1
|
Shin I, Nguyen RC, Montoya SR, Liu A. Structural insights into 2-oxindole-forming monooxygenase MarE: Divergent architecture and substrate positioning versus tryptophan dioxygenases. J Biol Chem 2025; 301:108241. [PMID: 39880093 PMCID: PMC11904535 DOI: 10.1016/j.jbc.2025.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
MarE, a heme-dependent enzyme, catalyzes a unique 2-oxindole-forming monooxygenation reaction from tryptophan metabolites. To elucidate its enzyme-substrate interaction mode, we present the first X-ray crystal structures of MarE in complex with its prime substrate, (2S,3S)-β-methyl-l-tryptophan and cyanide at 1.89 Å resolution as well as a truncated yet catalytically active version in complex with the substrate at 2.45 Å resolution. These structures establish MarE as a member of the heme-dependent aromatic oxygenase (HDAO) superfamily and reveal its evolutionary link to indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO). While MarE adopts a global structure resembling the homotetrameric TDO, it features a simplified α6 helix compared to TDO's more elaborate αE and αH helices with additional αF and αG regions. Despite differing oxygen activation outcomes, MarE shares a substrate binding mode similar to IDO and TDO, with the indole nitrogen of its substrate oriented toward the heme iron in the ternary cyano complex, interacting with His55. The substrate's carboxylate group engages Arg118, with mutational studies confirming the roles of these residues in substrate binding. However, the second-sphere interactions with the substrate's α-amino nitrogen differ between MarE and TDO, and the substrate's orientation in the binary complex remains ambiguous due to two possible conformations. Notably, TDO features an extensive hydrogen-bonding network around the heme propionate below the heme plane, which is absent in MarE, suggesting mechanistic differences. These structural insights lay a foundation for further mechanistic studies, particularly for understanding how heme-dependent enzymes oxygenate tryptophan-derived metabolites.
Collapse
Affiliation(s)
- Inchul Shin
- Department of Chemistry, The University of Texas at San Antonio, Texas, United States
| | - Romie C Nguyen
- Department of Chemistry, The University of Texas at San Antonio, Texas, United States
| | - Samuel R Montoya
- Department of Chemistry, The University of Texas at San Antonio, Texas, United States
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, Texas, United States.
| |
Collapse
|
2
|
Li B, Usai R, Campbell J, Wang Y. Elucidating ligand interactions and small-molecule activation in the pyrrolnitrin biosynthetic enzyme PrnB. J Biol Chem 2025; 301:108123. [PMID: 39725034 PMCID: PMC11791213 DOI: 10.1016/j.jbc.2024.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Pyrrolnitrin, a potent antifungal compound originally discovered in Pseudomonas strains, is biosynthesized through a secondary metabolic pathway involving four key enzymes. Central to this process is PrnB, a heme enzyme that catalyzes the complex transformation of 7-Cl-L-tryptophan. Despite its structural similarity to indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase and its classification within the histidine-ligated heme-dependent aromatic oxygenase superfamily, PrnB has remained relatively unexplored due to the challenges in reconstituting its in vitro activity. In this work, we investigated the interactions of PrnB from different strains with its substrates, substrate analogs, and small molecules using various biophysical and biochemical techniques. Our spectroscopic data reveal that the substrate amino group directly coordinates with the heme in both oxidized and reduced enzyme forms. This binding conformation was further confirmed by X-ray crystallography of enzyme-ligand binary complexes. The amine ligation inhibits H2O2 and CN- from interacting with the ferric heme but does not notably impact •NO binding or O2 activation by the ferrous heme. Stopped-flow spectroscopy showed the formation of heme-based oxidants similar to those reported in indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase when PrnB was exposed to H2O2 or O2. However, these intermediates lacked catalytic activity, and PrnB was inactive when coupled with common redox systems under various conditions. This suggests that PrnB operates through a catalytic mechanism distinct from other heme-dependent aromatic oxygenases and most heme enzymes. Our study provides new insights into ligand binding and small-molecule activation mechanisms of PrnB, highlighting its unique functionality and distinguishing it from existing paradigms in heme catalysis.
Collapse
Affiliation(s)
- Bingnan Li
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Remigio Usai
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Jackson Campbell
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Yifan Wang
- Department of Chemistry, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
3
|
Li C, Ma J, Guo L, Xu C, Zhong Z, Li P, Tang Y, Wang W, Li D, Ye T, Guo Z, Chen Y. Selective Synthesis of Cyclopeptides with a 2-Oxindole or 3a-Hydroxy-hexahydropyrrolo-[2,3- b]indole Structure by Cytochrome P450 Enzymes. J Am Chem Soc 2025; 147:3304-3314. [PMID: 39818795 DOI: 10.1021/jacs.4c13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The structural groups of 2-oxindole and tricyclic 3a-hydroxy-hexahydropyrrolo-[2,3-b]indole (HO-HPI) are important pharmacophores. Chemical synthesis of complex alkaloids containing a 2-oxindole or HO-HPI moiety, especially the latter one, has been a long-standing challenge. Herein, we characterized the P450 enzyme AfnD, and its homologue proteins, HmtT, ClpD, KtzM, and LtzR, as cyclopeptide 2-oxindole and HO-HPI monooxygenases (cpOPMOs) that could introduce a 2-oxindole or HO-HPI moiety into the tryptophan-containing cyclopeptides in a pH-dependent manner. A universal catalytic mechanism was proposed for the five cpOPMOs, in which two conserved residues, Asp and Ser (Thr for LtzR), were proposed to divergently open the epoxide intermediates, thereby forming a 2-oxindole or HO-HPI moiety. Based on this, we constructed ten Asp or Ser/Thr mutants of cpOPMOs, which could synthesize cyclopeptides with an HO-HPI or 2-oxindole structure, selectively, under appropriate reaction conditions. All of the ten cpOPMO mutants exhibited high substrate promiscuities and usually performed well with cyclopeptides that are structurally similar to their native substrates. Overall, our work discovers a group of intriguing P450 enzymes, the cpOPMOs, and provides a powerful enzymatic toolkit for the selective synthesis of HO-HPI- or 2-oxindole-containing cyclopeptides.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Haizhu District, Guangzhou 510301, Guangdong, China
| | - Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Xu
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zijian Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Defeng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhengyan Guo
- NHC Key Laboratory of Biotechnology for Microbial Drugs; CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Department of Microbial Metabolic Engineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Alam K, Hossain MS, Zhao Y, Zhang Z, Xu S, Hao J, Yang Q, Li A. Tryptanthrins as multi-bioactive agents: discovery, diversity distribution and synthesis. Bioorg Chem 2025; 154:108071. [PMID: 39721143 DOI: 10.1016/j.bioorg.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Tryptanthrin and its derivatives, representing a type of alkaloids with indoloquinazoline structures, were first obtained from blue plants and indigo, and then extracted from fungi, marine bacteria and a number of many other natural sources. Various strategies for their chemical synthesis have been reported while tryptanthrin biosynthesis has been less investigated. Tryptanthrin and its derivative products have a broad range of pharmacological and biological functions. In this review, we cover the sources, chemical synthesis and biosynthesis, modes of action and biological activities of tryptanthrin and its derivatives.
