1
|
Ghosh AK, Groom DP, Schramm VL. Transition State Analysis of SAMHD1 from Primary 18O, 33P, and Solvent Kinetic Isotope Effects. J Am Chem Soc 2025; 147:8852-8863. [PMID: 40014869 DOI: 10.1021/jacs.5c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Human sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) is an allosterically regulated dNTP triphosphohydrolase (dNTP + H2O → dNuc + PPPi) involved in deoxynucleotide regulation and DNA repair. We characterized the chemical features of the SAMHD1 transition state for 2'-deoxyadenosine 5'-triphosphate (dATP) hydrolysis by analysis of 18O and 33P primary kinetic isotope effects (KIEs) at the α-phosphoryl of the leaving triphosphate group. The intrinsic KIE values for [5'-18O]dATP of 1.028 ± 0.003 and for [α-33P]dATP of 1.015 ± 0.004 provide insights into the mechanistic details of the SAMHD1 transition state. Solvent 2H2O isotope effects for the hydrolysis of dATP indicate that a single proton is being transferred at the transition state to give a solvent KIE of 3.2 ± 0.1. Quantum chemical matching of the isotope effects supports a concerted, loose, highly asymmetric DNAN transition state with a Pauling bond order of 0.17 to the attacking hydroxide oxygen nucleophile and 0.53 to the departing deoxyadenosine. The reaction coordinate distance is 4.7 Å from attacking the hydroxyl oxygen to departing 5'-deoxyadenosine oxygen. The solvent KIE is consistent with a near-midpoint proton transfer from the His215 catalytic site proton donor to the deoxyadenosine 5'-oxygen in the transition state. This is the first triphosphohydrolase transition state to be characterized and the first use of a 33P primary isotope effect to characterize a phosphotransferase transition state.
Collapse
Affiliation(s)
- Ananda K Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Daniel P Groom
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
2
|
Wan X, Zeng W, Fan H, Wang C, Han S, Sun Z, Tang M, Shao J, Liu Y, Fang Y, Jia J, Tang Y, Zhang Y, Zhao B, Fang D. MAT2B regulates the protein level of MAT2A to preserve RNA N6-methyladenosine. Cell Death Dis 2024; 15:714. [PMID: 39353892 PMCID: PMC11445541 DOI: 10.1038/s41419-024-07093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
MAT2B works together with MAT2A to synthesize S-Adenosyl methionine (SAM) as the primary methyl donor. MAT2B, despite lacking catalytic activity, exerts regulatory control over the enzymatic activity of MAT2A. In addition to the enzymatic activity regulation, we find that, in an NADP+-dependent manner, MAT2B binds and stabilizes MAT2A. Disruption of the cellular NADP+ remodels the protein level of MAT2A. The pentose phosphatase pathway regulates the level of MAT2A protein through the interaction of NADP+ with MAT2B. Additionally, MAT2B-MAT2A interaction regulates the mRNA m6A modification and stability. In liver tumors, the Mat2a mRNA level is elevated but the protein level is decreased by the restricted NADP+. Blocking the interaction between MAT2B and MAT2A by the keto diet can suppress liver tumor growth. These findings reveal that MAT2B is essential for regulating the protein levels of MAT2A and connecting SAM synthesis to mRNA m6A.
Collapse
Affiliation(s)
- Xinyi Wan
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Weiwu Zeng
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Haonan Fan
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chenliang Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shixun Han
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhongxing Sun
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Mei Tang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Juejia Shao
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yu Liu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuan Fang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Junqi Jia
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yin Tang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yanjun Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bin Zhao
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Dong Fang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, China.
