1
|
Burchell-Reyes K, Paquin JF. Fluorohydrins and where to find them: recent asymmetric syntheses of β-fluoro alcohols and their derivatives. Org Biomol Chem 2025; 23:4593-4615. [PMID: 40241682 DOI: 10.1039/d5ob00330j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Fluorohydrins - or β-fluorinated alcohols - and their fluorinated group derivatives are a biologically relevant class of compounds, with applications ranging from PET tracers to cancer therapeutics. Recent efforts have unlocked asymmetric access to these related motifs through reactions of carbonyls, alkenes, organoboranes, and epoxides or transformations such as cyclizations or ring expansions. The present work provides an overview of synthetic approaches to various fluorohydrins that have been explored in the past decade, as well as selected examples of these syntheses applied to medicinal chemistry.
Collapse
Affiliation(s)
- Kelly Burchell-Reyes
- PROTEO, CCVC, Département de chimie, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Jean-François Paquin
- PROTEO, CCVC, Département de chimie, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
2
|
Liu P, He Y, Jiang CH, Ren WR, Jin RX, Zhang T, Chen WX, Nie X, Wang XS. CF 2H-synthon enables asymmetric radical difluoroalkylation for synthesis of chiral difluoromethylated amines. Nat Commun 2025; 16:599. [PMID: 39799146 PMCID: PMC11724884 DOI: 10.1038/s41467-025-55912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity. Leveraging the unique fluorine effect, we design and synthesize a radical CF₂H synthon by incorporating isoindolinone into alkyl halides for asymmetric radical transformation. Here, we report an efficient strategy for the asymmetric construction of carbon stereocenters featuring a difluoromethyl group via nickel-catalyzed Negishi cross-coupling. This approach demonstrates mild reaction conditions and excellent enantioselectivity. Given that optically pure difluoromethylated amines and isoindolinones are key structural motifs in bioactive compounds, this strategy offers a practical solution for the efficient synthesis of CF₂H-containing chiral drug-like molecules.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yan He
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Chen-Hui Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wei-Ran Ren
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ruo-Xing Jin
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ting Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wang-Xuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xuan Nie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xi-Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Tang X, Chen Y, Huang J. Recent Progress of Substituted Allylboron Compounds in Catalytic Asymmetric Allylation Reactions. CHEM REC 2024:e202400208. [PMID: 39707681 DOI: 10.1002/tcr.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/01/2024] [Indexed: 12/23/2024]
Abstract
The catalytic asymmetric allylation reaction involving allylboron species has emerged as a powerful tool to access highly stereoselective allylation products. In the early years, most of the researches focused on the reaction of unsubstituted allylboronates with ketones or imines. With the synthesis of complex substituted allylboronates, allylboronic acids and allyltrifluoroborates, the type of reactions and the variety of substrates are greatly expanded. Therefore, this review article will emphasize on the aspect of regio- and stereoselectivity when substituted allylboron species involving and their application on the construction of versatile organic building blocks, drugs and natural products.
Collapse
Affiliation(s)
- Xiaoxue Tang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Yushuang Chen
- Dr. Yushuang Chen, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| |
Collapse
|
4
|
Li BJ, Ruan YL, Zhu L, Zhou J, Yu JS. Recent advances in catalytic enantioselective construction of monofluoromethyl-substituted stereocenters. Chem Commun (Camb) 2024; 60:12302-12314. [PMID: 39240236 DOI: 10.1039/d4cc03788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Chiral organofluorine compounds featuring a monofluoromethyl (CH2F)-substituted stereocenter are often encountered in a number of drugs and bioactive molecules. Consequently, the development of catalytic asymmetric methods for the enantioselective construction of CH2F-substituted stereocenters has made great progress over the past two decades, and a variety of enantioselective transformations have been accordingly established. According to the types of fluorinated reagents or substrates employed, these protocols can be divided into the following major categories: (i) enantioselective ring opening of epoxides or azetidinium salts by fluoride anions; (ii) asymmetric monofluoromethylation with 1-fluorobis(phenylsulfonyl)methane; (iii) asymmetric fluorocyclization of functionalized alkenes with Selectfluor; and (iv) asymmetric transformations involving α-CH2F ketones, α-CH2F alkenes, or other CH2F-containing substrates. This feature article aims to summarize these recent advances and discusses the possible reaction mechanisms, advantages and limitations of each protocol and their applications. Synthetic opportunities still open for further development are illustrated as well. This review article will be an inspiration for researchers engaged in asymmetric catalysis, organofluorine chemistry, and medicinal chemistry.
Collapse
Affiliation(s)
- Bo-Jie Li
- Hubei Engineering University, Xiaogan, China.
| | - Yu-Long Ruan
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.
| | - Lei Zhu
- Hubei Engineering University, Xiaogan, China.
| | - Jian Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.