Collapse
Affiliation(s)
- Khorshed Alam
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Bangladesh Standards and Testing Institution (BSTI), Dhaka 1208, Bangladesh.
| | - Md Sawkat Hossain
- Chittagong Medical College Hospital, K B Fazlul Kader Road, Panchlaish, Chattogram 4203, Bangladesh.
| | - Yiming Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Zhiheng Zhang
- Haide College, Ocean University of China, Qingdao 266100, China.
| | - Shouying Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Jinfang Hao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
Geeraerts Z, Ishigami I, Gao Y, Yeh SR. Heme-based dioxygenases: Structure, function and dynamics. J Inorg Biochem 2024; 261:112707. [PMID: 39217822 PMCID: PMC11590650 DOI: 10.1016/j.jinorgbio.2024.112707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Tryptophan dioxygenase (TDO) and indoleamine 2,3 dioxygenase (IDO) belong to a unique class of heme-based enzymes that insert dioxygen into the essential amino acid, L-tryptophan (Trp), to generate N-formylkynurenine (NFK), a critical metabolite in the kynurenine pathway. Recently, the two dioxygenases were recognized as pivotal cancer immunotherapeutic drug targets, which triggered a great deal of drug discovery targeting them. The advancement of the field is however hampered by the poor understanding of the structural properties of the two enzymes and the mechanisms by which the structures dictate their functions. In this review, we summarize recent findings centered on the structure, function, and dynamics of the human isoforms of the two enzymes.
Collapse
Affiliation(s)
- Zachary Geeraerts
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Yuan Gao
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
6
|
Meng LH, Awakawa T, Li XM, Quan Z, Yang SQ, Wang BG, Abe I. Discovery of (±)-Penindolenes Reveals an Unusual Indole Ring Cleavage Pathway Catalyzed by P450 Monooxygenase. Angew Chem Int Ed Engl 2024; 63:e202403963. [PMID: 38635317 DOI: 10.1002/anie.202403963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
(±)-Penindolenes A-D (1-4), the first representatives of indole terpenoids featuring a γ-lactam skeleton, were isolated from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Our bioactivity tests revealed their potent antimicrobial and acetylcholinesterase inhibitory activities. The biosynthetic reactions by the five enzymes PbaABCDE leading to γ-lactam ring formation were identified with heterologous expression and in vitro enzymatic assays. Remarkably, the cytochrome P450 monooxygenase PbaB and its homolog in Aspergillus oryzae catalyzed the 2,3-cleavage of the indole ring to generate two keto groups in 1. This is the first example of the oxidative cleavage of indole by a P450 monooxygenase. In addition, rare secondary amide bond formation by the glutamine synthetase-like enzyme PbaD was reported. These findings will contribute to the engineered biosynthesis of unnatural, bioactive indole terpenoids.
Collapse
Affiliation(s)
- Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Zhiyang Quan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
7
|
Xu H, Yuan Z, Yang S, Su Z, Hou XD, Deng Z, Zhang Y, Rao Y. Discovery of a Fungal P450 with an Unusual Two-Step Mechanism for Constructing a Bicyclo[3.2.2]nonane Skeleton. J Am Chem Soc 2024; 146:8716-8726. [PMID: 38484171 DOI: 10.1021/jacs.4c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The successful biomimetic or chemoenzymatic synthesis of target natural products (NPs) and their derivatives relies on enzyme discovery. Herein, we discover a fungal P450 BTG5 that can catalyze the formation of a bicyclo[3.2.2]nonane structure through an unusual two-step mechanism of dimerization and cyclization in the biosynthesis of beticolin 1, whose bicyclo[3.2.2]nonane skeleton connects an anthraquinone moiety and a xanthone moiety. Further investigation reveals that BTG5-T318 not only determines the substrate selectivity but also alters the catalytic reactions, which allows the separation of the reaction to two individual steps, thereby understanding its catalytic mechanism. It reveals that the first heterodimerization undergoes the common oxidation process for P450s, while the second uncommon formal redox-neutral cyclization step is proved as a redox-mediated reaction, which has never been reported. Therefore, this work advances our understanding of P450-catalyzed reactions and paves the way for expansion of the diversity of this class of NPs through synthetic biology.
Collapse
Affiliation(s)
- Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Sai Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zengping Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiao-Dong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
8
|
Li S, Liu X, Tung CH, Liu L. Late-Stage Chemo- and Enantioselective Oxidation of Indoles to C3-Monosubstituted Oxindoles. J Am Chem Soc 2023. [PMID: 38038721 DOI: 10.1021/jacs.3c11742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Catalytic asymmetric preparation of chiral 3-monosubstituted oxindoles represents a significant challenge in synthetic chemistry due to the ease of racemization of the tertiary stereocenter through enolization. Here, we describe a general titanium-catalyzed chemo- and enantioselective indole oxidation to produce a diverse set of chiral 3-monosubstituted oxindoles with up to 96% yield, 99% ee, and with a substrate/catalyst ratio of 10,000 by using the combination of a simple titanium(salan) catalyst with green and atom-economic terminal oxidant H2O2. The mild approach tolerates a broad range of functional groups, enabling late-stage asymmetric diversification of a series of commercial drugs and natural products together with late-stage asymmetric construction of a wide set of enzyme antagonists, all of which are difficult to achieve through existing methods.
