, and the solvent, may significantly influence the dynamics of the SN2 reaction.
Collapse
Affiliation(s)
- Xinyan Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mingxin Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Haihong Bao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mohan Hao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hanxiang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yu Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yue Wu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yun Zhou
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Ruiying Wan
- Experiment Center, Jinan Key Laboratory of Traditional Chinese Medicine Preparation Research and Evaluation in Medical Institutions, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wei Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Haixing Guan
- Experiment Center, Jinan Key Laboratory of Traditional Chinese Medicine Preparation Research and Evaluation in Medical Institutions, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
2
|
Ma X, Miao E, Sun Y, Sun L, Huang C, Zhang X, Hou KQ, Xu Z, Zang Y, Bi T, Yang W. Divergent Synthesis of Dihydrofuran and Dienol Scaffolds via Pd-Catalyzed Decarboxylative Carbene Cross-Coupling. Org Lett 2025; 27:4753-4761. [PMID: 40272503 DOI: 10.1021/acs.orglett.5c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Herein, we report a novel ligand-switchable Pd-catalyzed carbene coupling reaction employing vinylethylene carbonates and sulfoxonium ylides. By proper choice of ligands, the chemoselectivity of the process could be efficiently regulated, allowing for the availability of dihydrofuran or dienol scaffolds. This method features mild reaction conditions, broad scope, and remarkable synthetic utility. Compound 6f can effectively stimulate the secretion of GLP-1, providing promising insight into the development of small-molecule agonists for the GLP-1 receptor.
Collapse
Affiliation(s)
- Xiaolong Ma
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erfei Miao
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yili Sun
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longkang Sun
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chaoying Huang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xun Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Ke-Qiang Hou
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongliang Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongyu Bi
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210000, China
| |
Collapse
|
3
|
Xiao S, Wang M, Liu Y, Li M, Zhang YJ. Palladium Complex Grafted on PEG-Based Amphiphilic Polymers as ppm Level Micellar Catalysts for Suzuki-Miyaura Coupling in Water. Org Lett 2025; 27:4343-4348. [PMID: 40226854 DOI: 10.1021/acs.orglett.5c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
A series of bisphosphine-grafted amphiphilic polymers based on polyethylene glycol-poly(vinylethylene glycol) (PEG-PVEG) copolymers have been synthesized by using allylic etherification polymerization as a pivotal step. Self-assembling of the palladium complexes of the obtained amphiphilic polymers into spherical micelles has been investigated by UV-vis, DLS and TEM analysis. The outstanding catalytic performance of the present micellar palladium catalyst has been evidenced in the aqueous Suzuki-Miyaura coupling reaction, achieving remarkable efficiency even at a low catalyst loading of 100 ppm within 2 h.
Collapse
Affiliation(s)
- Song Xiao
- Department of Chemistry, Faculty of Science, Yanbian University, 977 Gongyuan Road, Yanji, Jilin 133002, P. R. China
| | - Minghang Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610042, P. R. China
| | - Yiming Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610042, P. R. China
| | - Meiqi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610042, P. R. China
| | - Yong Jian Zhang
- Department of Chemistry, Faculty of Science, Yanbian University, 977 Gongyuan Road, Yanji, Jilin 133002, P. R. China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610042, P. R. China
| |
Collapse
|
4
|
Ali T, Rahman T, Perveen S, Wang L, Khan A. Asymmetric Amination of 1,2-Diol through Borrowing Hydrogen: Synthesis of Vicinal Amino α-Tertiary Alcohol. Chemistry 2025; 31:e202404152. [PMID: 40011211 DOI: 10.1002/chem.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
Methods to prepare vicinal amino alcohols are important because of their presence in biologically active compounds. Despite the development of various methods for vicinal amino alcohol synthesis, C(sp3)-rich oxygen-containing β-amine compounds continue to pose great challenge. While ring-opening reaction of epoxides with amine nucleophile is the prime method for vicinal amino alcohol preparation, epoxides are highly reactive and sometimes difficult to make, resulting in drawbacks regarding selectivity of this approach. Here, we report a catalytic enantio-convergent amination of α-tertiary 1,2-diols for the efficient access to vicinal amino α-tertiary alcohols. The racemic α-tertiary 1,2-diol substrates of different alkyl/aryl or alkyl/alkyl backbone, can be converted to chiral vicinal amino α-tertiary alcohols through diphenyl phosphate-mediated RuCl3 catalysed asymmetric borrowing hydrogen (ABH) pathway. This simple ABH reaction can be scaled up to the synthesis of chiral ligands, synthetic intermediates, and other medicinally-relevant compounds. Overall, this catalytic redox-neutral procedure broadens the scope of Ru-catalysed amination of alcohols and discloses an underexplored step- and atom-economical synthetic strategy for the synthesis of vicinal amino α-tertiary alcohols and provides a practicable alternative to the present benchmark procedures.
Collapse
Affiliation(s)
- Tariq Ali
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Tahir Rahman
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Shahida Perveen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Lingyun Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Zhou Y, Zhao R, Hu M, Duan XH, Liu L. Photoredox-Catalyzed Alkene Acylesterification with Acyloxime Esters via C-C and Tertiary C-O Bond Formation. Org Lett 2025; 27:623-628. [PMID: 39772806 DOI: 10.1021/acs.orglett.4c04422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
We describe an efficient acyl esterification method for alkenes utilizing acyloxime esters as bifunctional reagents featuring radical acylation and congested C-O bond formation. This approach is characterized by mild photoredox conditions, high step and atom economy, a broad substrate scope, and excellent regioselectivity. A variety of valuable α-acyl hindered alcohol esters, including those obtained via gram-scale synthesis and late-stage functionalization of pharmaceutical molecules, were presented, demonstrating its synthetic potential and practicability.
