1
|
Haak J, Golten O, Sørlie M, Eijsink VGH, Cutsail GE. pH-mediated manipulation of the histidine brace in LPMOs and generation of a tri-anionic variant, investigated by EPR, ENDOR, ESEEM and HYSCORE spectroscopy. Chem Sci 2024; 16:233-254. [PMID: 39605866 PMCID: PMC11590009 DOI: 10.1039/d4sc04794j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Lytic Polysaccharide Monooxygenases (LPMOs) catalyze the oxidative depolymerization of polysaccharides at a monocopper active site, that is coordinated by the so-called histidine brace. In the past, this motif has sparked considerable interest, mostly due to its ability to generate and stabilize highly oxidizing intermediates during catalysis. We used a variety of advanced EPR techniques, including Electron Nuclear Double Resonance (ENDOR), Electron Spin Echo Envelope Modulation (ESEEM) and Hyperfine Sublevel Correlation (HYSCORE) spectroscopy in combination with isotopic labelling (15N, 2H) to characterize the active site of the bacterial LPMO SmAA10A over a wide pH range (pH 4.0-pH 12.5). At elevated pH values, several ligand modifications are observed, including changes in the H x O ligand coordination, but also regarding the protonation state of the histidine brace. At pH > 11.5, the deprotonation of the two remote nitrogen nuclei of the imidazole moieties and of the terminal amine is observed. These deprotonations are associated with major electronic changes, including increased σ-donor capabilities of the imidazolates and an overall reduced interaction of the deprotonated amine function. This observation highlights a potentially more significant role of the imidazole ligands, particularly for the stabilization of potent oxidants during turnover. The presented study demonstrates the application of advanced EPR techniques for a thorough characterization of the active site in LPMOs, which ultimately sets a foundation for and affords an outlook on future applications characterizing reaction intermediates.
Collapse
Affiliation(s)
- Julia Haak
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 D-45470 Mülheim an der Ruhr Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstrasse 5-7 D-45141 Essen Germany
| | - Ole Golten
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences N-1432 Ås Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences N-1432 Ås Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences N-1432 Ås Norway
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 D-45470 Mülheim an der Ruhr Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstrasse 5-7 D-45141 Essen Germany
| |
Collapse
|
2
|
Wang Y, Zhou Y, Sun W, Wang X, Yao J, Li H. Identifying Radical Pathways for Cu(I)/Cu(II) Relay Catalyzed Oxygenation via Online Coupled EPR/UV-Vis/Near-IR Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402890. [PMID: 38810102 PMCID: PMC11304242 DOI: 10.1002/advs.202402890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/11/2024] [Indexed: 05/31/2024]
Abstract
Copper-catalyzed C─H oxygenation has drawn considerable attention in mechanistic studies. However, a comprehensive investigation combining radical pathways with a metal-catalytic cycle is challenged by the intricate organic radicals and metallic intermediates. Herein, an online coupled EPR/UV-vis/near-IR detecting method is developed to simultaneously monitor both reactive radical species and copper complex intermediates during the reaction. Focusing on copper-catalyzed phenol oxygenation with cumene hydroperoxide, the short-lived alkylperoxyl radical (EPR signal at g = 2.0143) as well as the unexpected square planar Cu(II)-alkoxyl radical complex (near-IR signal at 833 nm) are unveiled during the reaction, in addition to the observable phenoxyl radical in EPR, quinone product in UV-vis, and Cu(II) center in EPR. With a comprehensive picture of diverse intermediates evolving over the same timeline, a novel Cu(I)/Cu(II) proposed relay-catalyzed sequential radical pathway. In this sequence, Cu(II) activates hydroperoxide through Cu(II)-OOR into the alkylperoxide radical, while the reaction between Cu(I) and hydroperoxide leads to Cu(II)(•OR)OH with high H-atom abstracting activity. These results provide a thorough understanding of the Cu(I)/Cu(II) relay catalysis for phenol oxygenation, setting the stage for mechanistic investigations into intricate radical reactions promoted by metallic complexes.
Collapse
Affiliation(s)
- Yongtao Wang
- Department of ChemistryZhejiang University866 Yuhangtang RdHangzhou310058China
- Center of Chemistry for Frontier TechnologiesZJU‐NHU United R&D CenterZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Yujia Zhou
- Department of ChemistryZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Wenjing Sun
- Department of ChemistryZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Xinyu Wang
- Department of ChemistryZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Jia Yao
- Department of ChemistryZhejiang University866 Yuhangtang RdHangzhou310058China
- Center of Chemistry for Frontier TechnologiesZJU‐NHU United R&D CenterZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Haoran Li
- Department of ChemistryZhejiang University866 Yuhangtang RdHangzhou310058China
- Center of Chemistry for Frontier TechnologiesZJU‐NHU United R&D CenterZhejiang University866 Yuhangtang RdHangzhou310058China
- State Key Laboratory of Chemical Engineering and College of Chemical and Biological EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| |
Collapse
|
3
|
De Tovar J, Leblay R, Wang Y, Wojcik L, Thibon-Pourret A, Réglier M, Simaan AJ, Le Poul N, Belle C. Copper-oxygen adducts: new trends in characterization and properties towards C-H activation. Chem Sci 2024; 15:10308-10349. [PMID: 38994420 PMCID: PMC11234856 DOI: 10.1039/d4sc01762e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
This review summarizes the latest discoveries in the field of C-H activation by copper monoxygenases and more particularly by their bioinspired systems. This work first describes the recent background on copper-containing enzymes along with additional interpretations about the nature of the active copper-oxygen intermediates. It then focuses on relevant examples of bioinorganic synthetic copper-oxygen intermediates according to their nuclearity (mono to polynuclear). This includes a detailed description of the spectroscopic features of these adducts as well as their reactivity towards the oxidation of recalcitrant Csp3 -H bonds. The last part is devoted to the significant expansion of heterogeneous catalytic systems based on copper-oxygen cores (i.e. within zeolite frameworks).
Collapse
Affiliation(s)
- Jonathan De Tovar
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| | - Rébecca Leblay
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Yongxing Wang
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Laurianne Wojcik
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | | | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Nicolas Le Poul
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | - Catherine Belle
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| |
Collapse
|
4
|
Takeyama T, Shimazaki Y. Diversity of oxidation state in copper complexes with phenolate ligands. Dalton Trans 2024; 53:3911-3929. [PMID: 38319292 DOI: 10.1039/d3dt04230h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The phenoxyl radical binding copper complexes have been widely developed and their detailed geometric and electronic structures have been clarified. While many one-electron oxidized CuII-phenolate complexes have been reported previously, recent studies of the Cu-phenolate complexes proceed toward elucidation of the complexes with other oxidation states, such as the phenoxyl radical binding CuI complexes and CuIV-phenolate complexes in the formal oxidation state. This Perspective focuses on new aspects of the properties and reactivities of various Cu-phenolate and Cu-phenoxyl radical complexes with emphasis on the relationship between geometric and electronic structures.
Collapse
Affiliation(s)
- Tomoyuki Takeyama
- Department of Applied Chemistry, Sanyo-Onoda City University, 1-1-1, Daigakudori, Sanyo-Onoda, 756-0884 Yamaguchi, Japan.
| | - Yuichi Shimazaki
- College of Science, Ibaraki University, Bunkyo, Mito 310-8512, Japan.
| |
Collapse
|
5
|
Cao E, Sun M. Spectral Physics of Stable Cu(III) Produced by Oxidative Addition of an Alkyl Halide. Int J Mol Sci 2023; 24:15694. [PMID: 37958679 PMCID: PMC10648560 DOI: 10.3390/ijms242115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
In this paper, we theoretically investigated spectral physics on Cu(III) complexes formed by the oxidative addition of α-haloacetonitrile to ionic and neutral Cu(I) complexes, stimulated by recent experimental reports. Firstly, the electronic structures of reactants of α-haloacetonitrile and neutral Cu(I) and two kinds of products of Cu(III) complexes are visualized with the density of state (DOS) and orbital energy levels of HOMO and LUMO. The visually manifested static and dynamic polarizability as well as the first hyperpolarizability are employed to reveal the vibrational modes of the normal and resonance Raman spectra of two Cu(III) complexes. The nuclear magnetic resonance (NMR) spectra are not only used to identify the reactants and products but also to distinguish between two Cu(III) complexes. The charge difference density (CDD) reveals intramolecular charge transfer in electronic transitions in optical absorption spectra. The CDDs in fluorescence visually reveal electron-hole recombination. Our results promote a deeper understanding of the physical mechanism of stable Cu(III) produced by the oxidative addition of an alkyl halide.