Collapse
Affiliation(s)
- Song Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xigong Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
9
|
Morgan EW, Dong F, Annalora AJ, Murray IA, Wolfe T, Erickson R, Gowda K, Amin SG, Petersen KS, Kris-Etherton PM, Marcus CB, Walk ST, Patterson AD, Perdew GH. Contribution of Circulating Host and Microbial Tryptophan Metabolites Toward Ah Receptor Activation. Int J Tryptophan Res 2023; 16:11786469231182510. [PMID: 37441265 PMCID: PMC10334013 DOI: 10.1177/11786469231182510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that plays an integral role in homeostatic maintenance by regulating cellular functions such as cellular differentiation, metabolism, barrier function, and immune response. An important but poorly understood class of AHR activators are compounds derived from host and bacterial metabolism of tryptophan. The commensal bacteria of the gut microbiome are major producers of tryptophan metabolites known to activate the AHR, while the host also produces AHR activators through tryptophan metabolism. We used targeted mass spectrometry-based metabolite profiling to determine the presence and metabolic source of these metabolites in the sera of conventional mice, germ-free mice, and humans. Surprisingly, sera concentrations of many tryptophan metabolites are comparable between germ-free and conventional mice. Therefore, many major AHR-activating tryptophan metabolites in mouse sera are produced by the host, despite their presence in feces and mouse cecal contents. Here we present an investigation of AHR activation using a complex mixture of tryptophan metabolites to examine the biological relevance of circulating tryptophan metabolites. AHR activation is rarely studied in the context of a mixture at relevant concentrations, as we present here. The AHR activation potentials of individual and pooled metabolites were explored using cell-based assays, while ligand binding competition assays and ligand docking simulations were used to assess the detected metabolites as AHR agonists. The physiological and biomedical relevance of the identified metabolites was investigated in the context of a cell-based model for rheumatoid arthritis. We present data that reframe AHR biology to include the presence of a mixture of ubiquitous tryptophan metabolites, improving our understanding of homeostatic AHR activity and models of AHR-linked diseases.
Collapse
Affiliation(s)
- Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, USA
| | - Fangcong Dong
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Trenton Wolfe
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, USA
| | - Reece Erickson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, USA
| | - Krishne Gowda
- Department of Pharmacology Penn State College of Medicine, Hershey, USA
| | - Shantu G Amin
- Department of Pharmacology Penn State College of Medicine, Hershey, USA
| | - Kristina S Petersen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, USA
| | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA
| | - Seth T Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, USA
| |
Collapse
|
10
|
Nolan K, Wang Y. Combined spectroscopic and structural approaches to explore the mechanism of histidine-ligated heme-dependent aromatic oxygenases. Methods Enzymol 2023; 685:405-432. [PMID: 37245909 PMCID: PMC11057917 DOI: 10.1016/bs.mie.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The emergence of histidine-ligated heme-dependent aromatic oxygenases (HDAOs) has greatly enriched heme chemistry, and more studies are required to appreciate the diversity found in His-ligated heme proteins. This chapter describes recent methods in probing the HDAO mechanisms in detail, along with the discussion on how they can benefit structure-function studies of other heme systems. The experimental details are centered on studies of TyrHs, followed by explanation of how the results obtained would advance the understanding of the specific enzyme and also HDAOs. Spectroscopic methods, namely, electronic absorption and EPR spectroscopies, and X-ray crystallography are valuable techniques commonly used to characterize the properties of the heme center and the nature of heme-based intermediate. Herein, we show that the combination of these tools are extremely powerful, not only because one can acquire electronic, magnetic, and conformational information from different phases, but also because of the advantages brought by spectroscopic characterization on crystal samples.
Collapse
Affiliation(s)
- Katie Nolan
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Yifan Wang
- Department of Chemistry, University of Georgia, Athens, GA, United States.
| |
Collapse
|
11
|
Morgan EW, Dong F, Annalora A, Murray IA, Wolfe T, Erickson R, Gowda K, Amin SG, Petersen KS, Kris-Etherton PM, Marcus C, Walk ST, Patterson AD, Perdew GH. Contribution of circulating host and microbial tryptophan metabolites towards Ah receptor activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525691. [PMID: 36747842 PMCID: PMC9900944 DOI: 10.1101/2023.01.26.525691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that plays an integral role in homeostatic maintenance by regulating cellular functions such as cellular differentiation, metabolism, barrier function, and immune response. An important but poorly understood class of AHR activators are compounds derived from host and bacterial metabolism of tryptophan. The commensal bacteria of the gut microbiome are major producers of tryptophan metabolites known to activate the AHR, while the host also produces AHR activators through tryptophan metabolism. We used targeted mass spectrometry-based metabolite profiling to determine the presence and metabolic source of these metabolites in the sera of conventional mice, germ-free mice, and humans. Surprisingly, sera concentrations of many tryptophan metabolites are comparable between germ-free and conventional mice. Therefore, many major AHR-activating tryptophan metabolites in mouse sera are produced by the host, despite their presence in feces and mouse cecal contents. AHR activation is rarely studied in the context of a mixture at relevant concentrations, as we present here. The AHR activation potentials of individual and pooled metabolites were explored using cell-based assays, while ligand binding competition assays and ligand docking simulations were used to assess the detected metabolites as AHR agonists. The physiological and biomedical relevance of the identified metabolites was investigated in the context of cell-based models for cancer and rheumatoid arthritis. We present data here that reframe AHR biology to include the presence of ubiquitous tryptophan metabolites, improving our understanding of homeostatic AHR activity and models of AHR-linked diseases.