Collapse
Affiliation(s)
- Youkang Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ruiying Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Chen Y, Zhen Q, Meng FJ, Yu P, Xu C. Lone Pair-π Interactions in Organic Reactions. Chem Rev 2024; 124:13370-13396. [PMID: 39535080 DOI: 10.1021/acs.chemrev.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Noncovalent interactions between a lone pair of electrons and π systems can be categorized into two types based on the nature of π systems. Lone pair-π(C═O) interactions with π systems of unsaturated, polarized bonds are primarily attributed to orbital interactions, whereas lone pair-π(Ar) interactions with π systems of aromatic functional groups result from electrostatic attractions (for electron-deficient aryls) or dispersion attractions and Pauli repulsions (for electron-rich/neutral aryls). Unlike well-established noncovalent interactions, lone pair-π interactions have been comparatively underappreciated or less used to influence reaction outcomes. This review emphasizes experimental and computational studies aimed at integrating lone pair-π interactions into the design of catalytic systems and utilizing these interactions to regulate the reactivity and selectivity of chemical transformations. The role of lone pair-π interactions is highlighted in the stabilization or destabilization of transition states and ground-state binding. Examples influenced by lone pair-π interactions with both unsaturated, polarized bonds and aromatic rings as π systems are included. At variance with previous reviews, the present review is not structured according to the physical origin of particular classes of lone pair-π interactions but is divided into chapters according to ways in which lone pair-π interactions affect kinetics and/or selectivity of reactions.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qianqian Zhen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fan-Jie Meng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Xu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Xiong Z, Ge Y, Zhou Y, Li H, Yao W, Deng J, Wang Z. Asymmetric Formal [5 + 2] Annulation of 3-Hydroxyquinolinones and Vinylethylene Carbonates through Pd/Cu Tandem Catalysis. Org Lett 2024; 26:10334-10338. [PMID: 39569629 DOI: 10.1021/acs.orglett.4c03956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The asymmetric [5 + 2] cycloaddition of VECs remains to be comparatively rare. Herein, we reported an enantioselective formal [5 + 2] annulation of 3-hydroxyquinolinones and vinylethylene carbonates (VECs) through Pd- and Cu-catalyzed tandem allylation/asymmetric [1,3]-rearrangement/hemiketalization sequences. The strategy exhibits good substrate tolerance, affording a wide range of tricyclic quinolinones bearing two adjacent quaternary stereocenters in moderate to good yields with excellent enantioselectivities.
Collapse
Affiliation(s)
- Zongli Xiong
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yi Ge
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan 421001, People's Republic of China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Heping Li
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Jun Deng
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
8
|
Zhang Z, Liang FF, Zhang SL, Sun W, Zhou AX, Sun M. Pd-Catalyzed Three-Component Coupling of Cyclopropenones via Sequential C-C Bond Activation and Allylation. Org Lett 2024; 26:4262-4267. [PMID: 38722897 DOI: 10.1021/acs.orglett.4c01200] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A novel Pd-catalyzed three-component domino reaction for the stereoselective synthesis of highly functionalized allyl cinnamates has been developed. In this protocol, a sequential process of C-C bond activation and intermolecular allylic substitution was well-organized. The key for this transformation is the in situ generated hydrolysis product of cyclopropenone, which triggered a new reaction with vinylethylene carbonates. The reaction mechanism was investigated, demonstrating the high stereoselectivity and excellent atomic economy in this process.
Collapse
Affiliation(s)
- Zhou Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Fei-Fei Liang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Shu-Lin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - An-Xi Zhou
- Key Laboratory of Applied Organic Chemistry, Higher Institutions of Jiangxi Province, Shangrao Normal University, Shangrao, Jiangxi 334001, China
| | - Meng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| |
Collapse
|
9
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
10
|
Tang Y, Li Z, Zeng M, Li R, Song H, Zhang D, Xue F, Qin Y. Asymmetric Synthesis of Triazole Antifungal Agents Enabled by an Upgraded Strategy for the Key Epoxide Intermediate. J Org Chem 2024; 89:4971-4978. [PMID: 38509452 DOI: 10.1021/acs.joc.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A streamlined and efficient approach to the key epoxide intermediate for the asymmetric synthesis of triazole antifungal agents is presented. This synthesis highlights a P(NMe2)3-mediated nonylidic olefination of α-keto ester, ensuring the exclusive formation of the requisite (Z)-alkene, followed by a highly enantioselective Jacobsen epoxidation to establish the two vicinal stereocenters in a single step. The versatility of this strategy is exemplified through the efficient synthesis of efinaconazole and ravuconazole.
Collapse
Affiliation(s)
- Yu Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Zhuo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Meiqi Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Ran Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Hao Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Dan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Fei Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
11
|
Yang F, Wang M, Zhang YJ. Synthesis of polyvinylethylene glycols (PVEGs) via polyetherification of vinylethylene carbonate by synergistic catalysis. Chem Commun (Camb) 2024; 60:3539-3542. [PMID: 38454880 DOI: 10.1039/d3cc05580a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
An efficient and controllable polyetherification of vinylethylene carbonate (VEC) using diols as initiators is developed. By using a synergistic catalysis with palladium and boron reagents under mild conditions, the polymerization process enables the regioselective production of a series of polyvinylethylene glycols (PVEGs) bearing pendent vinyl groups in high yields with accurate molecular weight control and narrow molecular weight distribution. The utility of PVEGs is demonstrated by the production of functional polyurethanes and post-polymerization modification via thiol-ene photo-click chemistry.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610042, P. R. China
| | - Minghang Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610042, P. R. China
| | - Yong Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610042, P. R. China
| |
Collapse
|
12
|
Ghorai D, Tóth BL, Lanzi M, Kleij AW. Vinyl and Alkynyl Substituted Heterocycles as Privileged Scaffolds in Transition Metal Promoted Stereoselective Synthesis. Acc Chem Res 2024; 57:726-738. [PMID: 38387878 PMCID: PMC10918838 DOI: 10.1021/acs.accounts.3c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