| | - Jin-Sheng Yu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
5
|
Zhang KX, Liu MY, Yao BY, Zhou QL, Xiao LJ. Stereoconvergent and Enantioselective Synthesis of Z-Homoallylic Alcohols via Nickel-Catalyzed Reductive Coupling of Z/ E-1,3-Dienes with Aldehydes. J Am Chem Soc 2024; 146:22157-22165. [PMID: 39102638 DOI: 10.1021/jacs.4c07907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Stereoconvergent reactions enable the transformation of mixed stereoisomers into well-defined, chiral products─a crucial strategy for handling Z/E-mixed olefins, which are common but challenging substrates in organic synthesis. Herein, we report a stereoconvergent and highly enantioselective method for synthesizing Z-homoallylic alcohols via the nickel-catalyzed reductive coupling of Z/E-mixed 1,3-dienes with aldehydes. This process is enabled by an N-heterocyclic carbene ligand characterized by C2-symmetric backbone chirality and bulky 2,6-diisopropyl N-aryl substituents. Our method achieves excellent stereocontrol over both enantioselectivity and Z-selectivity in a single step, producing chiral Z-homoallylic alcohols that are valuable in natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Kai-Xiang Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Mei-Yu Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Bo-Ying Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Alexeev MS, Strelkova TV, Ilyin MM, Nelyubina YV, Bespalov IA, Medvedev MG, Khrustalev VN, Kuznetsov NY. Amine adducts of triallylborane as highly reactive allylborating agents for Cu(I)-catalyzed allylation of chiral sulfinylimines. Org Biomol Chem 2024; 22:4680-4696. [PMID: 38716901 DOI: 10.1039/d4ob00291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The implementation of selective catalytic processes with highly active reagents is an attractive strategy that meets the modern principles of sustainable development of chemistry. In the current study, we for the first time describe the method and general principles of Cu(I)-catalyzed allylation of imines with amine adducts of allylic triorganoboranes. Triallylborane is an extremely reactive compound and cannot be used for the catalytic allylation of imines, whereas its amine adducts are ideal substrates for catalysis. The structure of the amine fragment successfully balances the safety, selectivity and stability of the allylboron reagent, allowing it to demonstrate high activity in catalytic allylation reactions, exceeding many times any known allylboranes. The obtained results are supported by quantitative kinetics data and DFT calculations. The catalytic efficacy of the system was demonstrated on model sulfinylimines (23 examples). High diastereoselectivity up to >99% was achieved, including for the gram-scale synthesis of 2-hydroxyphenyl-derivatives. Taking into account the high reactivity and unsurpassed atom-economy of amine adducts of triallylborane (AAT), they can be considered as prospective allylation reagents with Cu(I) and other appropriate metallocatalysts.
Collapse
Affiliation(s)
- Michael S Alexeev
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| | - Tatiana V Strelkova
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Michael M Ilyin
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Ivan A Bespalov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
- Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russian Federation
| | - Michael G Medvedev
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| | - Victor N Khrustalev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
- Peoples Friendship University of Russia, Miklukho-Maklay st. 6, 117198 Moscow, Russian Federation
| | - Nikolai Yu Kuznetsov
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| |
Collapse
|
7
|
Banerjee S, Vanka K. The Role of Aromatic Alcohol Additives on Asymmetric Organocatalysis Reactions: Insights from Theory. Chem Asian J 2024; 19:e202300997. [PMID: 38270228 DOI: 10.1002/asia.202300997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
The presence of an aromatic additive has been seen to enhance, often significantly, the enantioselectivity and yield in asymmetric organocatalysis. Considering their success across a dizzying range of organocatalysts and organic transformations, it would seem unlikely that a common principle exists for their functioning. However, the current investigations with DFT suggest a general principle: the phenolic additive sandwiches itself, through hydrogen bonding and π⋅⋅⋅π stacking, between the organocatalyst coordinated electrophile and nucleophile. This is seen for a wide range of experimentally reported systems. That such complex formation leads to enhanced stereoselectivity is then demonstrated for two cases: the cinchona alkaloid complex (BzCPD), catalysing thiocyanation (2-naphthol additive employed), as well as for L-pipecolicacid catalysing the asymmetric nitroaldol reaction with a range of nitro-substituted phenol additives. These findings, indicating that dual catalysis takes place when phenolic additives are employed, are likely to have a significant impact on the field of asymmetric organocatalysis.
Collapse
Affiliation(s)
- Subhrashis Banerjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Liang XX, Zhu C, Zhang W, Du YN, Xu L, Liu L, Zhang Y, Han MY. Nucleophilic Allylation of Acylsilanes in Water: An Effective Alternative to Functionalized Tertiary α-Silylalcohols. J Org Chem 2023; 88:12087-12099. [PMID: 37497648 DOI: 10.1021/acs.joc.3c00668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A nucleophilic allylation of acylsilanes in water was developed, generating versatile functionalized tertiary α-silyl alcohols in high yields. With the assistance of hydrogen bonding, a reaction model of less reactive acylsilane was achieved. Unlike the conventional strategy, transition metals and an additional Lewis acid catalyst were not required, and rate acceleration was observed in water.
Collapse
Affiliation(s)
- Xiu-Xia Liang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Chen Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Wang Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Ya-Nan Du
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lihua Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
9
|
Hu Y, Zou Y, Yang H, Ji H, Jin Y, Zhang Z, Liu Y, Zhang W. Precise Synthesis of Chiral Z-Allylamides by Cobalt-Catalyzed Asymmetric Sequential Hydrogenations. Angew Chem Int Ed Engl 2023; 62:e202217871. [PMID: 36753391 DOI: 10.1002/anie.202217871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Asymmetric sequential hydrogenations of conjugated enynes have been developed using a Ph-BPE-CoI catalyst for the precise synthesis of chiral Z-allylamides in high activity (up to 1000 substrate/catalyst (S/C)) and with excellent enantioselectivity (up to >99 % enantiomeric excess (ee)). Mechanism experiments and theoretical calculations support a cationic CoI /CoIII redox catalytic cycle. The catalytic activity difference between cobalt complexes of Ph-BPE and QuinoxP* was explained by the process decomposition of rate-determining step in the second hydrogenation.
Collapse
Affiliation(s)
- Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huiwen Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Haotian Ji
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yue Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
10
|
Braire J, Macé A, Zaier R, Cordier M, Vidal J, Lalli C, Martel A, Carreaux F. Catalytic Enantioselective Allylboration and Related Reactions of Isatins Promoted by Chiral BINOLs: Scope and Mechanistic Studies. J Org Chem 2023; 88:1469-1492. [PMID: 36690446 DOI: 10.1021/acs.joc.2c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An improvement in the catalytic enantioselective allylboration of isatins with 2-allyl-1,3,2-dioxaborolane in the presence of chiral BINOL derivatives is reported, offering an efficient one-step access to enantioenriched N-unprotected 3-allyl-3-hydroxy-2-oxindoles. This catalytic process is also effective for the crotylboration reaction with enantiomeric ratios (er) up to 97:3, as well as for the asymmetric synthesis of homopropargylic alcohols via an allenyl addition to indoline-2,3-diones. Origins of the high enantioselectivity in chiral BINOL-catalyzed allylboration of isatins were examined by DFT calculations. A hypothetical scenario suggested a crucial internal hydrogen bonding between the amide group (C═O···H-O) and the ethylene hydroxyl of the transient chiral mixed boronate ester, generating a rigid and stabilized system that favors the addition of the allylboron species to the Re face of the ketone function. The key role of the alcohol additive (t-BuOH or t-AmOH) in the enantioselective allylboration reaction of isatins has also been shown on the basis of a kinetics study and computational calculations by favoring the transesterification of the 2-allyl-1,3,2-dioxaborolane with BINOL via proton transfer processes.