Collapse
|
12
|
Gordon JB, Albert T, Yadav S, Thomas J, Siegler MA, Moënne-Loccoz P, Goldberg DP. Oxygen versus Sulfur Coordination in Cobalt Superoxo Complexes: Spectroscopic Properties, O 2 Binding, and H-Atom Abstraction Reactivity. Inorg Chem 2023; 62:392-400. [PMID: 36538786 PMCID: PMC10194424 DOI: 10.1021/acs.inorgchem.2c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A five-coordinate, disiloxide-ligated cobalt(II) (S = 3/2) complex (1) was prepared as an oxygen-ligated analogue to the previously reported silanedithiolate-ligated CoII(Me3TACN)(S2SiMe2) (J. Am. Chem. Soc., 2019, 141, 3641-3653). The structural and spectroscopic properties of 1 were analyzed by single-crystal X-ray diffraction, electron paramagnetic resonance (EPR), and NMR spectroscopies. The reactivity of 1 with dioxygen was examined, and it was shown to bind O2 reversibly in a range of solvents at low temperatures. A cobalt(III)-superoxo complex, CoIII(O2·-)(Me3TACN)((OSi2Ph)2O) (2), was generated, and was analyzed by UV-vis, EPR, and resonance Raman spectroscopies. Unlike its sulfur-ligated analogue, complex 2 can thermally release O2 to regenerate 1. Vibrational assignments for selective 18O isotopic labeling of both O2 and disiloxide ligands in 2 are consistent with a 6-coordinate, Co(η1-O2·-)("end-on") complex. Complex 2 reacts with the O-H bond of 4-methoxy-2,2,6,6-tetramethylpiperidin-1-ol (4-MeO-TEMPOH) via H-atom abstraction with a rate of 0.58(2) M-1 s-1 at -105 °C, but it is unable to oxidize phenol substrates. This bracketed reactivity suggests that the O-H bond being formed in the putative CoIII(OOH) product has a relatively weak O-H bond strength (BDFE ∼66-74 kcal mol-1). These thermodynamic and kinetic parameters are similar to those seen for the sulfur-ligated Co(O2)(Me3TACN)(S2SiMe2), indicating that the differences in the electronic structure for O versus S ligation do not have a large impact on H-atom abstraction reactivity.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
13
|
Karpe SA, Mondal D. Synthesis of 3‐Hydroxy‐2‐oxindole and 2,5‐Diketopiperazine Cores as Privileged Scaffolds of Indole Alkaloids. ChemistrySelect 2022. [DOI: 10.1002/slct.202202516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sameer A. Karpe
- School of Chemical Sciences Central University of Gujarat 382030 Gandhinagar Gujarat India
| | - Dhananjoy Mondal
- School of Chemical Sciences Central University of Gujarat 382030 Gandhinagar Gujarat India
| |
Collapse
|
14
|
Mondal P, Rajapakse S, Wijeratne GB. Following Nature's Footprint: Mimicking the High-Valent Heme-Oxo Mediated Indole Monooxygenation Reaction Landscape of Heme Enzymes. J Am Chem Soc 2022; 144:3843-3854. [PMID: 35112858 DOI: 10.1021/jacs.1c11068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pathways for direct conversion of indoles to oxindoles have accumulated considerable interest in recent years due to their significance in the clear comprehension of various pathogenic processes in humans and the multipotent therapeutic value of oxindole pharmacophores. Heme enzymes are predominantly responsible for this conversion in biology and are thought to proceed with a compound-I active oxidant. These heme-enzyme-mediated indole monooxygenation pathways are rapidly emerging therapeutic targets; however, a clear mechanistic understanding is still lacking. Additionally, such knowledge holds promise in the rational design of highly specific indole monooxygenation synthetic protocols that are also cost-effective and environmentally benign. We herein report the first examples of synthetic compound-I and activated compound-II species that can effectively monooxygenate a diverse array of indoles with varied electronic and steric properties to exclusively produce the corresponding 2-oxindole products in good to excellent yields. Rigorous kinetic, thermodynamic, and mechanistic interrogations clearly illustrate an initial rate-limiting epoxidation step that takes place between the heme oxidant and indole substrate, and the resulting indole epoxide intermediate undergoes rearrangement driven by a 2,3-hydride shift on indole ring to ultimately produce 2-oxindole. The complete elucidation of the indole monooxygenation mechanism of these synthetic heme models will help reveal crucial insights into analogous biological systems, directly reinforcing drug design attempts targeting those heme enzymes. Moreover, these bioinspired model compounds are promising candidates for the future development of better synthetic protocols for the selective, efficient, and sustainable generation of 2-oxindole motifs, which are already known for a plethora of pharmacological benefits.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Shanuk Rajapakse
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| |
Collapse
|
15
|
Sacramento JJD, Albert T, Siegler M, Moënne-Loccoz P, Goldberg DP. An Iron(III) Superoxide Corrole from Iron(II) and Dioxygen. Angew Chem Int Ed Engl 2022; 61:e202111492. [PMID: 34850509 PMCID: PMC8789326 DOI: 10.1002/anie.202111492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/20/2021] [Indexed: 01/12/2023]
Abstract
A new structurally characterized ferrous corrole [FeII (ttppc)]- (1) binds one equivalent of dioxygen to form [FeIII (O2-. )(ttppc)]- (2). This complex exhibits a 16/18 O2 -isotope sensitive ν(O-O) stretch at 1128 cm-1 concomitantly with a single ν(Fe-O2 ) at 555 cm-1 , indicating it is an η1 -superoxo ("end-on") iron(III) complex. Complex 2 is the first well characterized Fe-O2 corrole, and mediates the following biologically relevant oxidation reactions: dioxygenation of an indole derivative, and H-atom abstraction from an activated O-H bond.