ConspectusBiologically active compounds and pharmaceutically relevant intermediates often feature sterically congested stereogenic centers, in particular, carbon stereocenters that are either tertiary tetrasubstituted ones or quaternary in nature. Synthons that comprise such bulky and often structurally complex core units are of high synthetic value and represent important incentives for communities connected to drug discovery and development. Streamlined approaches that give access to a diverse set of compounds incorporating acyclic bulky stereocenters are relatively limited, though vital. They enable further exploration of three-dimensional entities that can be designed and implemented in discovery programs, thereby extending the pool of molecular properties that is inaccessible for flat molecules. However, the lack of modular substrates in particular areas of chemical space inspired us to consider functionalized heterocycles known as cyclic carbonates and carbamates as a productive way to create sterically crowded alkenes and stereocenters.In this Account, we describe the major approximations we followed over the course of 8 years using transition metal (TM) catalysis as an instrument to control the stereochemical course of various allylic and propargylic substitution processes and related transformations. Allylic substitution reactions empowered by Pd-catalysis utilizing a variety of nucleophiles are discussed, with amination being the seed of all of this combined work. These procedures build on vinyl-substituted cyclic carbonates (VCCs) that are simple and easy-to-access precursors and highly modular in nature compared to synthetically limited vinyl oxiranes. Overall these decarboxylative conversions take place with either "linear" or "branched" regioselectivities that are ligand controlled and offer access to a wide scope of functional allylic scaffolds. Alternative approaches, including dual TM/photocatalyzed transformations, allowed us to expand the repertoire of challenging stereoselective conversions. This was achieved through key single-electron pathways and via formal umpolung of intermediates, resulting in new types of carbon-carbon bond formation reactions significantly expanding the scope of allylic substitution reactions.Heterocyclic substrate variants that have triple bond functional groups were also designed by us to enable difficult-to-promote stereoselective propargylic substitution reactions through TM catalysis. In these processes, inspired by the Nishibayashi laboratory and their seminal findings in the area, we discovered various new reactivity patterns. This provided access to a range of different stereodefined building blocks such as 1,2-diborylated 1,3-dienes and tetrasubstituted α-allenols under Cu- or Ni-catalysis. In this realm, the use of lactone-derived substrates gives access to elusive chiral γ-amino acids and lactams with high stereofidelity and good structural diversity.Apart from the synthetic efforts, we have elucidated some of the pertinent mechanistic manifolds operative in these transformations to better understand the limitations and opportunities with these specifically functionalized heterocycles that allowed us to create complex synthons. We combined both theoretical and experimental investigations that lead to several unexpected outcomes in terms of enantioinduction models, catalyst preactivation, and intermediates that are intimately connected to rationales for the observed selectivity profiles. The combined work we have communicated over the years offers insight into the unique reactivity of cyclic carbonates/carbamates acting as privileged precursors. It may inspire other members of the synthetic communities to widen the scope of precursors toward novel stereoselective transformations with added value in drug discovery and development in both academic and commercial settings.
Collapse
Affiliation(s)
- Debasish Ghorai
- Institute
of Chemical Research of Catalonia (ICIQ), the Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Balázs L. Tóth
- Institute
of Chemical Research of Catalonia (ICIQ), the Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Matteo Lanzi
- Institute
of Chemical Research of Catalonia (ICIQ), the Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Arjan W. Kleij
- Institute
of Chemical Research of Catalonia (ICIQ), the Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan
Institute of Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Li J, Fang M, Liao M, Xie H, Dong XQ, Han Z, Sun J, Huang H. Synthesis of medium-sized heterocycles from oxetanes based on an allylic amination/ring-opening strategy. Chem Commun (Camb) 2023; 59:14467-14470. [PMID: 37986611 DOI: 10.1039/d3cc04355j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The construction of medium-sized ring compounds has been a prominent research area in synthetic chemistry. In this study, we developed a tandem strategy that combines allylic amination and ring-opening of oxetanes to synthesize medium-sized heterocycles. Specifically, N-aryl oxetan-3-amines undergo allylic amination with zwitterionic π-allylpalladium, followed by intramolecular ring-opening, resulting in the formation of medium-sized heterocycles. Notably, we are able to achieve the synthesis of 7-8 membered heterocycles with moderate to good yields by employing different types of zwitterionic π-allylpalladium species.
Collapse
Affiliation(s)
- Jixing Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Ming Fang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Maoyan Liao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Hongling Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
14
|
Ren W, Yan Y, Huang Y. Stereoselective Synthesis of Tri- and Tetrasubstituted Allylsilanes via Copper-Catalyzed Decarboxylative Silylation of Vinylethylene Carbonates. J Org Chem 2023. [PMID: 38010740 DOI: 10.1021/acs.joc.3c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Herein, a stereoselective copper-catalyzed decarboxylative silylation of readily available vinylethylene carbonates (VECs) with PhMe2Si-Bpin is reported, affording a wide range of tri- and tetrasubstituted allylsilanes in moderate to high yields with E-selectivity. This protocol was characterized by high stereoselectivity, broad substrate scope, operational simplicity, and mild reaction conditions, which were amenable to diverse derivatizations and gram-scale synthesis.
Collapse
Affiliation(s)
- Wenzhu Ren
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yifei Yan
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
15
|
Lu L, Huang H, Yang S, Bai J, Zhou Y, Xiao Q. Palladium-Catalyzed Intermolecular Dearomatization Annulation Cascade Reaction of Furans for Stereoselective Access to 2,5-Dihydrofurans. J Org Chem 2023; 88:14435-14444. [PMID: 37768003 DOI: 10.1021/acs.joc.3c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A novel palladium-catalyzed intermolecular dearomatization of furans with alkynes via a three-component formal [3 + 2] spiroannulation/allylic substitution cascade reaction has been successfully developed for the stereoselective assembly of spiro 2,5-dihydrofuran frameworks. High step economy and efficacy as well as excellent stereoselectivity were achieved for a broad substrate scope. Two new C-C bonds and one new C-O bond were generated sequentially in a one-pot manipulation. The yielded spiro 2,5-dihydrofuran skeleton bearing a tetrasubstituted carbon center constitutes the core structure for plenty of useful natural products or corresponding analogues. This work represents a significant advancement in the dearomatization strategy for furan heterocycles and provides a practical methodology for expedited access to complex spiro dihydrofuran scaffolds.