Collapse
Affiliation(s)
- Julien Braire
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Aurélie Macé
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Rania Zaier
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS-Université du Maine, Avenue Olivier Messiaen, 72085 Cedex Le Mans, France
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Joëlle Vidal
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Claudia Lalli
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Arnaud Martel
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS-Université du Maine, Avenue Olivier Messiaen, 72085 Cedex Le Mans, France
| | - François Carreaux
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
11
|
Boni YT, Vaitla J, Davies HML. Catalyst Controlled Site- and Stereoselective Rhodium(II) Carbene C(sp 3)-H Functionalization of Allyl Boronates. Org Lett 2023; 25:5-10. [PMID: 36563330 DOI: 10.1021/acs.orglett.2c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rhodium(II) catalyst-controlled site- and stereoselective carbene insertion into the distal allylic C(sp3)-H bond of allyl boronates is reported. The optimum chiral catalyst for this reaction is Rh2(S-TPPTTL)4. The fidelity and asymmetric induction of this catalytic transformation allows for a highly diastereoselective and enantioselective C-C bond formation without interference from the allyl boronate functionality. The resulting functionalized allyl boronates are susceptible to stereoselective allylations, generating products with control of stereochemistry at four contiguous stereogenic centers.
Collapse
Affiliation(s)
- Yannick T Boni
- Emory University, Department of Chemistry, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Janakiram Vaitla
- Emory University, Department of Chemistry, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M L Davies
- Emory University, Department of Chemistry, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
12
|
Ge L, Sinnema EG, Pérez JM, Postolache R, Castiñeira Reis M, Harutyunyan SR. Enantio- and Z-selective synthesis of functionalized alkenes bearing tertiary allylic stereogenic center. SCIENCE ADVANCES 2023; 9:eadf8742. [PMID: 36638168 PMCID: PMC9839328 DOI: 10.1126/sciadv.adf8742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Olefins are ubiquitous in biologically active molecules and frequently used as building blocks in chemical transformations. However, although many strategies exist for the synthesis of stereodefined E-olefines, their thermodynamically less stable Z counterparts are substantially more demanding, while access to those bearing an allylic stereocenter with an adjacent reactive functionality remains unsolved altogether. Even the classic Wittig reaction, arguably the most versatile and widely used approach to construct Z-alkenes, falls short for the synthesis of these particularly challenging yet highly useful structural motives. Here, we report a general methodology for Z-selective synthesis of functionalized chiral alkenes that establishes readily available alkene-derived phosphines as an alternative to alkylating reagents in Wittig olefination, thus offering previously unidentified retrosynthetic disconnections for the formation of functionalized disubstituted alkenes. We demonstrate the potential of this method by structural diversification of several bioactive molecules.
Collapse
|
13
|
Xu S, Del Pozo J, Romiti F, Fu Y, Mai BK, Morrison RJ, Lee K, Hu S, Koh MJ, Lee J, Li X, Liu P, Hoveyda AH. Diastereo- and enantioselective synthesis of compounds with a trifluoromethyl- and fluoro-substituted carbon centre. Nat Chem 2022; 14:1459-1469. [PMID: 36376387 PMCID: PMC9772297 DOI: 10.1038/s41557-022-01054-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Molecules that contain one or more fluorine atoms are crucial to drug discovery. There are protocols available for the selective synthesis of different organofluorine compounds, including those with a fluoro-substituted or a trifluoromethyl-substituted stereogenic carbon centre. However, approaches for synthesizing compounds with a trifluoromethyl- and fluoro-substituent stereogenic carbon centre are far less common. This potentially impactful set of molecules thus remains severely underdeveloped. Here we introduce a catalytic regio-, diastereo- and enantioselective strategy for the preparation of homoallylic alcohols bearing a stereogenic carbon centre bound to a trifluoromethyl group and a fluorine atom. The process, which involves a polyfluoroallyl boronate and is catalysed by an in situ-formed organozinc complex, can be used for diastereodivergent preparation of tetrafluoro-monosaccharides, including ribose core analogues of the antiviral drug sofosbuvir (Sovaldi). Unexpected reactivity/selectivity profiles, probably originating from the trifluoromethyl- and fluoro-substituted carbon site, are discovered, foreshadowing other unique chemistries that remain unknown.
Collapse
Affiliation(s)
- Shibo Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Juan Del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Filippo Romiti
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan J Morrison
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - KyungA Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Shaowei Hu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Ming Joo Koh
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Jaehee Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Xinghan Li
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France.
| |
Collapse
|
14
|
Nicholson K, Peng Y, Llopis N, Willcox DR, Nichol GS, Langer T, Baeza A, Thomas SP. Boron-Catalyzed, Diastereo- and Enantioselective Allylation of Ketones with Allenes. ACS Catal 2022; 12:10887-10893. [PMID: 36082052 PMCID: PMC9442582 DOI: 10.1021/acscatal.2c03158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Indexed: 01/04/2023]
Affiliation(s)
- Kieran Nicholson
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, United Kingdom
| | - Yuxuan Peng
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, United Kingdom
| | - Natalia Llopis
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, United Kingdom
| | - Dominic R. Willcox
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, United Kingdom
| | - Gary S. Nichol
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, United Kingdom
| | - Thomas Langer
- Pharmaceutical Technology & Development, Chemical Development U.K., AstraZeneca, Silk Road, Macclesfield SK10 2NA, United Kingdom
| | - Alejandro Baeza
- Instituto de Síntesis Orgánica and Dpto. de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Stephen P. Thomas
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
15
|
Irie Y, Chen H, Fuse H, Mitsunuma H, Kanai M. Linear‐Selective Allylation of Aldehydes with Simple Alkenes Mediated by Quadruple Hybrid Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yu Irie
- The University of Tokyo JAPAN
| | | | | | | | | |
Collapse
|
16
|
Tang X, Su Z, Lin Q, Lin L, Dong S, Feng X. Asymmetric catalytic α‐selective allylation of ketones with allyltrifluoroborates using dual‐functional chiral
In
III
/
N
,
N
′‐dioxide complex. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoxue Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Qianchi Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
17
|
Ma WW, Yang C, Xie Q, Xu YH. Dienylation of N-benzoylhydrazones with CF 3-substituted homoallenylboronates in water. Org Biomol Chem 2022; 20:1386-1390. [PMID: 35088801 DOI: 10.1039/d1ob02335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient method for the dienylation of N-benzoylhydrazones in water has been developed. This protocol expanded the synthetic application of functionalized homoallenylboronates to provide the useful 2-aminomethyl-1,3-diene derivatives with high efficiency (up to 99% yield) and stereoselectivity without using any catalyst, additive or inert atmosphere. Furthermore, the transformation of a 2-aminomethyl-1,3-diene derivative to synthesize a functionalized pyrrolidine derivative was also explored.