Collapse
Affiliation(s)
- Jireh Joy D Sacramento
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239-3098, USA
| | - Maxime Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239-3098, USA
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| |
Collapse
|
16
|
Sacramento JJD, Albert T, Siegler M, Moënne‐Loccoz P, Goldberg DP. An Iron(III) Superoxide Corrole from Iron(II) and Dioxygen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jireh Joy D. Sacramento
- Department of Chemistry The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University Portland OR 97239-3098 USA
| | - Maxime Siegler
- Department of Chemistry The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Pierre Moënne‐Loccoz
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University Portland OR 97239-3098 USA
| | - David P. Goldberg
- Department of Chemistry The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| |
Collapse
|
17
|
A new regime of heme-dependent aromatic oxygenase superfamily. Proc Natl Acad Sci U S A 2021; 118:2106561118. [PMID: 34667125 DOI: 10.1073/pnas.2106561118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Two histidine-ligated heme-dependent monooxygenase proteins, TyrH and SfmD, have recently been found to resemble enzymes from the dioxygenase superfamily currently named after tryptophan 2,3-dioxygenase (TDO), that is, the TDO superfamily. These latest findings prompted us to revisit the structure and function of the superfamily. The enzymes in this superfamily share a similar core architecture and a histidine-ligated heme. Their primary functions are to promote O-atom transfer to an aromatic metabolite. TDO and indoleamine 2,3-dioxygenase (IDO), the founding members, promote dioxygenation through a two-step monooxygenation pathway. However, the new members of the superfamily, including PrnB, SfmD, TyrH, and MarE, expand its boundaries and mediate monooxygenation on a broader set of aromatic substrates. We found that the enlarged superfamily contains eight clades of proteins. Overall, this protein group is a more sizeable, structure-based, histidine-ligated heme-dependent, and functionally diverse superfamily for aromatics oxidation. The concept of TDO superfamily or heme-dependent dioxygenase superfamily is no longer appropriate for defining this growing superfamily. Hence, there is a pressing need to redefine it as a heme-dependent aromatic oxygenase (HDAO) superfamily. The revised concept puts HDAO in the context of thiol-ligated heme-based enzymes alongside cytochrome P450 and peroxygenase. It will update what we understand about the choice of heme axial ligand. Hemoproteins may not be as stringent about the type of axial ligand for oxygenation, although thiolate-ligated hemes (P450s and peroxygenases) more frequently catalyze oxygenation reactions. Histidine-ligated hemes found in HDAO enzymes can likewise mediate oxygenation when confronted with a proper substrate.
Collapse
|
18
|
Mondal P, Ishigami I, Gérard EF, Lim C, Yeh SR, de Visser SP, Wijeratne GB. Proton-coupled electron transfer reactivities of electronically divergent heme superoxide intermediates: a kinetic, thermodynamic, and theoretical study. Chem Sci 2021; 12:8872-8883. [PMID: 34257888 PMCID: PMC8246096 DOI: 10.1039/d1sc01952j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Heme superoxides are one of the most versatile metallo-intermediates in biology, and they mediate a vast variety of oxidation and oxygenation reactions involving O2(g). Overall proton-coupled electron transfer (PCET) processes they facilitate may proceed via several different mechanistic pathways, attributes of which are not yet fully understood. Herein we present a detailed investigation into concerted PCET events of a series of geometrically similar, but electronically disparate synthetic heme superoxide mimics, where unprecedented, PCET feasibility-determining electronic effects of the heme center have been identified. These electronic factors firmly modulate both thermodynamic and kinetic parameters that are central to PCET, as supported by our experimental and theoretical observations. Consistently, the most electron-deficient superoxide adduct shows the strongest driving force for PCET, whereas the most electron-rich system remains unreactive. The pivotal role of these findings in understanding significant heme systems in biology, as well as in alternative energy applications is also discussed.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry, University of Alabama at Birmingham Birmingham AL 35205 USA
| | - Izumi Ishigami
- Department of Physiology and Biophysics, Albert Einstein College of Medicine The Bronx New York 10461 USA
| | - Emilie F Gérard
- Manchester Institute of Biotechnology, Department of Chemical Engineering and Analytical Science, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Chaeeun Lim
- Department of Chemistry, University of Alabama at Birmingham Birmingham AL 35205 USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine The Bronx New York 10461 USA
| | - Sam P de Visser
- Manchester Institute of Biotechnology, Department of Chemical Engineering and Analytical Science, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Gayan B Wijeratne
- Department of Chemistry, University of Alabama at Birmingham Birmingham AL 35205 USA
| |
Collapse
|
19
|
Wang Y, Davis I, Shin I, Xu H, Liu A. Molecular Rationale for Partitioning between C-H and C-F Bond Activation in Heme-Dependent Tyrosine Hydroxylase. J Am Chem Soc 2021; 143:4680-4693. [PMID: 33734681 DOI: 10.1021/jacs.1c00175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The heme-dependent l-tyrosine hydroxylases (TyrHs) in natural product biosynthesis constitute a new enzyme family in contrast to the nonheme iron enzymes for DOPA production. A representative TyrH exhibits dual reactivity of C-H and C-F bond cleavage when challenged with 3-fluoro-l-tyrosine (3-F-Tyr) as a substrate. However, little is known about how the enzyme mediates two distinct reactions. Herein, a new TyrH from the thermophilic bacterium Streptomyces sclerotialus (SsTyrH) was functionally and structurally characterized. A de novo crystal structure of the enzyme-substrate complex at 1.89-Å resolution provides the first comprehensive structural study of this hydroxylase. The binding conformation of l-tyrosine indicates that C-H bond hydroxylation is initiated by electron transfer. Mutagenesis studies confirmed that an active site histidine, His88, participates in catalysis. We also obtained a 1.68-Å resolution crystal structure in complex with the monofluorinated substrate, 3-F-Tyr, which shows one binding conformation but two orientations of the fluorine atom with a ratio of 7:3, revealing that the primary factor of product distribution is the substrate orientation. During in crystallo reaction, a ferric-hydroperoxo intermediate (compound 0, Fe3+-OOH) was observed with 3-F-Tyr as a substrate based on characteristic spectroscopic features. We determined the crystal structure of this compound 0-type intermediate and refined it to 1.58-Å resolution. Collectively, this study provided the first molecular details of the heme-dependent TyrH and determined the primary factor that dictates the partitioning between the dual reactivities of C-H and C-F bond activation.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| | - Inchul Shin