Collapse
Affiliation(s)
- Lin Lu
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang 330013, China
| | - Haiyang Huang
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang 330013, China
| | - Shanshan Yang
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang 330013, China
| | - Jiang Bai
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang 330013, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiang Xiao
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang 330013, China
| |
Collapse
|
16
|
Arachchi MK, Schaugaard RN, Schlegel HB, Nguyen HM. Scope and Mechanistic Probe into Asymmetric Synthesis of α-Trisubstituted-α-Tertiary Amines by Rhodium Catalysis. J Am Chem Soc 2023; 145:19642-19654. [PMID: 37651695 PMCID: PMC10581542 DOI: 10.1021/jacs.3c04211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Asymmetric reactions that convert racemic mixtures into enantioenriched amines are of significant importance due to the prevalence of amines in pharmaceuticals, with about 60% of drug candidates containing tertiary amines. Although transition-metal catalyzed allylic substitution processes have been developed to provide access to enantioenriched α-disubstituted allylic amines, enantioselective synthesis of sterically demanding α-tertiary amines with a tetrasubstituted carbon stereocenter remains a major challenge. Herein, we report a chiral diene-ligated rhodium-catalyzed asymmetric substitution of racemic tertiary allylic trichloroacetimidates with aliphatic secondary amines to afford α-trisubstituted-α-tertiary amines. Mechanistic investigation is conducted using synergistic experimental and computational studies. Density functional theory calculations show that the chiral diene-ligated rhodium promotes the ionization of tertiary allylic substrates to form both anti and syn π-allyl intermediates. The anti π-allyl pathway proceeds through a higher energy than the syn π-allyl pathway. The rate of conversion of the less reactive π-allyl intermediate to the more reactive isomer via π-σ-π interconversion was faster than the rate of nucleophilic attack onto the more reactive intermediate. These data imply that the Curtin-Hammett conditions are met in the amination reaction, leading to dynamic kinetic asymmetric transformation. Computational studies also show that hydrogen bonding interactions between β-oxygen of allylic substrate and amine-NH greatly assist the delivery of amine nucleophile onto more hindered internal carbon of the π-allyl intermediate. The synthetic utility of the current methodology is showcased by efficient preparation of α-trisubstituted-α-tertiary amines featuring pharmaceutically relevant secondary amine cores with good yields and excellent selectivities (branched-linear >99:1, up to 99% enantiomeric excess).
Collapse
Affiliation(s)
- Madhawee K Arachchi
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Richard N Schaugaard
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
17
|
Li Q, Liu Y, Li C. Picolinaldehyde-Zinc(II)-Palladium(0) Catalytic System for the Asymmetric α-Allylation of N-Unprotected Amino Esters. Chemistry 2023; 29:e202301348. [PMID: 37237423 DOI: 10.1002/chem.202301348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 05/28/2023]
Abstract
Reported in this work is a synergistic ternary achiral picolinaldehyde-Zn(II)-chiral palladium complex system for the highly enantioselective α-allylation of N-unprotected amino esters. By utilizing a variety of allylic carbonates or vinyl benzoxazinanones as substrates, α-allyl α-amino esters were obtained in high yields (up to 96 %) with high enantioselectivities (up to 98 % ee). Control experiments suggest that the coordination of Zn(II) with the Schiff base intermediate enhances the acidity of the α-C-H bonds of amino esters, thereby favoring α-allylation over intrinsic N-allylation. Furthermore, NMR studies reveal an interaction between the chiral palladium complex and the Zn(II)-Schiff base intermediate, leading to the formation of a picolinaldehyde-Zn(II)-Pd(0) catalytic system.
Collapse
Affiliation(s)
- Qian Li
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
18
|
Zhou L, Liu D, Huang H, Zhang K, Ning Y, Chen FE. Palladium-catalyzed decarboxylative allylation of vinyloxazolidin-2-ones with sodium sulfinates: stereoselective assembly of highly functionalized ( Z)-allylic amines. Chem Commun (Camb) 2023; 59:9892-9895. [PMID: 37493523 DOI: 10.1039/d3cc02237d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
We report a general approach to highly functionalized (Z)-allylic amines by decarboxylative allylation of vinyloxazolidin-2-ones. This process engages sodium sulfinates as nucleophiles to form a new carbon-sulfur bond, utilizing a palladium catalyst generated from Pd(OAc)2 and diphosphine ligand dpppe. The scope of the protocol is illustrated by the synthesis of 30 representative allylic amines with high regio- and stereoselectivity. Mechanistic studies show that the Z-selectivity of the reaction stems from the formation of a palladacycle intermediate through Pd-N chelation. The synthetic utility of this method was further exemplified by the gram-scale synthesis and subsequent transformations to various compounds.
Collapse
Affiliation(s)
- Ledan Zhou
- College of Chemistry, Fuzhou University, Fuzhou 350102, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| | - Ding Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| | - Huashan Huang
- College of Chemistry, Fuzhou University, Fuzhou 350102, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| | - Ke Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| | - Yingtang Ning
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| | - Fen-Er Chen
- College of Chemistry, Fuzhou University, Fuzhou 350102, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| |
Collapse
|
19
|
Pan B, Qian X, Zhang Y, Jiang L, Cao R, Qiu L. Iridium-Catalyzed Intramolecular Asymmetric Allylic Etherification of Pyrimidinemethanols: Enantioselective Construction of Multifunctionalized Pyrimidine-Fused Oxazepines. Org Lett 2023. [PMID: 37450016 DOI: 10.1021/acs.orglett.3c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
An iridium-catalyzed intramolecular asymmetric allylic etherification of pyrimidinemethanols is described. In the presence of chiral-bridged biphenyl phosphoramidite ligand L3 and triethylborane, this process provided a class of novel pyrimidine-fused oxazepanes in up to 99% yield with 99.5% enantiomeric excess. The work addresses the challenge of insufficient nucleophilicity of aliphatic alcohols for allyl substitution and indicates the vital value of chiral-bridged biphenyl phosphoramidites. Various multifunctionalized transformations of the products further demonstrate the robust synthetic utility of this methodology.