Collapse
Affiliation(s)
- En Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
| |
Collapse
|
6
|
Schröder GC, O'Dell WB, Webb SP, Agarwal PK, Meilleur F. Capture of activated dioxygen intermediates at the copper-active site of a lytic polysaccharide monooxygenase. Chem Sci 2022; 13:13303-13320. [PMID: 36507176 PMCID: PMC9683017 DOI: 10.1039/d2sc05031e] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
Metalloproteins perform a diverse array of redox-related reactions facilitated by the increased chemical functionality afforded by their metallocofactors. Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-dependent enzymes that are responsible for the breakdown of recalcitrant polysaccharides via oxidative cleavage at the glycosidic bond. The activated copper-oxygen intermediates and their mechanism of formation remains to be established. Neutron protein crystallography which permits direct visualization of protonation states was used to investigate the initial steps of oxygen activation directly following active site copper reduction in Neurospora crassa LPMO9D. Herein, we cryo-trap an activated dioxygen intermediate in a mixture of superoxo and hydroperoxo states, and we identify the conserved second coordination shell residue His157 as the proton donor. Density functional theory calculations indicate that both superoxo and hydroperoxo active site states are stable. The hydroperoxo formed is potentially an early LPMO catalytic reaction intermediate or the first step in the mechanism of hydrogen peroxide formation in the absence of substrate. We observe that the N-terminal amino group of the copper coordinating His1 remains doubly protonated directly following molecular oxygen reduction by copper. Aided by molecular dynamics and mining minima free energy calculations we establish that the conserved second-shell His161 in MtPMO3* displays conformational flexibility in solution and that this flexibility is also observed, though to a lesser extent, in His157 of NcLPMO9D. The imidazolate form of His157 observed in our structure following oxygen intermediate protonation can be attributed to abolished His157 flexibility due steric hindrance in the crystal as well as the solvent-occluded active site environment due to crystal packing. A neutron crystal structure of NcLPMO9D at low pH further supports occlusion of the active site since His157 remains singly protonated even at acidic conditions.
Collapse
Affiliation(s)
- Gabriela C. Schröder
- Department of Molecular and Structural Biochemistry, North Carolina State UniversityRaleighNC 27695USA,Neutron Scattering Division, Oak Ridge National LaboratoryOak RidgeTN 37831USA
| | - William B. O'Dell
- Department of Molecular and Structural Biochemistry, North Carolina State UniversityRaleighNC 27695USA,Neutron Scattering Division, Oak Ridge National LaboratoryOak RidgeTN 37831USA
| | - Simon P. Webb
- VeraChem LLC12850 Middlebrook Rd. Ste 205GermantownMD 20874-5244USA
| | - Pratul K. Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State UniversityStillwaterOK 74078USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State UniversityRaleighNC 27695USA,Neutron Scattering Division, Oak Ridge National LaboratoryOak RidgeTN 37831USA
| |
Collapse
|
7
|
Diphosphine modified copper(I)-thiacalixarene supramolecular structure for effective photocurrent response and photodegradation of methylene blue. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
McKee ML. Exploring the Reaction Mechanism of C-H Oxidation by Copper-Salen Complexes. J Phys Chem A 2022; 126:4969-4980. [PMID: 35861503 DOI: 10.1021/acs.jpca.2c03344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of C-H oxidation of propylene (C3H6) and 1-phenyl-1-pentyne (C3H7-C≡C-Ph) by HOOR (R═Me, tBu) and 3O2 by a copper-salen complex was explored by computations. The most noteworthy step is the complexation of two Cu salens to the peroxide to form either the LCuOH/LCuOR pair or an OH-bridged complex LCu(μ-OH)CuL plus OR. The latter pathway involves an avoided crossing of two triplet electronic states. The LCuOH complex can abstract a hydrogen atom from C3H6 and the C3H5 radical plus 3O2 forms the complex LCuOOC3H5. Migration of a hydrogen to the proximal oxygen atom reforms LCuOH and acrolein HC(O)CH═CH2.
Collapse
Affiliation(s)
- Michael L McKee
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
9
|
Chen Y, Chen G, Man WL. Effect of Alkyl Group on Aerobic Peroxidation of Hydrocarbons Catalyzed by Cobalt(III) Alkylperoxo Complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yunzhou Chen
- Hong Kong Baptist University Chemistry HONG KONG
| | - Gui Chen
- Dongguan University of Technology School of Environment and Civil Engineering HONG KONG
| | - Wai-Lun Man
- Hong Kong Baptist University Chemistry Waterloo RoadKowloong Tong 0000 Hong Kong HONG KONG
| |
Collapse
|
10
|
Bouchey CJ, Tolman WB. Involvement of a Formally Copper(III) Nitrite Complex in Proton-Coupled Electron Transfer and Nitration of Phenols. Inorg Chem 2022; 61:2662-2668. [PMID: 35078314 PMCID: PMC9835712 DOI: 10.1021/acs.inorgchem.1c03790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A unique high-valent copper nitrite species, LCuNO2, was accessed via the reversible one-electron oxidation of [M][LCuNO2] (M = NBu4+ or PPN+). The complex LCuNO2 reacts with 2,4,6-tri-tert-butylphenol via a typical proton-coupled electron transfer (PCET) to yield LCuTHF and the 2,4,6-tri-tert-butylphenoxyl radical. The reaction between LCuNO2 and 2,4-di-tert-butylphenol was more complicated. It yielded two products: the coupled bisphenol product expected from a H-atom abstraction and 2,4-di-tert-butyl-6-nitrophenol, the product of an unusual anaerobic nitration. Various mechanisms for the latter transformation were considered.
Collapse
Affiliation(s)
- Caitlin J Bouchey
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St. Louis, Missouri 63130, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St. Louis, Missouri 63130, United States
| |
Collapse
|
11
|
Synthesis and crystal structure of triphenyltin and lead complexes with organic peroxides. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Monika, Aman, Ansari A. Theoretical insights for generation of terminal metal-oxo species and involvement of the “oxo wall”. NEW J CHEM 2022. [DOI: 10.1039/d2nj03098e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work is based on a deep insight on the formation of high-valent metal-oxo by the O⋯O bond cleavage of metal hydroperoxo species and our theoretical findings also illustrate the concept “oxo wall”.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry Central University of Haryana, 123031, India
| | - Aman
- Department of Chemistry Central University of Haryana, 123031, India
| | - Azaj Ansari
- Department of Chemistry Central University of Haryana, 123031, India
| |
Collapse
|
13
|
Khatua M, Goswami B, Kamal, Samanta S. Azide-Alkyne "Click" Reaction in Water Using Parts-Per-Million Amine-Functionalized Azoaromatic Cu(I) Complex as Catalyst: Effect of the Amine Side Arm. Inorg Chem 2021; 60:17537-17554. [PMID: 34806366 DOI: 10.1021/acs.inorgchem.1c02115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of Cu(II) complexes, 1-4 and 6, were synthesized through a reaction of amine-functionalized pincer-like ligands, HL1,2, La,b, and a bidentate ligand L1 with CuCl2·2H2O. The chemical reduction of complex 1 using 1 equiv of sodium l-ascorbate resulted in a dimeric Cu(I) complex 5 in excellent yield. All of the complexes, 1-6, were thoroughly characterized using various physicochemical characterization techniques, single-crystal X-ray structure determination, and density functional theory calculations. Ligands HL1,2 and La,b behaved as tridentated donors by the coordination of the amine side arm in their respective Cu(II) complexes, and the amine side arm remained as a pendant in Cu(I) complexes. All of these complexes (1-6) were explored for copper(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC) reaction at room temperature in water under air. Complex 5 directly served as an active catalyst; however, complexes 1-4 and 6 required 1 equiv of sodium l-ascorbate to generate their corresponding active Cu(I) catalyst. It has been observed that azo-based ligand-containing Cu(I)-complexes are air-stable and were highly efficient for the CuAAC reaction. The amine side arm in the ligand backbone has a dramatic role in accelerating the reaction rate. Mechanistic investigations showed that the alkyne C-H deprotonation was the rate-limiting step and the pendant amine side arm intramolecularly served as a base for Cu-coordinated alkyne deprotonation, leading to the azide-alkyne 2 + 3 cycloaddition reaction. Thus, variation of the amine side arm in complexes 1-4 and use of the most basic diisopropyl amine moiety in complex 4 has resulted in an unique amine-functionalized azoaromatic Cu(I) system for CuAAC reaction upon sodium l-ascorbate reduction. The complex 4 has shown excellent catalysis at its low parts-per-million level loading in water. The catalytic protocol was versatile and exhibited very good functional group tolerance. It was also employed efficiently to synthesize a number of useful functional triazoles having medicinal, catalytic, and targeting properties.