Collapse
Affiliation(s)
- Wei-Wei Ma
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R China.
| | - Chao Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R China.
| | - Qiang Xie
- Department of Nuclear Medicine the First Affiliated Hospital of USTC; the Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R China.
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R China. .,State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R China
| |
Collapse
|
18
|
Chen J, Wu J. Nickel-Catalyzed Enantioselective Hydrosilylation of gem-Difluoroalkenes with Silanes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Liu J, Chen M. Highly stereoselective syntheses of ( E)-δ-boryl- anti-homoallylic alcohols via allylation with α-boryl-( E)-crotylboronate. Chem Commun (Camb) 2021; 57:10799-10802. [PMID: 34590625 DOI: 10.1039/d1cc04058h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly stereoselective synthesis of (E)-δ-boryl-anti-homoallylic alcohols is developed. In the presence of a Lewis acid, aldehyde allylation with α-boryl-(E)-crotylboronate gave δ-boryl-anti-homoallylic alcohols in good yields with excellent E-selectivity. The E-vinylboronate group in the products provides a useful handle for cross-coupling reactions as illustrated in the fragment synthesis of chaxamycins.
Collapse
Affiliation(s)
- Jiaming Liu
- Departments of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Ming Chen
- Departments of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
20
|
Zhao H, Zhang Z, Lu W, Han P, Wang W, Jing L. 3-Carboxamide oxindoles as 1,3-C,N-bisnucleophiles for the highly diastereoselective synthesis of CF3-containing spiro-δ-lactam oxindoles featuring acyl at the ortho-position of spiro carbon atom. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Wang J, Li L, Chai M, Ding S, Li J, Shang Y, Zhao H, Li D, Zhu Q. Enantioselective Construction of 1 H-Isoindoles Containing Tri- and Difluoromethylated Quaternary Stereogenic Centers via Palladium-Catalyzed C–H Bond Imidoylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Lianjie Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Minxue Chai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, People’s Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Dan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, People’s Republic of China
| |
Collapse
|
22
|
Access to enantioenriched compounds bearing challenging tetrasubstituted stereocenters via kinetic resolution of auxiliary adjacent alcohols. Nat Commun 2021; 12:3735. [PMID: 34145256 PMCID: PMC8213810 DOI: 10.1038/s41467-021-23990-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/21/2021] [Indexed: 11/28/2022] Open
Abstract
Contemporary asymmetric catalysis faces huge challenges when prochiral substrates bear electronically and sterically unbiased substituents and when substrates show low reactivities. One of the inherent limitations of chiral catalysts and ligands is their incapability in recognizing prochiral substrates bearing similar groups. This has rendered many enantiopure substances bearing several similar substituents inaccessible. Here we report the rationale, scope, and applications of the strategy of kinetic resolution of auxiliary adjacent alcohols (KRA*) that can be used to solve the above troubles. Using this method, a large variety of optically enriched tertiary alcohols, epoxides, esters, ketones, hydroxy ketones, epoxy ketones, β-ketoesters, and tetrasubstituted methane analogs with two, three, and four spatially and electronically similar groups can be readily obtained (totally 96 examples). At the current stage, the strategy serves as the optimal solution that can complement the inability caused by direct asymmetric catalysis in getting chiral molecules with challenging fully substituted stereocenters. A large number of enantiopure substances, such as those with tetrasubstituted carbon centres bearing several similar substituents, are inaccessible due to the incapability of chiral catalysts/ligands to recognize those substrates. Here, the authors develop kinetic resolution of auxiliary adjacent alcohols (KRA*) strategy to access various optically enriched compounds with two, three or four spatially and electronically similar groups.
Collapse
|
23
|
Xu N, Xu J, Zhu Q, Liu C. Synthesis of Allylboronates via Zweifel‐type Deprotonative Olefination. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nuo Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation & CAS Key Laboratory of Chemistry of Northwestern Plant Resources Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049
| | - Jianeng Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation & CAS Key Laboratory of Chemistry of Northwestern Plant Resources Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049
| | - Qing Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation & CAS Key Laboratory of Chemistry of Northwestern Plant Resources Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation & CAS Key Laboratory of Chemistry of Northwestern Plant Resources Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| |
Collapse
|
24
|
Gao F, Guo Y, Sun M, Wang Y, Yang C, Wang Y, Wang K, Yan W. Catalytic Asymmetric Construction of Tertiary Carbon Centers Featuring an α-Difluoromethyl Group with CF 2H-CH 2-NH 2 as the "Building Block". Org Lett 2021; 23:2584-2589. [PMID: 33740843 DOI: 10.1021/acs.orglett.1c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here for the first time a novel difluoromethylated ketimine building block condensed by thioisatin and difluoroethylamine, offering efficient access to a broad range of enantioenriched products bearing difluoroethylamine units (27 examples, ≤98% yield, >99% ee) in the presence of quinine-derived squaramide. Further transformation of the intermediate would generate a variety of versatile functional blocks like α-difluoromethyl amines, β-amino acid, and β-diamine with retention of the enantiomeric excess at the difluoromethyl-bound carbon.