Collapse
Affiliation(s)
- Bendu Pan
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Xu Qian
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaqi Zhang
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Long Jiang
- Instrumental Analysis and Research Centre, Sun Yat-sen University, Guangzhou 510275, China
| | - Rihui Cao
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Liqin Qiu
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
Bai Z, Wang Y, Meng Q, Xu L, Chen G, Zhou D, Lin B, Hou Y, Li N. Potential inhibitors of microglial activation from the roots of Wikstroemia lichiangensis W. W. Sm. PHYTOCHEMISTRY 2023:113767. [PMID: 37348747 DOI: 10.1016/j.phytochem.2023.113767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/28/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Research on natural inhibitors of microglial overactivation derived from members of the Wikstroemia genus revealed that the extract of W. lichiangensis W. W. Sm. Has a remarkable inhibitory effect on nitric oxide production in overactivated microglia. In the present study, thirty-four compounds, including five undescribed sesquiterpenoids [wiksdauctins A-B (1-2) and wikscarotins A-C (3-5)] and one undescribed lignan [wikstroeminasin A (8)], were isolated from a 95% EtOH extract of W. lichiangensis roots using bio-guided phytochemical research. The structures of the isolated compounds were elucidated using comprehensive spectroscopic analyses. Furthermore, their anti-neuroinflammatory effects were evaluated in lipopolysaccharide-stimulated BV-2 microglia. Seventeen isolated compounds exhibited stronger inhibitory effects than positive control minocycline (IC50 values of 67.08 ± 1.95 μM), with IC50 values ranging from 7.35 ± 2.51 to 64.49 ± 3.38 μM. The findings of this study imply that the isolated compounds might serve as potential therapeutic agents for neurodegenerative diseases.
Collapse
Affiliation(s)
- Zisong Bai
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China; School of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Yingjie Wang
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Qingqi Meng
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Libin Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
21
|
Ke M, Yu Y, Sun L, Li X, Cao Q, Xiao X, Chen F. Regio- and stereoselective syntheses of chiral α-quaternary ( Z)-trisubstituted allylic amino acids via synergistic Pd/Cu catalysis. Chem Commun (Camb) 2023; 59:2632-2635. [PMID: 36779224 DOI: 10.1039/d2cc06820f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Synergistic palladium/copper catalysis for asymmetric allylic alkylation of vinylethylene carbonates with aldimine esters has been developed for the synthesis of α-quaternary (Z)-trisubstituted allylic amino acids under mild conditions. This methodology features broad substrate compatibilities in yields of up to 87% and up to 94% ee. A facile scale-up and straightforward conversion to 1,2,3,5-tetrasubstituted pyrrole and 1,2,5,6-tetrahydropyridine bearing chiral quaternary carbon centers verifies the synthetic utility of this method.
Collapse
Affiliation(s)
- Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yuyan Yu
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Longwu Sun
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Xinzhi Li
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Qianqian Cao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China. .,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China. .,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| |
Collapse
|
22
|
Chen X, Patel K, Marek I. Stereoselective Construction of Tertiary Homoallyl Alcohols and Ethers by Nucleophilic Substitution at Quaternary Carbon Stereocenters. Angew Chem Int Ed Engl 2023; 62:e202212425. [PMID: 36413111 PMCID: PMC10107121 DOI: 10.1002/anie.202212425] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
An efficient method for the stereoselective construction of tertiary C-O bonds via a stereoinvertive nucleophilic substitution at the quaternary carbon stereocenter of cyclopropyl carbinol derivatives using water, alcohols and phenols as nucleophiles has been developed. This substitution reaction proceeds under mild conditions and tolerates several functional groups, providing a new access to the stereoselective formation of highly congested tertiary homoallyl alcohols and ethers.
Collapse
Affiliation(s)
- Xu Chen
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Technion CityHaifa3200009Israel
| | - Kaushalendra Patel
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Technion CityHaifa3200009Israel
| | - Ilan Marek
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Technion CityHaifa3200009Israel
| |
Collapse
|
23
|
Yi ZY, Xiao L, Chang X, Dong XQ, Wang CJ. Iridium-Catalyzed Asymmetric Cascade Allylation/Retro-Claisen Reaction. J Am Chem Soc 2022; 144:20025-20034. [PMID: 36264302 DOI: 10.1021/jacs.2c08811] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An enantiomerically enriched 3-hydroxymethyl pentenal unit is one of the key structural cores in plenty of natural products and drug candidates with significant biological activities. However, very few synthetic methodologies for the facile construction of the related skeletons have been reported to date. Herein, an elegant iridium-catalyzed asymmetric cascade allylation/retro-Claisen reaction of readily available β-diketones with VEC was successfully developed, and a wide range of functionalized chiral 3-hydroxymethyl pentenal derivatives could be prepared in good yields with excellent enantioselectivities. Various 1,3-diketones and functionalized ketones containing different electron-withdrawing groups on the β-position were well tolerated as outstanding partners with high reactivity and excellent regio-/chemo-/enantioselectivity. The synthetic utility of product chiral 3-hydroxymethyl pentenal derivatives was well shown through gram-scale transformation, hydrogenation, cyclopropanation, hydroboration, and olefin metathesis. Moreover, this elegant protocol demonstrated synthetic applications in the concise synthesis of synthetically useful chiral building block (S)-Taniguchi lactone and the formal synthesis of natural product cytisine. A rational reaction pathway was proposed based on the experimental results and control experiments.
Collapse
Affiliation(s)
- Zhi-Yuan Yi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lu Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Pandit S, Adhikari AS, Majumdar N. Iridium-Catalyzed Enantioselective Ring Opening of Alkenyl Oxiranes by Unactivated Carboxylic Acids. Org Lett 2022; 24:7388-7393. [PMID: 36197282 DOI: 10.1021/acs.orglett.2c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iridium-catalyzed enantioselective ring-opening of alkenyl oxiranes by unactivated carboxylic acids has been developed. The reaction undergoes at ambient conditions between an in-situ-generated chiral iridium-π-allyl complex and carboxylic acids to provide rapid access to valuable alkenyl diols in high yields. The synthetic utility of this method is demonstrated by the elaboration of the products into various medium and large ring-sized compounds that are part of biologically relevant molecules.