Collapse
Affiliation(s)
- Manas Khatua
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India 741246
| | - Bappaditya Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India 741246
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, India 181221
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, India 181221
| |
Collapse
|
14
|
Schröder GC, Meilleur F. Metalloprotein catalysis: structural and mechanistic insights into oxidoreductases from neutron protein crystallography. Acta Crystallogr D Struct Biol 2021; 77:1251-1269. [PMID: 34605429 PMCID: PMC8489226 DOI: 10.1107/s2059798321009025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
Metalloproteins catalyze a range of reactions, with enhanced chemical functionality due to their metal cofactor. The reaction mechanisms of metalloproteins have been experimentally characterized by spectroscopy, macromolecular crystallography and cryo-electron microscopy. An important caveat in structural studies of metalloproteins remains the artefacts that can be introduced by radiation damage. Photoreduction, radiolysis and ionization deriving from the electromagnetic beam used to probe the structure complicate structural and mechanistic interpretation. Neutron protein diffraction remains the only structural probe that leaves protein samples devoid of radiation damage, even when data are collected at room temperature. Additionally, neutron protein crystallography provides information on the positions of light atoms such as hydrogen and deuterium, allowing the characterization of protonation states and hydrogen-bonding networks. Neutron protein crystallography has further been used in conjunction with experimental and computational techniques to gain insight into the structures and reaction mechanisms of several transition-state metal oxidoreductases with iron, copper and manganese cofactors. Here, the contribution of neutron protein crystallography towards elucidating the reaction mechanism of metalloproteins is reviewed.
Collapse
Affiliation(s)
- Gabriela C. Schröder
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
15
|
Liu H, Shen Q. Well-defined organometallic Copper(III) complexes: Preparation, characterization and reactivity. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213923] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
|
17
|
Morimoto Y, Kawai M, Nakanishi A, Sugimoto H, Itoh S. Controlling the Reactivity of Copper(II) Acylperoxide Complexes. Inorg Chem 2021; 60:8554-8565. [PMID: 33848148 DOI: 10.1021/acs.inorgchem.1c00475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The redox state of the metallomonooxygenases is finely tuned by imposing specific coordination environments on the metal center to reduce the activation energy for the generation of active-oxygen species and subsequent substrate oxygenation reactions. In this study, copper(II) complexes supported by a series of linear tetradentate ligands consisting of a rigid 6-, 7-, or 8-membered cyclic diamine with two pyridylmethyl (-CH2Py) side arms (L6Pym2, L7Pym2, and L8Pym2) are employed to examine the effects of the coordination environment on the reactivity of their acylperoxide adduct complexes. The UV-vis and electron paramagnetic resonance spectroscopic data indicate that the ligand-field splitting between the dx2-y2 and dz2 orbitals of the starting copper(II) complexes increase with an increase of the ring size of the diamine moiety (L6Pym2 → L7Pym2 → L8Pym2). In the reaction of these copper(II) complexes with m-chloroperbenzoic acid (m-CPBA), the L6Pym2 complex gives a stable m-CPBA adduct complex, whereas the L7Pym2 and L8Pym2 complexes are immediately converted to the corresponding m-chlorobenzoic acid (m-CBA) adducts, indicating that the reactivity of the copper(II) acylperoxide complexes largely depends on the coordination environment induced by the supporting ligands. Density functional theory (DFT) calculations on the m-CPBA adduct complexes show that the ligand-field-splitting energy increases with an increase of the ring size of the diamine moiety, as in the case of the starting copper(II) complexes, which enhances the reactivity of the m-CPBA adduct complexes. The reasons for such different reactivities of the m-CPBA adduct complexes are evaluated by using DFT calculations.
Collapse
Affiliation(s)
- Yuma Morimoto
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makito Kawai
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aya Nakanishi
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Sugimoto
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinobu Itoh
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Ma Z, Mahmudov KT, Aliyeva VA, Gurbanov AV, Guedes da Silva MFC, Pombeiro AJ. Peroxides in metal complex catalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Behera PK, Choudhury P, Sahu SK, Sahu RR, Harvat AN, McNulty C, Stitgen A, Scanlon J, Kar M, Rout L. Oxygen Bridged Bimetallic CuMoO
4
Nanocatalyst for Benzylic Alcohol Oxidation; Mechanism and DFT Study. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Laxmidhar Rout
- Department of Chemistry Berhampur University Odisha 760007 India
- Adjunct Faculty Department of Chemistry IISER 760010 Berhampur Odisha India
| |
Collapse
|
20
|
Wu W, De Hont JT, Parveen R, Vlaisavljevich B, Tolman WB. Sulfur-Containing Analogues of the Reactive [CuOH] 2+ Core. Inorg Chem 2021; 60:5217-5223. [PMID: 33733755 DOI: 10.1021/acs.inorgchem.1c00216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the aim of drawing comparisons to the highly reactive complex LCuOH (L = bis(2,6-diisopropylphenylcarboxamido)pyridine), the complexes [Bu4N][LCuSR] (R = H or Ph) were prepared, characterized by spectroscopy and X-ray crystallography, and oxidized at low temperature to generate the species assigned as LCuSR on the basis of spectroscopy and theory. Consistent with the smaller electronegativity of S versus O, redox potentials for the LCuSR-/0 couples were ∼50 mV lower than for LCuOH-/0, and the rates of the proton-coupled electron transfer reactions of LCuSR with anhydrous 1-hydroxy-2,2,6,6-tetramethyl-piperidine at -80 °C were significantly slower (by more than 100 times) than the same reaction of LCuOH. Density functional theory (DFT) and time-dependent DFT calculations on LCuZ (Z = OH, SH, SPh) revealed subtle differences in structural and UV-visible parameters. Further comparison to complexes with Z = F, Cl, and Br using complete active space (CAS) self-consistent field and localized orbital CAS configuration interaction calculations along with a valence-bond-like interpretation of the wave functions showed differences with previously reported results ( J. Am. Chem. Soc. 2020, 142, 8514), and argue for a consistent electronic structure across the entire series of complexes, rather than a change in the nature of the ligand field arrangement for Z = F.
Collapse
Affiliation(s)
- Wen Wu
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, Missouri 63130-4899, United States
| | - Jacqui Tehranchi De Hont
- Department of Chemistry, University of Minnesota, 207 Pleasant Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Riffat Parveen
- University of South Dakota, 414 E. Clark Street, Vermillion, South Dakota 57069, United States
| | - Bess Vlaisavljevich
- University of South Dakota, 414 E. Clark Street, Vermillion, South Dakota 57069, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, Missouri 63130-4899, United States
| |
Collapse
|
21
|
Schröder GC, O’Dell WB, Swartz PD, Meilleur F. Preliminary results of neutron and X-ray diffraction data collection on a lytic polysaccharide monooxygenase under reduced and acidic conditions. Acta Crystallogr F Struct Biol Commun 2021; 77:128-133. [PMID: 33830078 PMCID: PMC8034432 DOI: 10.1107/s2053230x21002399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 11/10/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-center enzymes that are involved in the oxidative cleavage of the glycosidic bond in crystalline cellulose and other polysaccharides. The LPMO reaction is initiated by the addition of a reductant and oxygen to ultimately form an unknown activated copper-oxygen species that is responsible for polysaccharide-substrate H-atom abstraction. Given the sensitivity of metalloproteins to radiation damage, neutron protein crystallography provides a nondestructive technique for structural characterization while also informing on the positions of H atoms. Neutron cryo-crystallography permits the trapping of catalytic intermediates, thereby providing insight into the protonation states and chemical nature of otherwise short-lived species in the reaction mechanism. To characterize the reaction-mechanism intermediates of LPMO9D from Neurospora crassa, a cryo-neutron diffraction data set was collected from an ascorbate-reduced crystal. A second neutron diffraction data set was collected at room temperature from an LPMO9D crystal exposed to low-pH conditions to probe the protonation states of ionizable groups involved in catalysis under acidic conditions.