Collapse
Affiliation(s)
- Fengyun Gao
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yifei Guo
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mengmeng Sun
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yalan Wang
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Changyan Yang
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuqiang Wang
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kairong Wang
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenjin Yan
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
25
|
Wang L, Zhu H, Peng T, Yang D. Conjugated ynones in catalytic enantioselective reactions. Org Biomol Chem 2021; 19:2110-2145. [PMID: 33625439 DOI: 10.1039/d0ob02521f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conjugated ynones are easily accessible feedstock and the existence of an alkyne bond endows ynones with different attractive reactivities, thus making them unique substrates for catalytic asymmetric reactions. Their compatibility under organocatalytic, metal-catalyzed as well as cooperative catalytic conditions has resulted in numerous enantioselective transformations. Importantly, conjugated ynones can act as nucleophiles or electrophiles, and serve as easily accessed synthons for different cyclization pathways. This review summarizes the recent literature examples of the catalytic reactions of conjugated ynones and related compounds such as alkyne conjugated α-ketoesters, and classifies these reaction types alongside mechanistic insights whenever possible. We aim to trigger more intensive research in the future to render the asymmetric transformation of ynones as a common and reliable tool for asymmetric synthesis.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Haiyong Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Tianyu Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
26
|
Jiang R, Ding L, Zheng C, You SL. Iridium-catalyzed
Z
-retentive asymmetric allylic substitution reactions. Science 2021; 371:380-386. [DOI: 10.1126/science.abd6095] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Ru Jiang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Lu Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
27
|
Gao F, Li B, Wang Y, Chen Q, Li Y, Wang K, Yan W. Stereoselective synthetic strategies of stereogenic carbon centers featuring a difluoromethyl group. Org Chem Front 2021. [DOI: 10.1039/d1qo00032b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The scope of this review is to summarize routine asymmetric synthetic methods which enable the effective and selective introduction of difluoromethyl groups into the desired compounds, providing a general introduction to this important research area.
Collapse
Affiliation(s)
- Fengyun Gao
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Boyu Li
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| | - Yalan Wang
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Qushuo Chen
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Yongzhen Li
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Kairong Wang
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Wenjin Yan
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
28
|
Onyeagusi CI, Malcolmson SJ. Strategies for the Catalytic Enantioselective Synthesis of α-Trifluoromethyl Amines. ACS Catal 2020; 10:12507-12536. [PMID: 34306806 PMCID: PMC8302206 DOI: 10.1021/acscatal.0c03569] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The exploitation of the α-trifluoromethylamino group as an amide surrogate in peptidomimetics and drug candidates has been on the rise. In a large number of these cases, this moiety bears stereochemistry with the stereochemical identity having important consequences on numerous molecular properties, such as the potency of the compound. Yet, the majority of stereoselective syntheses of α-CF3 amines rely on diastereoselective couplings with chiral reagents. Concurrent with the rapid expansion of fluorine into pharmaceuticals has been the development of catalytic enantioselective means of preparing α-trifluoromethyl amines. In this work, we outline the strategies that have been employed for accessing these enantioenriched amines, including normal polarity approaches and several recent developments in imine umpolung transformations.
Collapse
Affiliation(s)
- Chibueze I Onyeagusi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
29
|
Yuan J, Jain P, Antilla JC. Bi(cyclopentyl)diol-Derived Boronates in Highly Enantioselective Chiral Phosphoric Acid-Catalyzed Allylation, Propargylation, and Crotylation of Aldehydes. J Org Chem 2020; 85:12988-13003. [PMID: 32960066 DOI: 10.1021/acs.joc.0c01646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we disclose the catalytic addition of bi(cyclopentyl)diol-derived boronates to aldehydes promoted by chiral phosphoric acids, allowing for the formation of enantioenriched homoallylic, propargylic, and crotylic alcohols (up to >99% enantiomeric excess (ee), diastereomeric ratio (dr) >20:1). These boronate substrates provided superior enantioselectivities, allowing for the reactions to proceed with low catalyst loading (0.5-5 mol %) and reduced reaction time (15 min at room temperature for aldehyde allylboration). A wide substrate scope was exhibited, and the novel boronates provided high enantiocontrol. Reactions with substituted allylboronates and aldehydes yielded vicinal stereogenic alcohols bearing β-tertiary or quaternary carbon centers. High enantio- and diastereoselectivities were found due to the closed six-membered chair-like transition state, with backbone modifications of the boronate and its interactions with the chiral phosphoric acid being the most likely contributing factor.
Collapse
Affiliation(s)
- Jinping Yuan
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Pankaj Jain
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Jon C Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,School of Sciences, Zhejiang Sci-Tech University, Hangzhou City, Zhejiang Province 310018, China
| |
Collapse
|
30
|
Gao S, Duan M, Shao Q, Houk KN, Chen M. Development of α,α-Disubstituted Crotylboronate Reagents and Stereoselective Crotylation via Brønsted or Lewis Acid Catalysis. J Am Chem Soc 2020; 142:18355-18368. [PMID: 33052047 DOI: 10.1021/jacs.0c04107] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of α,α-disubstituted crotylboronate reagents is reported. Chiral Brønsted acid-catalyzed asymmetric aldehyde addition with the developed E-crotylboron reagent gave (E)-anti-1,2-oxaborinan-3-enes with excellent enantioselectivities and E-selectivities. With BF3·OEt2 catalysis, the stereoselectivity is reversed, and (Z)-δ-boryl-anti-homoallylic alcohols are obtained with excellent Z-selectivities from the same E-crotylboron reagent. The Z-crotylboron reagent also participates in BF3·OEt2-catalyzed crotylation to furnish (Z)-δ-boryl-syn-homoallylic alcohols with good Z-selectivities. DFT computations establish the origins of observed enantio- and stereoselectivities of chiral Brønsted acid-catalyzed asymmetric allylation. Stereochemical models for BF3·OEt2-catalyzed reactions are proposed to rationalize the Z-selective allyl additions. These reactions generate highly valuable homoallylic alcohol products with a stereodefined trisubstituted alkene unit. The synthetic utility is further demonstrated by the total syntheses of salinipyrones A and B.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Qianzhen Shao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
31
|
Liu C, Yap GPA, Rowland CA, Tius MA. ( Z) -Trifluoromethyl-Trisubstituted Alkenes or Isoxazolines: Divergent Pathways from the Same Allene. Org Lett 2020; 22:7208-7212. [PMID: 32876462 DOI: 10.1021/acs.orglett.0c02546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of a charge-dipole interaction involving nonbonding electron pairs on fluorine, protonation of trifluoromethyl allenes leads to tri- or tetrasubstituted alkenes with high (Z)-selectivity. Treatment of the same allenes with catalytic Au(I) initiates a reaction cascade that produces isoxazolines in high yield.