| |
Collapse
|
3
|
Herre C, Nshdejan A, Klopfleisch R, Corte GM, Bahramsoltani M. Knockdown of TPI in human dermal microvascular endothelial cells and its impact on angiogenesis in vitro. PLoS One 2023; 18:e0294933. [PMID: 38117832 PMCID: PMC10732452 DOI: 10.1371/journal.pone.0294933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/10/2023] [Indexed: 12/22/2023] Open
Abstract
INTRODUCTION Angiogenic behaviour has been shown as highly versatile among Endothelial cells (ECs) causing problems of in vitro assays of angiogenesis considering their reproducibility. It is indispensable to investigate influencing factors of the angiogenic potency of ECs. OBJECTIVE The present study aimed to analyse the impact of knocking down triosephosphate isomerase (TPI) on in vitro angiogenesis and simultaneously on vimentin (VIM) and adenosylmethionine synthetase isoform type 2 (MAT2A) expression. Furthermore, native expression profiles of TPI, VIM and MAT2A in the course of angiogenesis in vitro were examined. METHODS Two batches of human dermal microvascular ECs were cultivated over 50 days and stimulated to undergo angiogenesis. A shRNA-mediated knockdown of TPI was performed. During cultivation, time-dependant morphological changes were detected and applied for EC-staging as prerequisite for quantifying in vitro angiogenesis. Additionally, mRNA and protein levels of all proteins were monitored. RESULTS Opposed to native cells, knockdown cells were not able to enter late stages of angiogenesis and primarily displayed a downregulation of VIM and an uprise in MAT2A expression. Native cells increased their TPI expression and decreased their VIM expression during the course of angiogenesis in vitro. For MAT2A, highest expression was observed to be in the beginning and at the end of angiogenesis. CONCLUSION Knocking down TPI provoked expressional changes in VIM and MAT2A and a deceleration of in vitro angiogenesis, indicating that TPI represents an angiogenic protein. Native expression profiles lead to the assumption of VIM being predominantly relevant in beginning stages, MAT2A in beginning and late stages and TPI during the whole course of angiogenesis in vitro.
Collapse
Affiliation(s)
- Christina Herre
- Institute of Veterinary Anatomy, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Arpenik Nshdejan
- Institute of Veterinary Anatomy, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Giuliano Mario Corte
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Universität Zürich, Zurich, Switzerland
| | - Mahtab Bahramsoltani
- Institute of Veterinary Anatomy, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Cornelissen NV, Mineikaitė R, Erguven M, Muthmann N, Peters A, Bartels A, Rentmeister A. Post-synthetic benzylation of the mRNA 5' cap via enzymatic cascade reactions. Chem Sci 2023; 14:10962-10970. [PMID: 37829022 PMCID: PMC10566477 DOI: 10.1039/d3sc03822j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023] Open
Abstract
mRNAs are emerging modalities for vaccination and protein replacement therapy. Increasing the amount of protein produced by stabilizing the transcript or enhancing translation without eliciting a strong immune response are major steps towards overcoming the present limitations and improving their therapeutic potential. The 5' cap is a hallmark of mRNAs and non-natural modifications can alter the properties of the entire transcript selectively. Here, we developed a versatile enzymatic cascade for regioselective benzylation of various biomolecules and applied it for post-synthetic modification of mRNA at the 5' cap to demonstrate its potential. Starting from six synthetic methionine analogues bearing (hetero-)benzyl groups, S-adenosyl-l-methionine analogues are formed and utilized for N7G-cap modification of mRNAs. This post-synthetic enzymatic modification exclusively modifies mRNAs at the terminal N7G, producing mRNAs with functional 5' caps. It avoids the wrong orientation of the 5' cap-a problem in common co-transcriptional capping. In the case of the 4-chlorobenzyl group, protein production was increased to 139% during in vitro translation and to 128-150% in four different cell lines. This 5' cap modification did not activate cytosolic pathogen recognition receptors TLR3, TLR7 or TLR8 significantly more than control mRNAs, underlining its potential to contribute to the development of future mRNA therapeutics.
Collapse
Affiliation(s)
- N V Cornelissen
- University of Münster, Department of Chemistry, Institute of Biochemistry Corrensstr. 36 48149 Münster Germany
| | - R Mineikaitė
- University of Münster, Department of Chemistry, Institute of Biochemistry Corrensstr. 36 48149 Münster Germany
| | - M Erguven
- University of Münster, Department of Chemistry, Institute of Biochemistry Corrensstr. 36 48149 Münster Germany
- University of Münster, Cells in Motion Interfaculty Centre Waldeyerstr. 15 48149 Münster Germany
| | - N Muthmann
- University of Münster, Department of Chemistry, Institute of Biochemistry Corrensstr. 36 48149 Münster Germany
| | - A Peters
- University of Münster, Department of Chemistry, Institute of Biochemistry Corrensstr. 36 48149 Münster Germany
| | - A Bartels
- University of Münster, Department of Chemistry, Institute of Biochemistry Corrensstr. 36 48149 Münster Germany
| | - A Rentmeister
- University of Münster, Department of Chemistry, Institute of Biochemistry Corrensstr. 36 48149 Münster Germany
- University of Münster, Cells in Motion Interfaculty Centre Waldeyerstr. 15 48149 Münster Germany
| |
Collapse
|
5
|
Balasubramani SG, Schwartz SD. Transition Path Sampling Based Calculations of Free Energies for Enzymatic Reactions: The Case of Human Methionine Adenosyl Transferase and Plasmodium vivax Adenosine Deaminase. J Phys Chem B 2022; 126:5413-5420. [PMID: 35830574 PMCID: PMC9444332 DOI: 10.1021/acs.jpcb.2c03251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transition path sampling (TPS) is widely used for the calculations of reaction rates, transition state structures, and reaction coordinates of condensed phase systems. Here we discuss a scheme for the calculation of free energies using the ensemble of TPS reactive trajectories in combination with a window-based sampling technique for enzyme-catalyzed reactions. We calculate the free energy profiles of the reactions catalyzed by the human methionine S-adenosyltransferase (MAT2A) enzyme and the Plasmodium vivax adenosine deaminase (pvADA) enzyme to assess the accuracy of this method. MAT2A catalyzes the formation of S-adenosine-l-methionine following a SN2 mechanism, and using our method, we estimate the free energy barrier for this reaction to be 16 kcal mol-1, which is in excellent agreement with the experimentally measured activation energy of 17.27 kcal mol-1. Furthermore, for the pvADA enzyme-catalyzed reaction we estimate a free energy barrier of 21 kcal mol-1, and the calculated free energy profile is similar to that predicted from experimental observations. Calculating free energies by employing our simple method within TPS provides significant advantages over methods such as umbrella sampling because it is free from any applied external bias, is accurate compared to experimental measurements, and has a reasonable computational cost.