Collapse
Affiliation(s)
- Gabriela C. Schröder
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - William B. O’Dell
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Paul D. Swartz
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
22
|
Schlagintweit JF, Altmann PJ, Böth AD, Hofmann BJ, Jandl C, Kaußler C, Nguyen L, Reich RM, Pöthig A, Kühn FE. Activation of Molecular Oxygen by a Cobalt(II) Tetra-NHC Complex*. Chemistry 2021; 27:1311-1315. [PMID: 33125815 PMCID: PMC7898330 DOI: 10.1002/chem.202004758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 11/24/2022]
Abstract
The first dicobalt(III) μ2 -peroxo N-heterocyclic carbene (NHC) complex is reported. It can be quantitatively generated from a cobalt(II) compound bearing a 16-membered macrocyclic tetra-NHC ligand via facile activation of dioxygen from air at ambient conditions. The reaction proceeds via an end-on superoxo intermediate as demonstrated by EPR studies and DFT. The peroxo moiety can be cleaved upon addition of acetic acid, yielding the corresponding CoIII acetate complex going along with H2 O2 formation. In contrast, both CoII and CoIII complexes are also studied as catalysts to utilize air for olefin and alkane oxidation reactions; however, not resulting in product formation. The observations are rationalized by DFT-calculations, suggesting a nucleophilic nature of the dicobalt(III) μ2 -peroxo complex. All isolated compounds are characterized by NMR, ESI-MS, elemental analysis, EPR and SC-XRD.
Collapse
Affiliation(s)
- Jonas F. Schlagintweit
- Molecular CatalysisCatalysis Research Center and Department of ChemistryTechnische Universität MünchenLichtenbergstraße 485747Garching bei MünchenGermany
| | - Philipp J. Altmann
- Molecular CatalysisCatalysis Research Center and Department of ChemistryTechnische Universität MünchenLichtenbergstraße 485747Garching bei MünchenGermany
- Single Crystal XRD Laboratory of the Catalysis Research CenterTechnische Universität MünchenErnst-Otto-Fischer-Str. 185747Garching bei MünchenGermany
| | - Alexander D. Böth
- Molecular CatalysisCatalysis Research Center and Department of ChemistryTechnische Universität MünchenLichtenbergstraße 485747Garching bei MünchenGermany
| | - Benjamin J. Hofmann
- Molecular CatalysisCatalysis Research Center and Department of ChemistryTechnische Universität MünchenLichtenbergstraße 485747Garching bei MünchenGermany
| | - Christian Jandl
- Single Crystal XRD Laboratory of the Catalysis Research CenterTechnische Universität MünchenErnst-Otto-Fischer-Str. 185747Garching bei MünchenGermany
| | - Clemens Kaußler
- Molecular CatalysisCatalysis Research Center and Department of ChemistryTechnische Universität MünchenLichtenbergstraße 485747Garching bei MünchenGermany
| | - Linda Nguyen
- Molecular CatalysisCatalysis Research Center and Department of ChemistryTechnische Universität MünchenLichtenbergstraße 485747Garching bei MünchenGermany
- Ausbildungszentrum der Technischen Universität MünchenTechnische Universität MünchenLichtenbergstraße 485747Garching bei MünchenGermany
| | - Robert M. Reich
- Molecular CatalysisCatalysis Research Center and Department of ChemistryTechnische Universität MünchenLichtenbergstraße 485747Garching bei MünchenGermany
| | - Alexander Pöthig
- Single Crystal XRD Laboratory of the Catalysis Research CenterTechnische Universität MünchenErnst-Otto-Fischer-Str. 185747Garching bei MünchenGermany
| | - Fritz E. Kühn
- Molecular CatalysisCatalysis Research Center and Department of ChemistryTechnische Universität MünchenLichtenbergstraße 485747Garching bei MünchenGermany
| |
Collapse
|
23
|
Brander S, Horvath I, Ipsen JØ, Peciulyte A, Olsson L, Hernández-Rollán C, Nørholm MHH, Mossin S, Leggio LL, Probst C, Thiele DJ, Johansen KS. Biochemical evidence of both copper chelation and oxygenase activity at the histidine brace. Sci Rep 2020; 10:16369. [PMID: 33004835 PMCID: PMC7529816 DOI: 10.1038/s41598-020-73266-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Lytic polysaccharide monooxygenase (LPMO) and copper binding protein CopC share a similar mononuclear copper site. This site is defined by an N-terminal histidine and a second internal histidine side chain in a configuration called the histidine brace. To understand better the determinants of reactivity, the biochemical and structural properties of a well-described cellulose-specific LPMO from Thermoascus aurantiacus (TaAA9A) is compared with that of CopC from Pseudomonas fluorescens (PfCopC) and with the LPMO-like protein Bim1 from Cryptococcus neoformans. PfCopC is not reduced by ascorbate but is a very strong Cu(II) chelator due to residues that interacts with the N-terminus. This first biochemical characterization of Bim1 shows that it is not redox active, but very sensitive to H2O2, which accelerates the release of Cu ions from the protein. TaAA9A oxidizes ascorbate at a rate similar to free copper but through a mechanism that produce fewer reactive oxygen species. These three biologically relevant examples emphasize the diversity in how the proteinaceous environment control reactivity of Cu with O2.
Collapse
Affiliation(s)
- Søren Brander
- Department of Geoscience and Natural Resource Management, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Istvan Horvath
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Johan Ø Ipsen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Ausra Peciulyte
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Cristina Hernández-Rollán
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Morten H H Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Susanne Mossin
- Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Corinna Probst
- Department of Biochemistry, Pharmacology and Cancer Biology and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dennis J Thiele
- Department of Biochemistry, Pharmacology and Cancer Biology and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Katja S Johansen
- Department of Geoscience and Natural Resource Management, University of Copenhagen, 1958, Frederiksberg, Denmark. .,Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
24
|
Larsson ED, Dong G, Veryazov V, Ryde U, Hedegård ED. Is density functional theory accurate for lytic polysaccharide monooxygenase enzymes? Dalton Trans 2020; 49:1501-1512. [PMID: 31922155 DOI: 10.1039/c9dt04486h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The lytic polysaccharide monooxygenase (LPMO) enzymes boost polysaccharide depolymerization through oxidative chemistry, which has fueled the hope for more energy-efficient production of biofuel. We have recently proposed a mechanism for the oxidation of the polysaccharide substrate (E. D. Hedegård and U. Ryde, Chem. Sci., 2018, 9, 3866-3880). In this mechanism, intermediates with superoxide, oxyl, as well as hydroxyl (i.e. [CuO2]+, [CuO]+ and [CuOH]2+) cores were involved. These complexes can have both singlet and triplet spin states, and both spin-states may be important for how LPMOs function during catalytic turnover. Previous calculations on LPMOs have exclusively been based on density functional theory (DFT). However, different DFT functionals are known to display large differences for spin-state splittings in transition-metal complexes, and this has also been an issue for LPMOs. In this paper, we study the accuracy of DFT for spin-state splittings in superoxide, oxyl, and hydroxyl intermediates involved in LPMO turnover. As reference we employ multiconfigurational perturbation theory (CASPT2).
Collapse
Affiliation(s)
- Ernst D Larsson
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Muthuramalingam S, Anandababu K, Velusamy M, Mayilmurugan R. Benzene Hydroxylation by Bioinspired Copper(II) Complexes: Coordination Geometry versus Reactivity. Inorg Chem 2020; 59:5918-5928. [DOI: 10.1021/acs.inorgchem.9b03676] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
26
|
Panigrahi R, Sahu SK, Behera PK, Panda S, Rout L. CuMoO 4 Bimetallic Nanoparticles, An Efficient Catalyst for Room Temperature C-S Cross-Coupling of Thiols and Haloarenes. Chemistry 2020; 26:620-624. [PMID: 31702851 DOI: 10.1002/chem.201904801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/03/2019] [Indexed: 11/09/2022]
Abstract
CuII catalyst is less efficient at room temperature for C-S cross-coupling. C-S cross-coupling by CuII catalyst at room temperature is not reported; however, doping of copper with molybdenum metal has been realized here to be more efficient for C-S cross-coupling in comparison to general CuII catalyst. The doped catalyst CuMoO4 nanoparticle is found to be more efficient than copper. The catalyst works under mild conditions without any ligand at room temperature and is recyclable and effective for a wide range of thiols and haloarenes (ArI, ArBr, ArF) from milligram to gram scale. The copper-based bimetallic catalyst is developed and recognized for C-S cross-coupling of haloarenes with alkyl and aryl thiols.