Collapse
Affiliation(s)
- Chaolun Liu
- Chemistry Department, University of Hawaii at Manoa, 2545 The Mall, Honolulu, Hawaii 96822, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, 236 Brown Laboratory, Newark, Delaware 19716, United States
| | - Casey A Rowland
- Department of Chemistry and Biochemistry, University of Delaware, 236 Brown Laboratory, Newark, Delaware 19716, United States
| | - Marcus A Tius
- Chemistry Department, University of Hawaii at Manoa, 2545 The Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
32
|
Chen J, Chen M. Enantioselective Syntheses of ( Z)-6'-Boryl- anti-1,2-oxaborinan-3-enes via a Dienylboronate Protoboration and Asymmetric Allylation Reaction Sequence. Org Lett 2020; 22:7321-7326. [PMID: 32903009 DOI: 10.1021/acs.orglett.0c02657] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The enantioselective synthesis of 6'-boryl-anti-1,2-oxaborinan-3-enes is reported. A Cu-catalyzed highly stereoselective 1,4-protoboration of 1,1-bisboryl-1,3-butadiene is developed to generate (E)-α,δ-bisboryl-crotylboronate. The chiral phosphoric-acid-catalyzed asymmetric allylboration of aldehydes with the boron reagent produces 6'-boryl-anti-1,2-oxaborinan-3-enes with excellent Z-selectivities and enantioselectivities. The product contains a vinyl and alkyl boronate unit that can directly participate in a variety of subsequent transformations.
Collapse
Affiliation(s)
- Jichao Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
33
|
Braire J, Dorcet V, Vidal J, Lalli C, Carreaux F. BINOL derivatives-catalysed enantioselective allylboration of isatins: application to the synthesis of (R)-chimonamidine. Org Biomol Chem 2020; 18:6042-6046. [PMID: 32729604 DOI: 10.1039/d0ob01386b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The asymmetric synthesis of the 3-allyl-3-hydroxyoxindole skeleton was accomplished in yields up to 99% via a metal-free and enantioselective allylation of isatins (90-96% ee) using BINOL derivatives as catalysts and an optimized allylboronate. This methodology was applied at a gram-scale to the synthesis of the natural product (R)-chimonamidine.
Collapse
Affiliation(s)
- Julien Braire
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Vincent Dorcet
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Joëlle Vidal
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Claudia Lalli
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | | |
Collapse
|
34
|
Sengoku T, Miyoshi A, Tsuda T, Inuzuka T, Sakamoto M, Takahashi M, Yoda H. Development of new catalytic enantioselective formation of methylenelactam-based N,O-spirocyclic compounds via ring opening-asymmetric reclosure of hydroxylactams. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Novikov MA, Bobrova AY, Mezentsev IA, Medvedev MG, Tomilov YV. (2-Fluoroallyl)boration of Ketones with (2-Fluoroallyl)boronates. J Org Chem 2020; 85:6295-6308. [DOI: 10.1021/acs.joc.9b03445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maxim A. Novikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Angelina Yu. Bobrova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya pl., 125047 Moscow, Russian Federation
| | - Igor A. Mezentsev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya pl., 125047 Moscow, Russian Federation
| | - Michael G. Medvedev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Yury V. Tomilov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
36
|
Fager DC, Morrison RJ, Hoveyda AH. Regio- and Enantioselective Synthesis of Trifluoromethyl-Substituted Homoallylic α-Tertiary NH 2 -Amines by Reactions Facilitated by a Threonine-Based Boron-Containing Catalyst. Angew Chem Int Ed Engl 2020; 59:11448-11455. [PMID: 32219997 DOI: 10.1002/anie.202001184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/25/2020] [Indexed: 12/20/2022]
Abstract
A method for catalytic regio- and enantioselective synthesis of trifluoromethyl-substituted and aryl-, heteroaryl-, alkenyl-, and alkynyl-substituted homoallylic α-tertiary NH2 -amines is introduced. Easy-to-synthesize and robust N-silyl ketimines are converted to NH-ketimines in situ, which then react with a Z-allyl boronate. Transformations are promoted by a readily accessible l-threonine-derived aminophenol-based boryl catalyst, affording the desired products in up to 91 % yield, >98:2 α:γ selectivity, >98:2 Z:E selectivity, and >99:1 enantiomeric ratio. A commercially available aminophenol may be used, and allyl boronates, which may contain an alkyl-, a chloro-, or a bromo-substituted Z-alkene, can either be purchased or prepared by catalytic stereoretentive cross-metathesis. What is more, Z-trisubstituted allyl boronates may be used. Various chemo-, regio-, and diastereoselective transformations of the α-tertiary homoallylic NH2 -amine products highlight the utility of the approach; this includes diastereo- and regioselective epoxide formation/trichloroacetic acid cleavage to generate differentiated diol derivatives.