Collapse
Affiliation(s)
- Sree Ganesh Balasubramani
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Li C, Gui G, Zhang L, Qin A, Zhou C, Zha X. Overview of Methionine Adenosyltransferase 2A (MAT2A) as an Anticancer Target: Structure, Function, and Inhibitors. J Med Chem 2022; 65:9531-9547. [PMID: 35796517 DOI: 10.1021/acs.jmedchem.2c00395] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methionine adenosyltransferase 2A (MAT2A) is a rate-limiting enzyme in the methionine cycle that primarily catalyzes the synthesis of S-adenosylmethionine (SAM) from methionine and adenosine triphosphate (ATP). MAT2A has been recognized as a therapeutic target for the treatment of cancers. Recently, a few MAT2A inhibitors have been reported, and three entered clinical trials to treat solid tumorsor lymphoma with MTAP loss. This review aims to summarize the current understanding of the roles of MAT2A in cancer and the discovery of MAT2A inhibitors. Furthermore, a perspective on the use of MAT2A inhibitors for the treatment of cancer is also discussed. We hope to provide guidance for future drug design and optimization via analysis of the binding modes of known MAT2A inhibitors.
Collapse
Affiliation(s)
- Chunzheng Li
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Zhang
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
7
|
Herre C, Nshdejan A, Klopfleisch R, Corte GM, Bahramsoltani M. Expression of vimentin, TPI and MAT2A in human dermal microvascular endothelial cells during angiogenesis in vitro. PLoS One 2022; 17:e0266774. [PMID: 35482724 PMCID: PMC9049311 DOI: 10.1371/journal.pone.0266774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/27/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction
In vitro assays of angiogenesis face immense problems considering their reproducibility based on the inhomogeneous characters of endothelial cells (ECs). It is necessary to detect influencing factors, which affect the angiogenic potency of ECs.
Objective
This study aimed to analyse expression profiles of vimentin (VIM), triosephosphate isomerase (TPI) and adenosylmethionine synthetase isoform type–2 (MAT2A) during the whole angiogenic cascade in vitro. Furthermore, the impact of knocking down vimentin (VIM) on angiogenesis in vitro was evaluated, while monitoring TPI and MAT2A expression.
Methods
A long–term cultivation and angiogenic stimulation of human dermal microvascular ECs was performed. Cells were characterized via VEGFR–1 and VEGFR–2 expression and a shRNA–mediated knockdown of VIM was performed. The process of angiogenesis in vitro was quantified via morphological staging and mRNA–and protein–levels of all proteins were analysed.
Results
While native cells ran through the angiogenic cascade chronologically, knockdown cells only entered beginning stages of angiogenesis and died eventually. Cell cultures showing a higher VEGFR–1 expression survived exclusively and displayed an upregulation of MAT2A and TPI expression. Native cells highly expressed VIM in early stages, MAT2A mainly in the beginning and TPI during the course of angiogenesis in vitro.
Conclusion
VIM knockdown led to a deceleration of angiogenesis in vitro and knockdown cells displayed expressional changes in TPI and MAT2A. Cell populations with a higher number of stalk cells emerged as being more stable against manipulations and native expression profiles provided an indication of VIM and MAT2A being relevant predominantly in beginning stages and TPI during the whole angiogenic cascade in vitro.