Collapse
Affiliation(s)
- Reba Panigrahi
- Department of Chemistry, Berhampur University, Bhanjabihar, 760007, India
| | - Santosh Kumar Sahu
- Department of Chemistry, Berhampur University, Bhanjabihar, 760007, India
| | | | - Subhalaxmi Panda
- Department of Chemistry, Berhampur University, Bhanjabihar, 760007, India
| | - Laxmidhar Rout
- Department of Chemistry, Berhampur University, Bhanjabihar, 760007, India
| |
Collapse
|
27
|
Fukuzumi S, Cho KB, Lee YM, Hong S, Nam W. Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chem Soc Rev 2020; 49:8988-9027. [DOI: 10.1039/d0cs01251c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review article focuses on various mechanistic dichotomies in redox reactions of metal–oxygen intermediates with the emphasis on understanding and controlling their redox reactivity from experimental and theoretical points of view.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Engineering
| | - Kyung-Bin Cho
- Department of Chemistry
- Jeonbuk National University
- Jeonju 54896
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Seungwoo Hong
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- School of Chemistry and Chemical Engineering
| |
Collapse
|
28
|
Chen Y, Ma Y, Li L, Cui M, Li Z. Copper-catalyzed trifluoromethylthiolation-peroxidation of alkenes and allenes. Org Chem Front 2020. [DOI: 10.1039/d0qo00533a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cu-catalyzed trifluoromethylthiolation-peroxidation of alkenes and allenes using AgSCF3 and tert-butyl hydroperoxide has been developed. The method provides a variety of β-SCF3 and β-vinyl-SCF3 peroxides with excellent regio- and chemo-selectivities.
Collapse
Affiliation(s)
- Yuanjin Chen
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Yangyang Ma
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Liangkui Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Mingshuo Cui
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Zhiping Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
29
|
Singh RK, Blossom BM, Russo DA, Singh R, Weihe H, Andersen NH, Tiwari MK, Jensen PE, Felby C, Bjerrum MJ. Detection and Characterization of a Novel Copper-Dependent Intermediate in a Lytic Polysaccharide Monooxygenase. Chemistry 2019; 26:454-463. [PMID: 31603264 DOI: 10.1002/chem.201903562] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Indexed: 01/27/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes capable of oxidizing crystalline cellulose which have large practical application in the process of refining biomass. The catalytic mechanism of LPMOs still remains debated despite several proposed reaction mechanisms. Here, we report a long-lived intermediate (t1/2 =6-8 minutes) observed in an LPMO from Thermoascus aurantiacus (TaLPMO9A). The intermediate with a strong absorption around 420 nm is formed when reduced LPMO-CuI reacts with sub-equimolar amounts of H2 O2 . UV/Vis absorption spectroscopy, electron paramagnetic resonance, resonance Raman and stopped-flow spectroscopy suggest that the observed long-lived intermediate involves the copper center and a nearby tyrosine (Tyr175). Additionally, activity assays in the presence of sub-equimolar amounts of H2 O2 showed an increase in the LPMO oxidation of phosphoric acid swollen cellulose. Accordingly, this suggests that the long-lived copper-dependent intermediate could be part of the catalytic mechanism for LPMOs. The observed intermediate offers a new perspective into the oxidative reaction mechanism of TaLPMO9A and hence for the biomass oxidation and the reactivity of copper in biological systems.
Collapse
Affiliation(s)
- Raushan K Singh
- Department of Chemistry, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Benedikt M Blossom
- Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - David A Russo
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
- Current address: Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Ranjitha Singh
- Department of Chemistry, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Høgni Weihe
- Department of Chemistry, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | | | - Manish K Tiwari
- Department of Chemistry, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Poul E Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - Claus Felby
- Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - Morten J Bjerrum
- Department of Chemistry, University of Copenhagen, DK-2100, Copenhagen, Denmark
| |
Collapse
|
30
|
Elwell CE, Mandal M, Bouchey CJ, Que L, Cramer CJ, Tolman WB. Carboxylate Structural Effects on the Properties and Proton-Coupled Electron Transfer Reactivity of [CuO 2CR] 2+ Cores. Inorg Chem 2019; 58:15872-15879. [PMID: 31710477 DOI: 10.1021/acs.inorgchem.9b02293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of complexes {[NBu4][LCuII(O2CR)] (R = -C6F5, -C6H4(NO2), -C6H5, -C6H4(OMe), -CH3, and -C6H2(iPr)3)} were characterized (with the complex R = -C6H4(m-Cl) having been published elsewhere ( Mandal et al. J. Am. Chem. Soc. 2019 , 141 , 17236 )). All feature N,N',N″-coordination of the supporting L2- ligand, except for the complex with R = -C6H2(iPr)3, which exhibits N,N',O-coordination. For the N,N',N″-bound complexes, redox properties, UV-vis ligand-to-metal charge transfer (LMCT) features, and rates of hydrogen atom abstraction from 2,4,6,-tri-t-butylphenol using the oxidized, formally Cu(III) compounds LCuIII(O2CR) correlated well with the electron donating nature of R as measured both experimentally and computationally. Specifically, the greater the electron donation, the lower is the energy for LMCT and the slower is the reaction rate. The results are interpreted to support an oxidatively asynchronous proton-coupled electron transfer mechanism that is sensitive to the oxidative power of the [CuIII(O2CR)]2+ core.
Collapse
Affiliation(s)
- Courtney E Elwell
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Mukunda Mandal
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Caitlin J Bouchey
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , Washington University in St. Louis , One Brookings Drive, Campus Box 1134 , St. Louis , Missouri 63130 , United States
| | - Lawrence Que
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Christopher J Cramer
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - William B Tolman
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive, Campus Box 1134 , St. Louis , Missouri 63130 , United States
| |
Collapse
|
31
|
Mandal M, Elwell CE, Bouchey CJ, Zerk TJ, Tolman WB, Cramer CJ. Mechanisms for Hydrogen-Atom Abstraction by Mononuclear Copper(III) Cores: Hydrogen-Atom Transfer or Concerted Proton-Coupled Electron Transfer? J Am Chem Soc 2019; 141:17236-17244. [PMID: 31617707 DOI: 10.1021/jacs.9b08109] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In a possibly biomimetic fashion, formally copper(III)-oxygen complexes LCu(III)-OH (1) and LCu(III)-OOCm (2) (L2- = N,N'-bis(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamide, Cm = α,α-dimethylbenzyl) have been shown to activate X-H bonds (X = C, O). Herein, we demonstrate similar X-H bond activation by a formally Cu(III) complex supported by the same dicarboxamido ligand, LCu(III)-O2CAr1 (3, Ar1 = meta-chlorophenyl), and we compare its reactivity to that of 1 and 2. Kinetic measurements revealed a second order reaction with distinct differences in the rates: 1 reacts the fastest in the presence of O-H or C-H based substrates, followed by 3, which is followed by (unreactive) 2. The difference in reactivity is attributed to both a varying oxidizing ability of the studied complexes and to a variation in X-H bond functionalization mechanisms, which in these cases are characterized as either a hydrogen-atom transfer (HAT) or a concerted proton-coupled electron transfer (cPCET). Select theoretical tools have been employed to distinguish these two cases, both of which generally focus on whether the electron (e-) and proton (H+) travel "together" as a true H atom, (HAT), or whether the H+ and e- are transferred in concert, but travel between different donor/acceptor centers (cPCET). In this work, we reveal that both mechanisms are active for X-H bond activation by 1-3, with interesting variations as a function of substrate and copper functionality.