Collapse
Affiliation(s)
- Diana C Fager
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Ryan J Morrison
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| |
Collapse
|
37
|
Fager DC, Morrison RJ, Hoveyda AH. Regio‐ and Enantioselective Synthesis of Trifluoromethyl‐Substituted Homoallylic α‐Tertiary NH
2
‐Amines by Reactions Facilitated by a Threonine‐Based Boron‐Containing Catalyst. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Diana C. Fager
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Ryan J. Morrison
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| |
Collapse
|
38
|
Gao S, Duan M, Houk KN, Chen M. Chiral Phosphoric Acid Dual‐Function Catalysis: Asymmetric Allylation with α‐Vinyl Allylboron Reagents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Meng Duan
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| |
Collapse
|
39
|
Gao S, Duan M, Houk KN, Chen M. Chiral Phosphoric Acid Dual‐Function Catalysis: Asymmetric Allylation with α‐Vinyl Allylboron Reagents. Angew Chem Int Ed Engl 2020; 59:10540-10548. [DOI: 10.1002/anie.202000039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Meng Duan
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| |
Collapse
|
40
|
Sengoku T, Maegawa R, Imamura H, Wada M, Yoda H. Zinc Hydroxide‐Catalyzed Asymmetric Allylation of Acetophenones with Amido‐Functionalized Allylboronate in Water. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tetsuya Sengoku
- Department of Applied Chemistry, Faculty of EngineeringShizuoka University 3-5-1 Johoku, Naka-ku Hamamatsu 432-8561 Japan
| | - Ryunosuke Maegawa
- Department of Applied Chemistry, Faculty of EngineeringShizuoka University 3-5-1 Johoku, Naka-ku Hamamatsu 432-8561 Japan
| | - Hiroki Imamura
- Department of Applied Chemistry, Faculty of EngineeringShizuoka University 3-5-1 Johoku, Naka-ku Hamamatsu 432-8561 Japan
| | - Mitsuo Wada
- Department of Applied Chemistry, Faculty of EngineeringShizuoka University 3-5-1 Johoku, Naka-ku Hamamatsu 432-8561 Japan
| | - Hidemi Yoda
- Department of Applied Chemistry, Faculty of EngineeringShizuoka University 3-5-1 Johoku, Naka-ku Hamamatsu 432-8561 Japan
| |
Collapse
|
41
|
Liu J, Tong X, Chen M. Allylboration of Ketones and Imines with a Highly Reactive Bifunctional Allyl Pinacolatoboronate Reagent. J Org Chem 2020; 85:5193-5202. [DOI: 10.1021/acs.joc.9b03222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Xinbo Tong
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
42
|
Iwamoto H, Hayashi Y, Ozawa Y, Ito H. Silyl-Group-Directed Linear-Selective Allylation of Carbonyl Compounds with Trisubstituted Allylboronates Using a Copper(I) Catalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hiroaki Iwamoto
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yuta Hayashi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yu Ozawa
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
43
|
Wang J, Zhang W, Wu P, Huang C, Zheng Y, Zheng WF, Qian H, Ma S. Chiral tertiary propargylic alcohols via Pd-catalyzed carboxylative kinetic resolution. Org Chem Front 2020. [DOI: 10.1039/d0qo01106a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly efficient Pd/H+-cocatalyzed kinetic resolution reaction of tertiary propargylic alcohols has been reported.
Collapse
Affiliation(s)
- Jie Wang
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Wanli Zhang
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Penglin Wu
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Chaofan Huang
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Yangguangyan Zheng
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Wei-Feng Zheng
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
44
|
Wang J, Zhang Q, Li Y, Liu X, Li X, Cheng JP. Bi(OAc)3/chiral phosphoric acid catalyzed enantioselective allylation of isatins. Chem Commun (Camb) 2020; 56:261-264. [DOI: 10.1039/c9cc07944k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we disclosed an efficient protocol for the construction of chiral 3-allyl-3-hydroxyoxindoles via the enantioselective allylation reaction of isatins and allylboronates catalyzed by a simple binary acid Bi(OAc)3/CPA system under mild conditions.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Qingxia Zhang
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yao Li
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xiangshuai Liu
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
45
|
Morrison RJ, van der Mei FW, Romiti F, Hoveyda AH. A Catalytic Approach for Enantioselective Synthesis of Homoallylic Alcohols Bearing a Z-Alkenyl Chloride or Trifluoromethyl Group. A Concise and Protecting Group-Free Synthesis of Mycothiazole. J Am Chem Soc 2019; 142:436-447. [PMID: 31873000 DOI: 10.1021/jacs.9b11178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A protecting group-free strategy is presented for diastereo- and enantioselective routes that can be used to prepare a wide variety of Z-homoallylic alcohols with significantly higher efficiency than is otherwise feasible. The approach entails the merger of several catalytic processes and is expected to facilitate the preparation of bioactive organic molecules. More specifically, Z-chloro-substituted allylic pinacolatoboronate is first obtained through stereoretentive cross-metathesis between Z-crotyl-B(pin) (pin = pinacolato) and Z-dichloroethene, both of which are commercially available. The organoboron compound may be used in the central transformation of the entire approach, an α- and enantioselective addition to an aldehyde, catalyzed by a proton-activated, chiral aminophenol-boryl catalyst. Catalytic cross-coupling can then furnish the desired Z-homoallylic alcohol in high enantiomeric purity. The olefin metathesis step can be carried out with substrates and a Mo-based complex that can be purchased. The aminophenol compound that is needed for the second catalytic step can be prepared in multigram quantities from inexpensive starting materials. A significant assortment of homoallylic alcohols bearing a Z-F3C-substituted alkene can also be prepared with similar high efficiency and regio-, diastereo-, and enantioselectivity. What is more, trisubstituted Z-alkenyl chloride moiety can be accessed with similar efficiency albeit with somewhat lower α-selectivity and enantioselectivity. The general utility of the approach is underscored by a succinct, protecting group-free, and enantioselective total synthesis of mycothiazole, a naturally occurring anticancer agent through a sequence that contains a longest linear sequence of nine steps (12 steps total), seven of which are catalytic, generating mycothiazole in 14.5% overall yield.
Collapse
Affiliation(s)
- Ryan J Morrison
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Farid W van der Mei
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Filippo Romiti
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States.,Supramolecular Science and Engineering Institute , University of Strasbourg, CNRS , Strasbourg 67000 , France
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States.,Supramolecular Science and Engineering Institute , University of Strasbourg, CNRS , Strasbourg 67000 , France
| |
Collapse
|
46
|
Brito GA, Jung WO, Yoo M, Krische MJ. Enantioselective Iridium-Catalyzed Allylation of Acetylenic Ketones via 2-Propanol-Mediated Reductive Coupling of Allyl Acetate: C14-C23 of Pladienolide D. Angew Chem Int Ed Engl 2019; 58:18803-18807. [PMID: 31490591 PMCID: PMC6917958 DOI: 10.1002/anie.201908939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Indexed: 11/10/2022]
Abstract
Highly enantioselective catalytic reductive coupling of allyl acetate with acetylenic ketones occurs in a chemoselective manner in the presence of aliphatic or aromatic ketones. This method was used to construct C14-C23 of pladienolide D in half the steps previously required.