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| | - Hui Xu
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| |
Collapse
|
20
|
Shin I, Davis I, Nieves-Merced K, Wang Y, McHardy S, Liu A. A novel catalytic heme cofactor in SfmD with a single thioether bond and a bis-His ligand set revealed by a de novo crystal structural and spectroscopic study. Chem Sci 2021; 12:3984-3998. [PMID: 34163669 PMCID: PMC8179489 DOI: 10.1039/d0sc06369j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
SfmD is a heme-dependent enzyme in the biosynthetic pathway of saframycin A. Here, we present a 1.78 Å resolution de novo crystal structure of SfmD, which unveils a novel heme cofactor attached to the protein with an unusual Hx n HxxxC motif (n ∼ 38). This heme cofactor is unique in two respects. It contains a single thioether bond in a cysteine-vinyl link with Cys317, and the ferric heme has two axial protein ligands, i.e., His274 and His313. We demonstrated that SfmD heme is catalytically active and can utilize dioxygen and ascorbate for a single-oxygen insertion into 3-methyl-l-tyrosine. Catalytic assays using ascorbate derivatives revealed the functional groups of ascorbate essential to its function as a cosubstrate. Abolishing the thioether linkage through mutation of Cys317 resulted in catalytically inactive SfmD variants. EPR and optical data revealed that the heme center undergoes a substantial conformational change with one axial histidine ligand dissociating from the iron ion in response to substrate 3-methyl-l-tyrosine binding or chemical reduction by a reducing agent, such as the cosubstrate ascorbate. The labile axial ligand was identified as His274 through redox-linked structural determinations. Together, identifying an unusual heme cofactor with a previously unknown heme-binding motif for a monooxygenase activity and the structural similarity of SfmD to the members of the heme-based tryptophan dioxygenase superfamily will broaden understanding of heme chemistry.
Collapse
Affiliation(s)
- Inchul Shin
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Karinel Nieves-Merced
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
- Center for Innovative Drug Discovery, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Yifan Wang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Stanton McHardy
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
- Center for Innovative Drug Discovery, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle Texas 78249 USA
| |
Collapse
|
21
|
Zhu Y, Zhang Q, Fang C, Zhang Y, Ma L, Liu Z, Zhai S, Peng J, Zhang L, Zhu W, Zhang C. Refactoring the Concise Biosynthetic Pathway of Cyanogramide Unveils Spirooxindole Formation Catalyzed by a P450 Enzyme. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| | - Chunyan Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
| | - Yingli Zhang
- College of Life Sciences Hebei Normal University Shijiazhuang 050024 China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| | - Zhiwen Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
| | - Shilan Zhai
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
| | - Jing Peng
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs Chinese Ministry of Education School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology Guangdong Key Laboratory of Marine Materia Medica Innovation Academy of South China Sea Ecology and Environmental Engineering South China Sea Institute of Oceanology Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd. Nansha District Guangzhou 511458 China
| |
Collapse
|
22
|
Zhu Y, Zhang Q, Fang C, Zhang Y, Ma L, Liu Z, Zhai S, Peng J, Zhang L, Zhu W, Zhang C. Refactoring the Concise Biosynthetic Pathway of Cyanogramide Unveils Spirooxindole Formation Catalyzed by a P450 Enzyme. Angew Chem Int Ed Engl 2020; 59:14065-14069. [PMID: 32329169 DOI: 10.1002/anie.202004978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/19/2020] [Indexed: 12/12/2022]
Abstract
Cyanogramide (1) from the marine actinomycete Actinoalloteichus cyanogriseus WH1-2216-6 features a unique spirooxindole skeleton and exhibits significant bioactivity to efficiently reverse drug resistance in tumor cells. The biosynthetic gene cluster of 1 in A. cyanogriseus WH1-2216-6 was identified and refactored by promoter engineering for heterologous expression in Streptomyces coelicolor YF11, thereby enabling the production of 1 and five new derivatives. Interesting, four of them, including 1, were identified as enantiomeric mixtures in different ratios. The functions of tailoring enzymes, including two methyltransferases (CyaEF), and three cytochrome P450 monooxygenases (CyaGHI) were confirmed by gene inactivation and feeding experiments, leading to the elucidation of a concise biosynthetic pathway for 1. Notably, CyaH was biochemically verified to catalyze the formation of the spirooxindole skeleton in 1 through an unusual carbocation-mediated semipinacol-type rearrangement reaction.
Collapse
Affiliation(s)
- Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| | - Chunyan Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Yingli Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| | - Zhiwen Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Shilan Zhai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Jing Peng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd. Nansha District, Guangzhou, 511458, China
| |
Collapse
|
23
|
Chen KL, Lai CY, Pham MT, Chein RJ, Tang Y, Lin HC. Enzyme-Catalyzed Azepinoindole Formation in Clavine Alkaloid Biosynthesis. Org Lett 2020; 22:3302-3306. [PMID: 32243182 PMCID: PMC8092377 DOI: 10.1021/acs.orglett.0c01132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
(-)-Aurantioclavine (1), which contains a characteristic seven-membered ring fused to an indole ring, belongs to the azepinoindole class of fungal clavine alkaloids. Here we show that starting from a 4-dimethylallyl-l-tryptophan precursor, a flavin adenine dinucleotide (FAD)-binding oxidase and a catalase-like heme-containing protein are involved in the biosynthesis of 1. The function of these two enzymes was characterized by heterologous expression, in vitro characterization, and deuterium labeling experiments.