Collapse
Affiliation(s)
- Mukunda Mandal
- Department of Chemistry, Minnesota Supercomputing Institute, Chemical Theory Center, and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Courtney E Elwell
- Department of Chemistry, Minnesota Supercomputing Institute, Chemical Theory Center, and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Caitlin J Bouchey
- Department of Chemistry, Minnesota Supercomputing Institute, Chemical Theory Center, and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , Washington University in St. Louis , One Brookings Drive, Campus Box 1134 , St. Louis , Missouri 63130 , United States
| | - Timothy J Zerk
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive, Campus Box 1134 , St. Louis , Missouri 63130 , United States
| | - William B Tolman
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive, Campus Box 1134 , St. Louis , Missouri 63130 , United States
| | - Christopher J Cramer
- Department of Chemistry, Minnesota Supercomputing Institute, Chemical Theory Center, and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
32
|
Oh H, Ching WM, Kim J, Lee WZ, Hong S. Hydrogen Bond-Enabled Heterolytic and Homolytic Peroxide Activation within Nonheme Copper(II)-Alkylperoxo Complexes. Inorg Chem 2019; 58:12964-12974. [DOI: 10.1021/acs.inorgchem.9b01898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hana Oh
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea
| | - Wei-Min Ching
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
- Instrumental Center, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jin Kim
- Western Seoul Centre, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Way-Zen Lee
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
33
|
Neira A, Martínez-Alanis PR, Aullón G, Flores-Alamo M, Zerón P, Company A, Chen J, Kasper JB, Browne WR, Nordlander E, Castillo I. Oxidative Cleavage of Cellobiose by Lytic Polysaccharide Monooxygenase (LPMO)-Inspired Copper Complexes. ACS OMEGA 2019; 4:10729-10740. [PMID: 31460171 PMCID: PMC6648734 DOI: 10.1021/acsomega.9b00785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
The potentially tridentate ligand bis[(1-methyl-2-benzimidazolyl)ethyl]amine (2BB) was employed to prepare copper complexes [(2BB)CuI]OTf and [(2BB)CuII(H2O)2](OTf)2 as bioinspired models of lytic polysaccharide copper-dependent monooxygenase (LPMO) enzymes. Solid-state characterization of [(2BB)CuI]OTf revealed a Cu(I) center with a T-shaped coordination environment and metric parameters in the range of those observed in reduced LPMOs. Solution characterization of [(2BB)CuII(H2O)2](OTf)2 indicates that [(2BB)CuII(H2O)2]2+ is the main species from pH 4 to 7.5; above pH 7.5, the hydroxo-bridged species [{(2BB)CuII(H2O) x }2(μ-OH)2]2+ is also present, on the basis of cyclic voltammetry and mass spectrometry. These observations imply that deprotonation of the central amine of Cu(II)-coordinated 2BB is precluded, and by extension, amine deprotonation in the histidine brace of LPMOs appears unlikely at neutral pH. The complexes [(2BB)CuI]OTf and [(2BB)CuII(H2O)2](OTf)2 act as precursors for the oxidative degradation of cellobiose as a cellulose model substrate. Spectroscopic and reactivity studies indicate that a dicopper(II) side-on peroxide complex generated from [(2BB)CuI]OTf/O2 or [(2BB)CuII(H2O)2](OTf)2/H2O2/NEt3 oxidizes cellobiose both in acetonitrile and aqueous phosphate buffer solutions, as evidenced from product analysis by high-performance liquid chromatography-mass spectrometry. The mixture of [(2BB)CuII(H2O)2](OTf)2/H2O2/NEt3 results in more extensive cellobiose degradation. Likewise, the use of both [(2BB)CuI]OTf and [(2BB)CuII(H2O)2](OTf)2 with KO2 afforded cellobiose oxidation products. In all cases, a common Cu(II) complex formulated as [(2BB)CuII(OH)(H2O)]+ was detected by mass spectrometry as the final form of the complex.
Collapse
Affiliation(s)
- Andrea.
C. Neira
- Instituto
de Química and Facultad de Química, División
de Estudios de Posgrado, Universidad Nacional
Autónoma de México, Circuito Exterior, CU, 04510 Ciudad de
México, México
| | - Paulina R. Martínez-Alanis
- Departament
de Química Inorgànica i Orgànica and Institut
de Química Teòrica i Computacional, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Gabriel Aullón
- Departament
de Química Inorgànica i Orgànica and Institut
de Química Teòrica i Computacional, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Marcos Flores-Alamo
- Instituto
de Química and Facultad de Química, División
de Estudios de Posgrado, Universidad Nacional
Autónoma de México, Circuito Exterior, CU, 04510 Ciudad de
México, México
| | - Paulino Zerón
- Instituto
de Química and Facultad de Química, División
de Estudios de Posgrado, Universidad Nacional
Autónoma de México, Circuito Exterior, CU, 04510 Ciudad de
México, México
| | - Anna Company
- Institut
de Química Computacional i Catàlisi (IQCC), Departament
de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Juan Chen
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Science and Health, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Johann B. Kasper
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Science and Health, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Wesley R. Browne
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Science and Health, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Ebbe Nordlander
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Ivan Castillo
- Instituto
de Química and Facultad de Química, División
de Estudios de Posgrado, Universidad Nacional
Autónoma de México, Circuito Exterior, CU, 04510 Ciudad de
México, México
| |
Collapse
|
34
|
Shi K, Mathivathanan L, Boudalis AK, Turek P, Chakraborty I, Raptis RG. Nitrite Reduction by Trinuclear Copper Pyrazolate Complexes: An Example of a Catalytic, Synthetic Polynuclear NO Releasing System. Inorg Chem 2019; 58:7537-7544. [DOI: 10.1021/acs.inorgchem.9b00748] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaige Shi
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Logesh Mathivathanan
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Athanassios K. Boudalis
- Institut de Chimie UMR 7177/Université de Strasbourg 4, rue Blaise Pascal/CS 90032, F-67081 Strasbourg CEDEX, France
| | - Philippe Turek
- Institut de Chimie UMR 7177/Université de Strasbourg 4, rue Blaise Pascal/CS 90032, F-67081 Strasbourg CEDEX, France
| | - Indranil Chakraborty
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Raphael G. Raptis
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| |
Collapse
|
35
|
Bailey WD, Dhar D, Cramblitt AC, Tolman WB. Mechanistic Dichotomy in Proton-Coupled Electron-Transfer Reactions of Phenols with a Copper Superoxide Complex. J Am Chem Soc 2019; 141:5470-5480. [PMID: 30907590 DOI: 10.1021/jacs.9b00466] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The kinetics and mechanism(s) of the reactions of [K(Krypt)][LCuO2] (Krypt = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane, L = a bis(arylcarboxamido)pyridine ligand) with 2,2,6,6-tetramethylpiperdine- N-hydroxide (TEMPOH) and the para-substituted phenols XArOH (X = para substituent NO2, CF3, Cl, H, Me, tBu, OMe, or NMe2) at low temperatures were studied. The reaction with TEMPOH occurs rapidly ( k = 35.4 ± 0.3 M-1 s-1) by second-order kinetics to yield TEMPO• and [LCuOOH]- on the basis of electron paramagnetic resonance spectroscopy, the production of H2O2 upon treatment with protic acid, and independent preparation from reaction of [NBu4][LCuOH] with H2O2 ( Keq = 0.022 ± 0.007 for the reverse reaction). The reactions with XArOH also follow second-order kinetics, and analysis of the variation of the k values as a function of phenol properties (Hammett σ parameter, O-H bond dissociation free energy, p Ka, E1/2) revealed a change in mechanism across the series, from proton transfer/electron transfer for X = NO2, CF3, Cl to concerted-proton/electron transfer (or hydrogen-atom transfer) for X = OMe, NMe2 (data for X = H, Me, tBu are intermediate between the extremes). Thermodynamic analysis and comparisons to previous results for LCuOH, a different copper-oxygen intermediate with the same supporting ligand, and literature for other [CuO2]+ complexes reveal significant differences in proton-coupled electron-transfer mechanisms that have implications for understanding oxidation catalysis by copper-containing enzymes and abiological catalysts.
Collapse
Affiliation(s)
- Wilson D Bailey
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive, Campus Box 1134 , St. Louis , Missouri 63130-4899 , United States
| | - Debanjan Dhar
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Anna C Cramblitt
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive, Campus Box 1134 , St. Louis , Missouri 63130-4899 , United States
| | - William B Tolman
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive, Campus Box 1134 , St. Louis , Missouri 63130-4899 , United States.,Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
36
|
Bailey WD, Gagnon NL, Elwell CE, Cramblitt AC, Bouchey CJ, Tolman WB. Revisiting the Synthesis and Nucleophilic Reactivity of an Anionic Copper Superoxide Complex. Inorg Chem 2019; 58:4706-4711. [PMID: 30901201 DOI: 10.1021/acs.inorgchem.9b00090] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The addition of 1 equiv of KO2 and Kryptofix222 (Krypt) in CH3CN to a solution of LCu(CH3CN) [L = N, N'-bis(2,6-diisopropylphenyl)-2,6-pyridinecarboxamide] in tetrahydrofuran at -80 °C yielded [K(Krypt)][LCuO2], the enhanced stability of which enabled reexamination of its reactivity with 2-phenylpropionaldehyde (2-PPA). Mechanistic and product analysis studies revealed that [K(Krypt)][LCuO2] reacts with wet 2-PPA to form [LCuOH]-, which then deprotonates 2-PPA to yield the copper(II) enolate complex [LCu(OC═C(Me)Ph)]-. Acetophenone was observed upon workup of this complex or mixtures of KO2 and 2-PPA alone, in support of an alternative mechanism(s) to the one proposed previously involving an initial nucleophilic attack at the carbonyl group of 2-PPA.