Collapse
Affiliation(s)
- Soumen Pandit
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, Uttar Pradesh India
| | - Amit Singh Adhikari
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, Uttar Pradesh India
| | - Nilanjana Majumdar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
25
|
Liao L, Xu X, Ji J, Zhao X. Asymmetric Intermolecular Iodinative Difunctionalization of Allylic Sulfonamides Enabled by Organosulfide Catalysis: Modular Entry to Iodinated Chiral Molecules. J Am Chem Soc 2022; 144:16490-16501. [PMID: 36053004 DOI: 10.1021/jacs.2c05668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electrophilic halogenation of alkenes is a powerful transformation offering a convenient route for the construction of valuable functionalized molecules. However, as a highly important reaction in this field, catalytic asymmetric intermolecular iodinative difunctionalization remains a formidable challenge. Herein, we report that an efficient Lewis basic chiral sulfide-catalyzed approach enables this reaction. By this approach, challenging substrates such as γ,γ-disubstituted allylic sulfonamides and 1,1-disubstituted alkenes with an allylic sulfonamide unit undergo electrophilic iodinative difunctionalization to give a variety of iodine-functionalized chiral molecules in good yields with excellent enantio- and diastereoselectivities. A series of free phenols as nucleophiles are successfully incorporated into the substrates. Aside from phenols, primary and secondary alcohols, fluoride, and azide also serve as efficient nucleophiles. The obtained iodinated products are a good platform molecule, which can be easily transformed into various chiral compounds such as α-aryl ketones, chiral secondary amines, and aziridines via rearrangement or substitution. Mechanistic studies revealed that the chiral sulfide catalyst displays a superior effect on control of the reactivity of electrophilic iodine and the enantioselective construction of the chiral iodiranium ion intermediate and catalyst aggregates might be formed as a resting state in the reactions.
Collapse
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xinru Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jieying Ji
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
26
|
Parmar B, Patel P, Bhadu GR, Eringathodi S. Comparative Effect of Amino Functionality on the Performance of Isostructural Mixed‐Ligand MOFs Towards Multifunctional Catalytic Application. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bhavesh Parmar
- Central Salt and Marine Chemicals Research Institute CSIR Analytical and Environmental Science Division and Centralized Instrument Facility Lab No. 106, AESD&CIF, CSIR-CSMCRI,G. B. Marg, 364002 Bhavnagar INDIA
| | - Parth Patel
- Central Salt and Marine Chemicals Research Institute CSIR Inorganic Materials and Catalysis Division Lab No. 106, AESD&CIF, CSIR-CSMCRI,G. B. Marg, 364002 Bhavnagar INDIA
| | - Gopala Ram Bhadu
- Central Salt and Marine Chemicals Research Institute CSIR Analytical and Environmental Science Division and Centralized Instrument Facility Lab No. 106, AESD&CIF, CSIR-CSMCRI,G. B. Marg, 364002 Bhavnagar INDIA
| | - Suresh Eringathodi
- Central Salt and Marine Chemicals Research Institute CSIR Analytical and Environmental Science Division & Centralized Instrument Facility Lab 013, AESD&CIF,CSIR-CSMCRIG B Marg 364002 Bhavnagar INDIA
| |
Collapse
|
27
|
Khan S, Shah BH, Zhao C, Zhang YJ. Pd-Catalyzed regio- and stereoselective allylic substitution of vinylethylene carbonates with 1,2,4-triazoles. Org Biomol Chem 2022; 20:6532-6536. [PMID: 35880932 DOI: 10.1039/d2ob01156e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
N 1-Substituted 1,2,4-triazoles are ubiquitous skeletons in medicinal agents, agrochemicals, and organic materials. Herein, an efficient and practical method for the synthesis of N1-allylated 1,2,4-triazoles via Pd-catalyzed allylic substitution of vinylethylene carbonates (VECs) with 1,2,4-triazoles has been developed. By using a catalyst generated in situ from Pd2(dba)3·CHCl3 and DPPE under mild conditions, the process allows rapid access to N1-allylated 1,2,4-triazoles bearing diverse functionalities in high yields with excellent N1-selectivities, linear-selectivities, and Z-stereoselectivities.
Collapse
Affiliation(s)
- Sardaraz Khan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Babar Hussain Shah
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Can Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Yong Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| |
Collapse
|
28
|
Lin S, Zhao X, He L, Li X, Jiang Q, Xiang L, Ye Y, Gan X. Palladium-catalyzed allylic etherification of phenols with vinyl ethylene carbonate. Front Chem 2022; 10:962355. [PMID: 35936101 PMCID: PMC9354801 DOI: 10.3389/fchem.2022.962355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
The palladium-catalyzed decarboxylative reactions of phenols and vinyl ethylene carbonate to produce allylic aryl ethers under mild conditions have been established. Adopting an inexpensive PdCl2(dppf) catalyst promotes the efficient conversion of phenols to the corresponding allylic aryl ethers via the formation of a new C-O bond in good isolated yields with complete regioselectivities, acceptable functional group tolerance and operational simplicity. The robust procedure could be completed smoothly by conducting a scaled-up reaction with comparable efficiency to afford the target product.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongqin Ye
- *Correspondence: Yongqin Ye, ; Xiaohong Gan,
| | | |
Collapse
|
29
|
Luo W, Zhang LM, Zhang ZM, Zhang J. Synthesis of W-Phos Ligand and Its Application in the Copper-Catalyzed Enantioselective Addition of Linear Grignard Reagents to Ketones. Angew Chem Int Ed Engl 2022; 61:e202204443. [PMID: 35555954 DOI: 10.1002/anie.202204443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 12/31/2022]
Abstract
The asymmetric catalytic addition of linear Grignard reagents to ketones has been a long-standing challenge in organic synthesis. Herein, a novel family of PNP ligands (W-Phos) was designed and applied in copper-catalyzed asymmetric addition of linear Grignard reagents to aryl alkyl ketones, allowing facile access to versatile chiral tertiary alcohols in good to high yields with excellent enantioselectivities (up to 94 % yield, 96 % ee). The process can also be used to synthesize chiral allylic tertiary alcohols from more challenging α,β-unsaturated ketones. Notably, the potential utility of this method is demonstrated in the gram-scale synthesis and modification of various densely functionalized medicinally relevant molecules.