Collapse
Affiliation(s)
- Kuan-Lin Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Chen-Yu Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Mai-Truc Pham
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan R.O.C
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan R.O.C
| | - Rong-Jie Chein
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan R.O.C
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Yi Tang
- Departments of Chemical and Biomolecular Engineering and Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan R.O.C
| |
Collapse
|
24
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
25
|
Dick M, Sarai NS, Martynowycz MW, Gonen T, Arnold FH. Tailoring Tryptophan Synthase TrpB for Selective Quaternary Carbon Bond Formation. J Am Chem Soc 2019; 141:19817-19822. [PMID: 31747522 PMCID: PMC6939453 DOI: 10.1021/jacs.9b09864] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We previously engineered the β-subunit of tryptophan synthase (TrpB), which catalyzes the condensation of l-serine and indole to l-tryptophan, to synthesize a range of noncanonical amino acids from l-serine and indole derivatives or other nucleophiles. Here we employ directed evolution to engineer TrpB to accept 3-substituted oxindoles and form C-C bonds leading to new quaternary stereocenters. Initially, the variants that could use 3-substituted oxindoles preferentially formed N-C bonds on N1 of the substrate. Protecting N1 encouraged evolution toward C-alkylation, which persisted when protection was removed. Six generations of directed evolution resulted in TrpB Pfquat with a 400-fold improvement in activity for alkylation of 3-substituted oxindoles and the ability to selectively form a new, all-carbon quaternary stereocenter at the γ-position of the amino acid products. The enzyme can also alkylate and form all-carbon quaternary stereocenters on structurally similar lactones and ketones, where it exhibits excellent regioselectivity for the tertiary carbon. The configurations of the γ-stereocenters of two of the products were determined via microcrystal electron diffraction (MicroED), and we report the MicroED structure of a small molecule obtained using the Falcon III direct electron detector. Highly thermostable and expressed at >500 mg/L E. coli culture, TrpB Pfquat offers an efficient, sustainable, and selective platform for the construction of diverse noncanonical amino acids bearing all-carbon quaternary stereocenters.
Collapse
Affiliation(s)
- Markus Dick
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Nicholas S. Sarai
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Michael W. Martynowycz
- Howard Hughes Medical Institute, David Geffen School of Medicine, Departments of Biological Chemistry and Physiology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tamir Gonen
- Howard Hughes Medical Institute, David Geffen School of Medicine, Departments of Biological Chemistry and Physiology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
26
|
Bai L, Ohnishi Y, Kim ES. A3 foresight network on natural products. J Ind Microbiol Biotechnol 2018; 46:313-317. [PMID: 30474768 DOI: 10.1007/s10295-018-2111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/17/2018] [Indexed: 11/25/2022]
Abstract
Discovery and development of natural products (NPs) have played important roles in the fields of human medicine and other biotechnology fields for the past several decades. Recent genome-mining approaches for the isolation of novel and cryptic NP biosynthetic gene clusters (BGCs) have led to the growing interest in NP research communities including Asian NP researchers from China, Japan, and Korea. Recently, a three-nation government-sponsored program named 'A3 Foresight Network on Chemical and Synthetic Biology of NPs' has been launched with a goal of establishing an Asian hub for NP research-&-personnel exchange program. This brief commentary describes introduction, main researchers, and future perspective of A3 NP network program.
Collapse
Affiliation(s)
- Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon, South Korea.
| |
Collapse
|
27
|
Huang T, Duan Y, Zou Y, Deng Z, Lin S. NRPS Protein MarQ Catalyzes Flexible Adenylation and Specific S-Methylation. ACS Chem Biol 2018; 13:2387-2391. [PMID: 30160473 DOI: 10.1021/acschembio.8b00364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maremycins are a group of structurally diverse 2,5-diketopiperazine natural products featuring a rare amino acid building block, S-methyl-l-cysteine (Me-Cys). Three freestanding nonribosomal peptide synthetase (NRPS) proteins from the maremycins biosynthetic pathway were proposed for the formation of the 2,5-diketopiperazine scaffold: MarQ, MarM, and MarJ. MarQ displays flexible adenylation activity toward Cys, Me-Cys, Ser, and ( S)-2,3-diaminopropanoic acid (DAP) and transfers these substrates to MarJ, which is the discrete peptidyl carrier protein (PCP). MarQ could also activate several other amino acids. The embedded methyltransferase (MT) domain in MarQ specifically catalyzes the thiol methylation of MarJ-tethered Cys. The in vitro reconstitution of MarQ and MarJ further provides clear evidence for the reaction sequence of methylation step on Cys. Our study on MarJ/Q tridomain cassette gains valuable insights into maremycins structure diversity and will be exploited to incorporate Me-Cys into natural products by combinatorial biosynthesis.
Collapse
Affiliation(s)
- Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingyi Duan
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Zou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
28
|
Cao T, Ling J, Liu Y, Chen X, Tian X, Meng D, Pan H, Hu J, Wang N. Characterization and abolishment of the cyclopiazonic acids produced by Aspergillus oryzae HMP-F28. Biosci Biotechnol Biochem 2018; 82:1832-1839. [PMID: 29985105 DOI: 10.1080/09168451.2018.1490170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular alkalinization and H2O2 production are important early events during induced resistance establishment in plants. In a screen for metabolites as plant resistance activators from 98 fungal isolates associated with marine sponge Hymeniacidon perleve, the cyclopiazonic acids (CPAs) produced by Aspergillus oryzae HMP-F28 induced significant extracellular alkalinization coupled with augmented H2O2 production in tobacco cell suspensions. Bioassay-guided fractionation led to the isolation and structural elucidation of a new CPA congener (4, 3-hydroxysperadine A) and three known ones (1-3). To construct a mutasynthetic strain to generate unnatural CPA analogues, a hybrid pks-nrps gene (cpaS) was disrupted to abolish the production of the critical precursor of cyclo-acetoacetyl-L-tryptophan (cAATrp) and all the downstream CPA products. Elimination of cAATrp will allow cAATrp mimics being processed by the CPA biosynthetic machinery to produce CPA derivatives with designed structural features.