Collapse
Affiliation(s)
- Wilson D Bailey
- Department of Chemistry , Washington University-St. Louis , One Brookings Drive, Campus Box 1134 , St. Louis , Missouri 63130-4899 , United States
| | - Nicole L Gagnon
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Courtney E Elwell
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Anna C Cramblitt
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Caitlin J Bouchey
- Department of Chemistry , Washington University-St. Louis , One Brookings Drive, Campus Box 1134 , St. Louis , Missouri 63130-4899 , United States.,Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - William B Tolman
- Department of Chemistry , Washington University-St. Louis , One Brookings Drive, Campus Box 1134 , St. Louis , Missouri 63130-4899 , United States.,Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
37
|
Abstract
Multimetallic cofactors supported by weak-field donors frequently function as reaction centers in metalloproteins, and many of these cofactors catalyze small molecule activation (e.g., N2, O2, CO2) with prominent roles in geochemical element cycles or detoxification. Notable examples include the iron-molybdenum cofactor of the molybdenum-dependent nitrogenases, which catalyze N2 fixation, and the NiFe4S4 cluster and the Mo(O)SCu site in various carbon monoxide dehydrogenases. The prevailing proposed reaction mechanisms for these multimetallic cofactors relies on a cooperative pathway, in which the oxidation state changes are distributed over the aggregate coupled with orbital overlap between the substrate and more than one metal ion within the cluster. Such cooperativity has also been proposed for chemical transformations at the surfaces of heterogeneous catalysts. However, the design details that afford cooperative effects and allow such reactivity to be harnessed effectively in homogeneous synthetic systems remain unclear. Relatedly, hydride donors ligated to these metal cluster cofactors are suggested as precursors to the state that reacts with substrates; here too, however, the reactivity of hydride-decorated clusters supported by weak-field ligands is underexplored. Inspired by the reactivity potential of multimetallic assemblies evidenced in biological systems, approaches to design, synthesize, and evaluate reactivity of polynuclear metal compounds have been actively explored. In a similar vein to the templating function afforded by enzyme active sites, a carefully engineered organic ligand can be employed to control metal nuclearity of the complex and the local coordination environment of each metal center. This Account presents our efforts within this field, beginning with ligand design considerations followed by a survey of observed small molecule activation by trimetallic cyclophanates. We highlight the distinct reactivity outcomes accessed by multimetallic compounds as compared to aggregates that assemble in reaction mixtures from monometallic precursors. Contributing to the opportunity for programmed cooperativity in these designed multimetallic compounds, the cyclophane also dictates the orientation of substrate binding and metal-substrate interactions, which has a prominent influence on reactivity. For example, the dinitrogen-tricopper(I) cyclophanate reacts with dioxygen with markedly different results as compared to monocopper compounds. As an unexpected outcome, one series of tricopper compounds were discovered to be competent catalysts for carbon dioxide reduction to oxalate-a formally one-electron process-hinting at an inherently broader reaction scope for weak-field clusters at lowering the barrier for one-electron pathways as well as multielectron redox transformations. Further reflecting the role of the ligand in tuning reactivity, the trimetallic trihydride cluster compounds, [M3(μ-H)3]3+ (M = FeII, CoII, ZnII), demonstrate substrate specificity for CO2 over various other unsaturated molecules and surprising stability toward water. This series reflects the role of the local environment of a shallow ligand pocket to control substrate access. Summed together, the systems described here evidence the anticipated cooperative reactivity accessed in designed multimetallic species vs self-assembled monometallic systems (e.g., O2 activation and O atom transfer) as well as control of substrate access by seemingly subtle structural effects. Indeed, future efforts aim to interrogate the limits of cooperativity in these systems as well as the role of ligand dynamics and sterics on reactivity.
Collapse
Affiliation(s)
- Ricardo B. Ferreira
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Leslie J. Murray
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
38
|
Trammell R, Rajabimoghadam K, Garcia-Bosch I. Copper-Promoted Functionalization of Organic Molecules: from Biologically Relevant Cu/O 2 Model Systems to Organometallic Transformations. Chem Rev 2019; 119:2954-3031. [PMID: 30698952 DOI: 10.1021/acs.chemrev.8b00368] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Copper is one of the most abundant and less toxic transition metals. Nature takes advantage of the bioavailability and rich redox chemistry of Cu to carry out oxygenase and oxidase organic transformations using O2 (or H2O2) as oxidant. Inspired by the reactivity of these Cu-dependent metalloenzymes, chemists have developed synthetic protocols to functionalize organic molecules under enviormentally benign conditions. Copper also promotes other transformations usually catalyzed by 4d and 5d transition metals (Pd, Pt, Rh, etc.) such as nitrene insertions or C-C and C-heteroatom coupling reactions. In this review, we summarized the most relevant research in which copper promotes or catalyzes the functionalization of organic molecules, including biological catalysis, bioinspired model systems, and organometallic reactivity. The reaction mechanisms by which these processes take place are discussed in detail.
Collapse
Affiliation(s)
- Rachel Trammell
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275 , United States
| | | | - Isaac Garcia-Bosch
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275 , United States
| |
Collapse
|
39
|
Panigrahi R, Panda S, Behera PK, Sahu SK, Rout L. Recyclable bimetallic CuMoO4 nanoparticles for C–N cross-coupling reaction under mild conditions. NEW J CHEM 2019. [DOI: 10.1039/c9nj04436a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
New bimetallic CuMoO4 nanocatalysts for C–N cross-coupling.
Collapse
|
40
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
41
|
Xiao P, Li CX, Fang WH, Cui G, Thiel W. Mechanism of the Visible-Light-Mediated Copper-Catalyzed Coupling Reaction of Phenols and Alkynes. J Am Chem Soc 2018; 140:15099-15113. [PMID: 30362731 DOI: 10.1021/jacs.8b10387] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A recent experimental study reported a visible-light-mediated aerobic oxidative coupling reaction of phenol with alkynes that produces hydroxyl-functionalized aryl ketones using inexpensive CuCl as catalyst under mild conditions. Here we apply the complete active space self-consistent field (CASSCF) method and multistate second-order perturbation (MS-CASPT2) theory in combination with density functional theory (DFT) to systematically explore the entire photocatalytic reaction between phenol and phenylacetylene in acetonitrile solution in the presence of molecular oxygen and CuCl. Our main findings are as follows: (1) The visible-light-driven conversion of phenylacetylene to PhCCCu(I) occurs thermally because of efficient excited-state deactivation to the S0 state. (2) The single electron transfer from PhCCCu(I) to molecular oxygen that leads to the PhCCCu(II) cation takes place in the T1 state after an efficient S1 → T1 intersystem crossing. (3) During the initial oxidation of phenol, molecular oxygen prefers to attack the para position of the phenol radical intermediate to produce 1,4-benzoquinone, which further reacts with PhCCCu(II) to generate para-hydroxyl-substituted aryl ketones; this is the origin of the experimentally observed regioselectivity. (4) The C≡C bond of the phenylacetylene moiety is not activated by the triplet-state single electron transfer from PhCCCu(I) to molecular oxygen but is cleaved at a later stage, in the [2+2] cycloaddition between PhCCCu(II) and 1,4-benzoquinone. (5) The substrate phenol plays an active role in several hydrogen transfer and decarboxylation reactions; the barriers to these phenol-assisted reactions are lower than those for the corresponding direct or water-assisted reactions, which explains the experimental finding that adding water does not enhance the photocatalytic reaction yield. In summary, while supporting the general features of the experimentally proposed mechanism, our computational study provides detailed mechanistic insights that should be useful for understanding and further improving visible-light-induced copper-catalyzed coupling reactions.