Collapse
Affiliation(s)
- Wenjun Luo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.,Zhuhai Fudan Innovation Institute, Hengqin NewArea, Zhuhai, 519000, P.R. China
| | - Li-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.,Zhuhai Fudan Innovation Institute, Hengqin NewArea, Zhuhai, 519000, P.R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, P. R. China
| |
Collapse
|
30
|
Recent applications of vinylethylene carbonates in Pd-catalyzed allylic substitution and annulation reactions: Synthesis of multifunctional allylic and cyclic structural motifs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Zhang J, Luo W, Zhang LM, Zhang ZM. Design and Synthesis of W‐Phos and Application in Copper‐Catalyzed Enantioselective Addition of Linear Grignard Reagents to Ketones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junliang Zhang
- Fudan University Department of Chemistry 200062 Shanghai CHINA
| | - Wenjun Luo
- Fudan University Department of Chemistry CHINA
| | | | | |
Collapse
|
32
|
Ke M, Yu Y, Zhang K, Zuo S, Liu Z, Xiao X, Chen F. Synergistic Pd/Cu Catalyzed Allylation of Cyclic Ketimine Esters with Vinylethylene Carbonates: Enantioselective Construction of Trisubstituted Allylic 2
H
‐Pyrrole Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miaolin Ke
- Institute of Pharmaceutical Science and Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Yuyan Yu
- Institute of Pharmaceutical Science and Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ke Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| | - Sheng Zuo
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| | - Zhigang Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| |
Collapse
|
33
|
Stereodivergent Desymmetrization of Simple Dicarboxylates via Branch‐Selective Pd/Cu Catalyzed Allylic Substitution. Chemistry 2022; 28:e202200273. [DOI: 10.1002/chem.202200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 11/07/2022]
|
34
|
Xue S, Cristòfol À, Limburg B, Zeng Q, Kleij AW. Dual Cobalt/Organophotoredox Catalysis for Diastereo- and Regioselective 1,2-Difunctionalization of 1,3-Diene Surrogates Creating Quaternary Carbon Centers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sijing Xue
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Bart Limburg
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Qian Zeng
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
35
|
Zhang K, Ke M, Liu Z, Zuo S, Chen FE. One-Pot Synthesis of Cyclopentenols from Vinylethylene Carbonates via Palladium-Catalyzed Decarboxylative Allylation and Cascade Oxidation-Cyclization. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ke Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University,Yanbian University, Yanji 133000, People’s Republic of China
| | - Miaolin Ke
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Zhigang Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Sheng Zuo
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Fen-er Chen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University,Yanbian University, Yanji 133000, People’s Republic of China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| |
Collapse
|
36
|
Wu H, Hu L, Shi Y, Shen Z, Huang G. Computational Insights into Palladium/Boron-Catalyzed Allylic Substitution of Vinylethylene Carbonates with Water: Outer-Sphere versus Inner-Sphere Pathway and Origins of Regio- and Enantioselectivities. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hongli Wu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Lingfei Hu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Yu Shi
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Zhen Shen
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
37
|
Khan S, Wang Y, Zhang MN, Perveen S, Zhang J, Khan A. Regio- and enantioselective formation of tetrazole-bearing quaternary stereocenters via palladium-catalyzed allylic amination. Org Chem Front 2022. [DOI: 10.1039/d1qo01648b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general and efficient method via catalysis by readily available Pd(0)/DACH-naphthyl catalyst under mild conditions, unlocks a new platform that permits the synthesis of elusive quaternary N2-allylic tetrazoles, even in the context of late-stage functionalization.
Collapse
Affiliation(s)
- Shahid Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Yu Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Mei-Na Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Shahida Perveen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| |
Collapse
|
38
|
Wang Y, Xu Y, Khan S, Zhang Z, Khan A. Selective approach to N-substituted tertiary 2-pyridones. NEW J CHEM 2022. [DOI: 10.1039/d2nj01065h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Commercially available 2-hydroxypyridines are converted into enantiomerically enriched allylic 2-pyridones with elusive N-substituted tertiary carbon by means of Pd-catalyzed allylic amination of vinyl cyclic carbonates.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Yaoyao Xu
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Shahid Khan
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Zhunjie Zhang
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| |
Collapse
|
39
|
Huang H, Huang Y, Zou S, Yu B, Yan X, Liu S. Highly Regioselective and Ligand-Controlled Diastereodivergent Aminomethylative Annulation of Dienyl Alcohols Enabled by Hydrogen-Bonding Assisting Effect. Chem Sci 2022; 13:2317-2323. [PMID: 35310502 PMCID: PMC8864680 DOI: 10.1039/d1sc06479g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
A ligand-controlled palladium-catalyzed highly regioselective and diastereodivergent aminomethylative annulation of dienyl alcohols with aminals has been established, which allows for producing either cis- or trans-disubstituted isochromans in good yields with...
Collapse
|
40
|
Transition-metal-catalyzed switchable divergent cycloaddition of para-quinone methides and vinylethylene carbonates: Access to different sized medium-sized heterocycles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Functional CO2 based heterocycles as precursors in organic synthesis. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Fan Y, Li QZ, Li JL, Zhang B, Dai Z, Xie K, Zeng R, Zou L, Zhang X. Palladium-catalysed stereoselective [3 + 2] annulation of vinylethylene carbonates and tryptanthrin-based ketones. Org Chem Front 2022. [DOI: 10.1039/d1qo01543e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first example of palladium-catalysed [3 + 2] annulation of VECs and ketones has been developed, allowing the efficient synthesis of indoloquinazolinones in generally excellent yields with good stereoselectivity.