Collapse
Affiliation(s)
- Ting Cao
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , China.,b College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| | - Junhong Ling
- c School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , China
| | - Yi Liu
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , China.,c School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , China
| | - Xiaoqi Chen
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , China.,b College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| | - Xiaoyue Tian
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , China.,c School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , China
| | - Dali Meng
- c School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , China
| | - Huaqi Pan
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , China
| | - Jiangchun Hu
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , China
| | - Nan Wang
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , China
| |
Collapse
|
29
|
Chen WT, Wei WT. Recent Developments in the C(sp3
)−H Functionalization of 2-Oxindoles through Radical Reactions. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei-Ting Chen
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 P. R. China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering; Ningbo University; Ningbo 315211 P. R. China
| |
Collapse
|
30
|
Shin I, Ambler BR, Wherritt D, Griffith WP, Maldonado AC, Altman RA, Liu A. Stepwise O-Atom Transfer in Heme-Based Tryptophan Dioxygenase: Role of Substrate Ammonium in Epoxide Ring Opening. J Am Chem Soc 2018; 140:4372-4379. [PMID: 29506384 PMCID: PMC5874177 DOI: 10.1021/jacs.8b00262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heme-based tryptophan dioxygenases are established immunosuppressive metalloproteins with significant biomedical interest. Here, we synthesized two mechanistic probes to specifically test if the α-amino group of the substrate directly participates in a critical step of the O atom transfer during catalysis in human tryptophan 2,3-dioxygenase (TDO). Substitution of the nitrogen atom of the substrate to a carbon (probe 1) or oxygen (probe 2) slowed the catalytic step following the first O atom transfer such that transferring the second O atom becomes less likely to occur, although the dioxygenated products were observed with both probes. A monooxygenated product was also produced from probe 2 in a significant quantity. Analysis of this new product by HPLC coupled UV-vis spectroscopy, high-resolution mass spectrometry, 1H NMR, 13C NMR, HSQC, HMBC, and infrared (IR) spectroscopies concluded that this monooxygenated product is a furoindoline compound derived from an unstable epoxyindole intermediate. These results prove that small molecules can manipulate the stepwise O atom transfer reaction of TDO and provide a showcase for a tunable mechanism by synthetic compounds. The product analysis results corroborate the presence of a substrate-based epoxyindole intermediate during catalysis and provide the first substantial experimental evidence for the involvement of the substrate α-amino group in the epoxide ring-opening step during catalysis. This combined synthetic, biochemical, and biophysical study establishes the catalytic role of the α-amino group of the substrate during the O atom transfer reactions and thus represents a substantial advance to the mechanistic comprehension of the heme-based tryptophan dioxygenases.
Collapse
Affiliation(s)
- Inchul Shin
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Brett R. Ambler
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Daniel Wherritt
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Wendell P. Griffith
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Amanda C. Maldonado
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Ryan A. Altman
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
31
|
Tan C, Xiong S, Chen C. Fast and Controlled Ring-Opening Polymerization of Cyclic Esters by Alkoxides and Cyclic Amides. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02697] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Chen Tan
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuoyan Xiong
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
32
|
Wang KB, Hu X, Li SG, Li XY, Li DH, Bai J, Pei YH, Li ZL, Hua HM. Racemic indole alkaloids from the seeds of Peganum harmala. Fitoterapia 2018; 125:155-160. [PMID: 29355750 DOI: 10.1016/j.fitote.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023]
Abstract
Five pairs of new 2-oxoindole alkaloids, (±)-peganumalines A-E (1-5), and a new indole alkaloid, peganumaline F (6), along with two known analogues, were isolated from the seeds of Peganum harmala. Their structures and absolute configurations were elucidated through spectroscopic analyses and quantum chemistry calculations. Notably, (±)-peganumalines A (1) represent a pair of rare 2-oxoindole dimeric alkaloid enantiomer with the hitherto unknown carbon skeleton. All isolates were tested for antiproliferative and antibacterial activities.
Collapse
Affiliation(s)
- Kai-Bo Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Sheng-Ge Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xin-Yu Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jiao Bai
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yue-Hu Pei
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhan-Lin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
33
|
Liu K, Xu G, Sun J. Gold-catalyzed stereoselective dearomatization/metal-free aerobic oxidation: access to 3-substituted indolines/oxindoles. Chem Sci 2018; 9:634-639. [PMID: 29629129 PMCID: PMC5868387 DOI: 10.1039/c7sc04086e] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022] Open
Abstract
An unprecedented dearomatization of indoles with diazoesters has been developed via cationic gold(i) catalysis. The functionalization selectively occurs at the C3-position to deliver methylene indole derivatives in good yields with excellent Z-selectivity, demonstrating unusual reactivity and selectivity compared with other noble metal catalysis. Importantly, simply followed by silica gel adsorption, an unprecedented metal-free aerobic oxidation occurs for indoles bearing N-electron donating substituents, providing a novel and efficient approach towards 3-substituted indolin-2-ones with a newly formed quaternary stereocenter in excellent stereoselectivity. Notably, these processes afford direct and selective access to a variety of valuable intermediates from abundant feedstock chemicals.
Collapse
Affiliation(s)
- Kai Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology , School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , P. R. China . ;
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology , School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , P. R. China . ;
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology , School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , P. R. China . ;
| |
Collapse
|
34
|
Duan Y, Liu Y, Huang T, Zou Y, Huang T, Hu K, Deng Z, Lin S. Divergent biosynthesis of indole alkaloids FR900452 and spiro-maremycins. Org Biomol Chem 2018; 16:5446-5451. [DOI: 10.1039/c8ob01181h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FR900452 was demonstrated to be biosynthesized by the gene cluster of maremycin G and diversified by SnoaL-like protein MarP.
Collapse
Affiliation(s)
- Yingyi Duan
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Yanyan Liu
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Tao Huang
- Kunming Institute of Botany
- Chinese Academy of Science
- Kunming
- P. R. China
| | - Yi Zou
- College of Pharmaceutical Science and Chinese Medicine
- Southwest University
- Chongqing
- P. R. China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Kaifeng Hu
- Kunming Institute of Botany
- Chinese Academy of Science
- Kunming
- P. R. China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| |
Collapse
|