Collapse
Affiliation(s)
- Pin Xiao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Chun-Xiang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
42
|
Recent insights into lytic polysaccharide monooxygenases (LPMOs). Biochem Soc Trans 2018; 46:1431-1447. [DOI: 10.1042/bst20170549] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes discovered within the last 10 years. By degrading recalcitrant substrates oxidatively, these enzymes are major contributors to the recycling of carbon in nature and are being used in the biorefinery industry. Recently, two new families of LPMOs have been defined and structurally characterized, AA14 and AA15, sharing many of previously found structural features. However, unlike most LPMOs to date, AA14 degrades xylan in the context of complex substrates, while AA15 is particularly interesting because they expand the presence of LPMOs from the predominantly microbial to the animal kingdom. The first two neutron crystallography structures have been determined, which, together with high-resolution room temperature X-ray structures, have putatively identified oxygen species at or near the active site of LPMOs. Many recent computational and experimental studies have also investigated the mechanism of action and substrate-binding mode of LPMOs. Perhaps, the most significant recent advance is the increasing structural and biochemical evidence, suggesting that LPMOs follow different mechanistic pathways with different substrates, co-substrates and reductants, by behaving as monooxygenases or peroxygenases with molecular oxygen or hydrogen peroxide as a co-substrate, respectively.
Collapse
|
43
|
|
44
|
|
45
|
Hangasky JA, Iavarone AT, Marletta MA. Reactivity of O 2 versus H 2O 2 with polysaccharide monooxygenases. Proc Natl Acad Sci U S A 2018; 115:4915-4920. [PMID: 29686097 PMCID: PMC5949000 DOI: 10.1073/pnas.1801153115] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enzymatic conversion of polysaccharides into lower-molecular-weight, soluble oligosaccharides is dependent on the action of hydrolytic and oxidative enzymes. Polysaccharide monooxygenases (PMOs) use an oxidative mechanism to break the glycosidic bond of polymeric carbohydrates, thereby disrupting the crystalline packing and creating new chain ends for hydrolases to depolymerize and degrade recalcitrant polysaccharides. PMOs contain a mononuclear Cu(II) center that is directly involved in C-H bond hydroxylation. Molecular oxygen was the accepted cosubstrate utilized by this family of enzymes until a recent report indicated reactivity was dependent on H2O2 Reported here is a detailed analysis of PMO reactivity with H2O2 and O2, in conjunction with high-resolution MS measurements. The cosubstrate utilized by the enzyme is dependent on the assay conditions. PMOs will directly reduce O2 in the coupled hydroxylation of substrate (monooxygenase activity) and will also utilize H2O2 (peroxygenase activity) produced from the uncoupled reduction of O2 Both cosubstrates require Cu reduction to Cu(I), but the reaction with H2O2 leads to nonspecific oxidation of the polysaccharide that is consistent with the generation of a hydroxyl radical-based mechanism in Fenton-like chemistry, while the O2 reaction leads to regioselective substrate oxidation using an enzyme-bound Cu/O2 reactive intermediate. Moreover, H2O2 does not influence the ability of secretome from Neurospora crassa to degrade Avicel, providing evidence that molecular oxygen is a physiologically relevant cosubstrate for PMOs.
Collapse
Affiliation(s)
- John A Hangasky
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Michael A Marletta
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720;
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
46
|
Hedegård ED, Ryde U. Molecular mechanism of lytic polysaccharide monooxygenases. Chem Sci 2018; 9:3866-3880. [PMID: 29780519 PMCID: PMC5935029 DOI: 10.1039/c8sc00426a] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/23/2018] [Indexed: 11/23/2022] Open
Abstract
The lytic polysaccharide monooxygenases (LPMOs) are copper metalloenzymes that can enhance polysaccharide depolymerization through an oxidative mechanism and hence boost generation of biofuel from e.g. cellulose. By employing density functional theory in a combination of quantum mechanics and molecular mechanics (QM/MM), we report a complete description of the molecular mechanism of LPMOs.
The lytic polysaccharide monooxygenases (LPMOs) are copper metalloenzymes that can enhance polysaccharide depolymerization through an oxidative mechanism and hence boost generation of biofuel from e.g. cellulose. By employing density functional theory in a combination of quantum mechanics and molecular mechanics (QM/MM), we report a complete description of the molecular mechanism of LPMOs. The QM/MM scheme allows us to describe all reaction steps with a detailed protein environment and we show that this is necessary. Several active species capable of abstracting a hydrogen from the substrate have been proposed previously and starting from recent crystallographic work on a substrate–LPMO complex, we investigate previously suggested paths as well as new ones. We describe the generation of the reactive intermediates, the abstraction of a hydrogen atom from the polysaccharide substrate, as well as the final recombination step in which OH is transferred back to the substrate. We show that a superoxo [CuO2]+ complex can be protonated by a nearby histidine residue (suggested by recent mutagenesis studies and crystallographic work) and, provided an electron source is available, leads to formation of an oxyl-complex after cleavage of the O–O bond and dissociation of water. The oxyl complex either reacts with the substrate or is further protonated to a hydroxyl complex. Both the oxyl and hydroxyl complexes are also readily generated from a reaction with H2O2, which was recently suggested to be the true co-substrate, rather than O2. The C–H abstraction by the oxyl and hydroxy complexes is overall favorable with activation barriers of 69 and 94 kJ mol–1, compared to the much higher barrier (156 kJ mol–1) obtained for the copper–superoxo species. We obtain good structural agreement for intermediates for which structural data are available and the estimated reaction energies agree with experimental rate constants. Thus, our suggested mechanism is the most complete to date and concur with available experimental evidence.
Collapse
Affiliation(s)
- Erik Donovan Hedegård
- Department of Theoretical Chemistry , Lund University , P. O. Box 124 , SE-221 00 , Lund , Sweden .
| | - Ulf Ryde
- Department of Theoretical Chemistry , Lund University , P. O. Box 124 , SE-221 00 , Lund , Sweden .
| |
Collapse
|
47
|
Chen Y, Chen Y, Lu S, Li Z. Copper-catalyzed three-component phosphorylation–peroxidation of alkenes. Org Chem Front 2018. [DOI: 10.1039/c7qo01045a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A copper-catalyzed three-component phosphorylation–peroxidation of alkenes with P(O)–H compounds and TBHP has been developed.
Collapse
Affiliation(s)
- Yan Chen
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Yuanjin Chen
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Shenglin Lu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Zhiping Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
48
|
Papanikolaou MG, Hadjithoma S, Chatzikypraiou DS, Papaioannou D, Drouza C, Tsipis AC, Miras HN, Keramidas AD, Kabanos TA. Investigation of dioxygen activation by copper(ii)–iminate/aminate complexes. Dalton Trans 2018; 47:16242-16254. [DOI: 10.1039/c8dt03137a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CuII amidate/iminate complexes activate dioxygen by a ligated to CuII, –HCN– moiety.
Collapse
Affiliation(s)
- Michael G. Papanikolaou
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- Ioannina 45110
- Greece
| | | | - Dimitra S. Chatzikypraiou
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- Ioannina 45110
- Greece
| | - Dionysios Papaioannou
- Laboratory of Synthetic Organic Chemistry
- Department of Chemistry
- University of Patras
- GR-26504 Patras
- Greece
| | - Chryssoula Drouza
- Department of Agricultural Sciences
- Biotechnology and Food Science
- Cyprus University of Technology
- Limassol 3036
- Cyprus
| | - Athanassios C. Tsipis
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- Ioannina 45110
- Greece
| | | | | | - Themistoklis A. Kabanos
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- Ioannina 45110
- Greece
| |
Collapse
|
49
|
Song X, Yan Y, Wang Y, Hu D, Xiao L, Yu J, Zhang W, Jia M. Hybrid compounds assembled from copper-triazole complexes and phosphomolybdic acid as advanced catalysts for the oxidation of olefins with oxygen. Dalton Trans 2017; 46:16655-16662. [DOI: 10.1039/c7dt03198j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hybrid compounds of [CuI4(3atrz)4][PMoVI11MoVO40] (1) and [CuI6(3atrz)6][PMo12O40]2 (2) are active catalysts for olefin oxidation.
Collapse
Affiliation(s)
- Xiaojing Song
- Key Laboratory of Surface and Interface Chemistry of Jilin Province
- College of Chemistry
- Jilin University
- 130021 Changchun
- China
| | - Yan Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yanning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Dianwen Hu
- Key Laboratory of Surface and Interface Chemistry of Jilin Province
- College of Chemistry
- Jilin University
- 130021 Changchun
- China
| | - Lina Xiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Jiehui Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Wenxiang Zhang
- Key Laboratory of Surface and Interface Chemistry of Jilin Province
- College of Chemistry
- Jilin University
- 130021 Changchun
- China
| | - Mingjun Jia
- Key Laboratory of Surface and Interface Chemistry of Jilin Province
- College of Chemistry
- Jilin University
- 130021 Changchun
- China
| |
Collapse
|