Collapse
Affiliation(s)
- Gilmar A. Brito
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Woo-Ok Jung
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Minjin Yoo
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| |
Collapse
|
47
|
Brito GA, Jung W, Yoo M, Krische MJ. Enantioselective Iridium‐Catalyzed Allylation of Acetylenic Ketones via 2‐Propanol‐Mediated Reductive Coupling of Allyl Acetate: C14‐C23 of Pladienolide D. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gilmar A. Brito
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Woo‐Ok Jung
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Minjin Yoo
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
48
|
Feng JJ, Xu Y, Oestreich M. Ligand-controlled diastereodivergent, enantio- and regioselective copper-catalyzed hydroxyalkylboration of 1,3-dienes with ketones. Chem Sci 2019; 10:9679-9683. [PMID: 32015801 PMCID: PMC6977547 DOI: 10.1039/c9sc03531a] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/17/2019] [Indexed: 12/20/2022] Open
Abstract
A copper-catalyzed three-component coupling of 1,3-dienes, bis(pinacolato)diboron, and ketones allows for the chemo-, regio-, diastereo- and enantioselective assembly of densely functionalized tertiary homoallylic alcohols. The relative configuration of the vicinal stereocenters is controlled by the chiral ligand employed. Subsequent transformations illustrate the versatility of these valuable chiral building blocks.
Collapse
Affiliation(s)
- Jian-Jun Feng
- Institut für Chemie , Technische Universität Berlin , Strasse des 17. Juni 115 , 10623 Berlin , Germany .
| | - Yan Xu
- Institut für Chemie , Technische Universität Berlin , Strasse des 17. Juni 115 , 10623 Berlin , Germany .
| | - Martin Oestreich
- Institut für Chemie , Technische Universität Berlin , Strasse des 17. Juni 115 , 10623 Berlin , Germany .
| |
Collapse
|
49
|
Fager DC, Lee K, Hoveyda AH. Catalytic Enantioselective Addition of an Allyl Group to Ketones Containing a Tri-, a Di-, or a Monohalomethyl Moiety. Stereochemical Control Based on Distinctive Electronic and Steric Attributes of C-Cl, C-Br, and C-F Bonds. J Am Chem Soc 2019; 141:16125-16138. [PMID: 31553181 DOI: 10.1021/jacs.9b08443] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We disclose the results of an investigation designed to generate insight regarding the differences in the electronic and steric attributes of C-F, C-Cl, and C-Br bonds. Mechanistic insight has been gleaned by analysis of variations in enantioselectivity, regarding the ability of electrostatic contact between a halomethyl moiety and a catalyst's ammonium group as opposed to factors lowering steric repulsion and/or dipole minimization. In the process, catalytic and enantioselective methods have been developed for transforming a wide range of trihalomethyl (halogen = Cl or Br), dihalomethyl, or monohalomethyl (halogen = F, Cl, or Br) ketones to the corresponding tertiary homoallylic alcohols. By exploiting electrostatic attraction between a halomethyl moiety and the catalyst's ammonium moiety and steric factors, high enantioselectivity was attained in many instances. Reactions can be performed with 0.5-5.0 mol % of an in situ generated boryl-ammonium catalyst, affording products in 42-99% yield and up to >99:1 enantiomeric ratio. Not only are there no existing protocols for accessing the great majority of the resulting products enantioselectively but also in some cases there are hardly any instances of a catalytic enantioselective addition of a carbon-based nucleophile (e.g., one enzyme-catalyzed aldol addition involving trichloromethyl ketones, and none with dichloromethyl, tribromomethyl, or dibromomethyl ketones). The approach is scalable and offers an expeditious route to the enantioselective synthesis of versatile and otherwise difficult to access aldehydes that bear an α-halo-substituted quaternary carbon stereogenic center as well as an assortment of 2,2-disubstituted epoxides that contain an easily modifiable alkene. Tertiary homoallylic alcohols containing a triazole and a halomethyl moiety, structural units relevant to drug development, may also be accessed efficiently with exceptional enantioselectivity.
Collapse
Affiliation(s)
- Diana C Fager
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - KyungA Lee
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States.,Supramolecular Science and Engineering Institute , University of Strasbourg, CNRS , 67000 Strasbourg , France
| |
Collapse
|
50
|
Huang WS, Delcourt ML, Pannecoucke X, Charette AB, Poisson T, Jubault P. Catalytic Asymmetric Synthesis of α,α-Difluoromethylated and α-Fluoromethylated Tertiary Alcohols. Org Lett 2019; 21:7509-7513. [PMID: 31497967 DOI: 10.1021/acs.orglett.9b02792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The catalytic asymmetric synthesis of α,α-difluoromethylated tertiary alcohols is described, using an asymmetric dihydroxylation reaction. This protocol using either the AD-mix-α or AD-mix-β allowed an easy access to these valuable fluorinated chiral building blocks, which have been obtained with excellent yields and er. In addition, the reaction was extended to the α-fluoromethylated analogues.
Collapse
Affiliation(s)
- Wei-Sheng Huang
- Normandie Université, INSA Rouen , UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen , France
| | - Marie-Léonie Delcourt
- Normandie Université, INSA Rouen , UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen , France
| | - Xavier Pannecoucke
- Normandie Université, INSA Rouen , UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen , France
| | - André B Charette
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry , Université de Montréal , P.O. Box 6128, Station Downtown , Montréal , Québec H3C 3J7 , Canada
| | - Thomas Poisson
- Normandie Université, INSA Rouen , UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen , France.,Institut Universitaire de France , 1 rue Descartes , 75231 Paris , France
| | - Philippe Jubault
- Normandie Université, INSA Rouen , UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen , France
| |
Collapse
|