Collapse
Affiliation(s)
- Yang Fan
- College of Pharmacy, Dali University, Dali 671003, PR China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Bin Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Zhen Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Ke Xie
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
43
|
Li T, Zhu X, Jiang H, Wang Y, Zheng N, Peng T, Gao R, Shi L, Hao X, Song M. Pd‐catalyzed decarboxylative [3 + 2] cycloaddition: Assembly of highly functionalized spirooxindoles bearing two quaternary centers. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tiantian Li
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Xinju Zhu
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Hui Jiang
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Yanong Wang
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen China
| | - Tian Peng
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Rui Gao
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Linlin Shi
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Xin‐Qi Hao
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Mao‐Ping Song
- College of Chemistry ZhengZhou University Zhengzhou China
| |
Collapse
|
44
|
He Q, Zhang D, Zhang F, Liu X, Feng X. Asymmetric Catalytic Epoxidation of Terminal Enones for the Synthesis of Triazole Antifungal Agents. Org Lett 2021; 23:6961-6966. [PMID: 34424719 DOI: 10.1021/acs.orglett.1c02588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An enantioselective epoxidation of α-substituted vinyl ketones was realized to construct the key epoxide intermediates for the synthesis of various triazole antifungal agents. The reaction proceeded efficiently in high yields with good enantioselectivities by employing a chiral N,N'-dioxide/ScIII complex as the chiral catalyst and 35% aq. H2O2 as the oxidant. It enabled the facile transformation for optically active isavuconazole, efinaconazole, and other potential antifungal agents.
Collapse
Affiliation(s)
- Qianwen He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Dong Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fengcai Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
45
|
Chang R, Cai S, Yang G, Yan X, Huang H. Asymmetric Aminomethylative Etherification of Conjugated Dienes with Aliphatic Alcohols Facilitated by Hydrogen Bonding. J Am Chem Soc 2021; 143:12467-12472. [PMID: 34355892 DOI: 10.1021/jacs.1c06144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The asymmetric construction of allylic C-O bonds with primary or secondary aliphatic alcohols remains a substantial challenge in Pd-catalyzed allylation chemistry. Here, we report the development of an additive-free, palladium-catalyzed asymmetric aminomethylative etherification of conjugated dienes that enables the efficient, asymmetric O-allylation of primary and secondary aliphatic alcohols as well as water. Mechanism studies revealed that the hydrogen-bonding interaction between the alcohol and the in situ introduced aminomethyl moiety is critical to facilitate the nucleophilic addition of the alcohol to the π-allylpalladium species, which opened up the possibility of using aliphatic alcohols and water as nucleophilic substrates. This reaction tolerates a broad range of functional groups and shows remarkable regioselectivities and uniformly high enantioselectivities, which provides a direct and rapid approach to optically pure allylic 1,3-amino ethers and 1,3-amino alcohols from simple starting materials.
Collapse
Affiliation(s)
- Rui Chang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Shoule Cai
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guoqing Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Xuyang Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, People's Republic of China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
46
|
Major MM, Guóth M, Balogh S, Simon J, Bényei AC, Bakos J, Farkas G. Novel Pd(PN,S)-complexes: Highly active catalysts designed for asymmetric allylic etherification. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Ming S, Qurban S, Du Y, Su W. Asymmetric Synthesis of Multi-Substituted Tetrahydrofurans via Palladium/Rhodium Synergistic Catalyzed [3+2] Decarboxylative Cycloaddition of Vinylethylene Carbonates. Chemistry 2021; 27:12742-12746. [PMID: 34197006 DOI: 10.1002/chem.202102024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 11/10/2022]
Abstract
Unlike the comprehensive development of tandem multi-metallic catalysis, bimetallic synergistic catalysis has been challenging to achieve high stereoselectivity with the generation of multi-stereogenic centers. Herein, an efficient synergistic catalysis for the diastereo- and enantioselective synthesis of multi-substituted tetrahydrofuran derivatives has been developed. Under mild reaction conditions, a series of target molecules with three consecutive stereocenters were synthesized by a palladium(0)/rhodium(III) bimetal-catalyzed asymmetric decarboxylative [3+2]-cycloaddition of vinylethylene carbonates with α,β-unsaturated carbonyl compounds. The corresponding adducts were obtained with moderate to high yields (67 %∼98 %) and excellent stereoselectivities (>20 : 1 d.r., up to 99 % ee).
Collapse
Affiliation(s)
- Siliang Ming
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Saira Qurban
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China
| | - Yu Du
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
48
|
Xue S, Lücht A, Benet-Buchholz J, Kleij AW. Pd/Cu Dual-Catalyzed Asymmetric Synthesis of Highly Functional All-Carbon Quaternary Stereocenters from Vinyl Carbonates. Chemistry 2021; 27:10107-10114. [PMID: 33955608 DOI: 10.1002/chem.202100677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 11/05/2022]
Abstract
The challenging metal-catalyzed asymmetric synthesis of highly functional quaternary carbon centers using decarboxylative C(sp3 )-C(sp3 ) bond formation reactions is reported. The key substrate, a vinyl cyclic carbonate, is activated to provide concomitantly both the requisite nucleophile (by formal umpolung) and electrophile reaction partner preceding the asymmetric cross-coupling process. A wide screening of reaction conditions, additives and catalyst precursors afforded a protocol that gave access to a series of compounds featuring densely functionalized, elusive quaternary carbon stereocenters in appreciable yield and with enantiomeric ratios (er's) of up to 90 : 10.
Collapse
Affiliation(s)
- Sijing Xue
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
| | - Alexander Lücht
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain.,Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
49
|
Wang T, Zheng D, Hu Y, Zhou J, Liu Y, Zhang J, Wang L. Efficient responsive ionic liquids with multiple active centers for the transformation of CO2 under mild conditions: Integrated experimental and theoretical study. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Xue S, Limburg B, Ghorai D, Benet-Buchholz J, Kleij AW. Asymmetric Synthesis of Homoallylic Alcohols Featuring Vicinal Tetrasubstituted Carbon Centers via Dual Pd/Photoredox Catalysis. Org Lett 2021; 23:4447-4451. [PMID: 34014097 DOI: 10.1021/acs.orglett.1c01380] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dual palladium/photoredox-catalysis provides an effective method for the decarboxylative asymmetric synthesis of vicinal α,β-tri/tetra- or α,β-tetrasubstituted homoallylic alcohols using Hantzsch-type esters as radical precursors. This mild methodology capitalizes on vinyl cyclic carbonates as accessible reagents providing the target molecules in appreciable to good yields, high branch selectivity, and enantiomeric ratios of up to 94:6, making it a rare example of using prochiral electrophiles for the creation of vicinal congested carbon centers.
Collapse
Affiliation(s)
- Sijing Xue
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Bart Limburg
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Debasish Ghorai
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|