Collapse
Affiliation(s)
- Christina Herre
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Arpenik Nshdejan
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Giuliano Mario Corte
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Mahtab Bahramsoltani
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Liu D, Shu X, Xiang S, Li T, Huang C, Cheng M, Cao J, Hua Y, Liu J. N4 -allyldeoxycytidine: A New DNA Tag with Chemical Sequencing Power for Pinpointing Labelling Sites, Mapping Epigenetic Mark, and in situ Imaging. Chembiochem 2022; 23:e202200143. [PMID: 35438823 DOI: 10.1002/cbic.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Indexed: 11/08/2022]
Abstract
DNA tagging with base analogs has found numerous applications. To precisely record the DNA labelling information, it will be highly beneficial to develop chemical sequencing tags that can be encoded into DNA as regular bases and decoded as mutant bases upon a mild, efficient and bioorthognal chemical treatment. Here we reported such a DNA tag, N4-allyldeoxycytidine (a4dC), to label and identify DNA by in vitro assays. The iodination of a4dC led to fast and complete formation of 3, N4-cyclized deoxycytidine, which induced base misincorporation during DNA replication and thus could be located at single base resolution. We explored the applications of a4dC in pinpointing DNA labelling sites at single base resolution, mapping epigenetic mark N4-methyldeoxycytidine, and imaging nucleic acids in situ. In addition, mammalian cellular DNA could be metabolically labelled with a4dC. Together,our study sheds light on the design of next generation DNA tags with chemical sequencing power.
Collapse
Affiliation(s)
- Donghong Liu
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Xiao Shu
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Siying Xiang
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Tengwei Li
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Chenyang Huang
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Mohan Cheng
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Jie Cao
- Zhejiang University, Life Sciences Institute; Department of Polymer Science and Engineering, CHINA
| | - Yuejin Hua
- Zhejiang University, he MOE Key Laboratory of Biosystems Homeostasis & Protection; Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, CHINA
| | - Jianzhao Liu
- Zhejiang University, Department of Polymer Science and Engineering, Zheda road 38, 310007, hangzhou, CHINA
| |
Collapse
|
9
|
Winter SD, Jones HBL, Răsădean DM, Crean RM, Danson MJ, Pantoş GD, Katona G, Prentice E, Arcus VL, van der Kamp MW, Pudney CR. Chemical Mapping Exposes the Importance of Active Site Interactions in Governing the Temperature Dependence of Enzyme Turnover. ACS Catal 2021; 11:14854-14863. [PMID: 34956689 PMCID: PMC8689651 DOI: 10.1021/acscatal.1c04679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Indexed: 12/26/2022]
Abstract
Uncovering the role of global protein dynamics in enzyme turnover is needed to fully understand enzyme catalysis. Recently, we have demonstrated that the heat capacity of catalysis, ΔC P ‡, can reveal links between the protein free energy landscape, global protein dynamics, and enzyme turnover, suggesting that subtle changes in molecular interactions at the active site can affect long-range protein dynamics and link to enzyme temperature activity. Here, we use a model promiscuous enzyme (glucose dehydrogenase from Sulfolobus solfataricus) to chemically map how individual substrate interactions affect the temperature dependence of enzyme activity and the network of motions throughout the protein. Utilizing a combination of kinetics, red edge excitation shift (REES) spectroscopy, and computational simulation, we explore the complex relationship between enzyme-substrate interactions and the global dynamics of the protein. We find that changes in ΔC P ‡ and protein dynamics can be mapped to specific substrate-enzyme interactions. Our study reveals how subtle changes in substrate binding affect global changes in motion and flexibility extending throughout the protein.
Collapse
Affiliation(s)
- Samuel D. Winter
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - Hannah B. L. Jones
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | | | - Rory M. Crean
- Science for Life Laboratory, Department of Chemistry − BMC, Uppsala University, Uppsala 752 37, Sweden
| | - Michael J. Danson
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - G. Dan Pantoş
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Gergely Katona
- Department of Chemistry and Biology, University of Gothenburg, Göteborg 412 96, Sweden
| | - Erica Prentice
- School of Science, University of Waikato, Hamilton 3216, New Zealand
| | - Vickery L. Arcus
- School of Science, University of Waikato, Hamilton 3216, New Zealand
| | | | | |
Collapse
|
10
|
Bailey J, Douglas H, Masino L, de Carvalho LPS, Argyrou A. Human Mat2A Uses an Ordered Kinetic Mechanism and Is Stabilized but Not Regulated by Mat2B. Biochemistry 2021; 60:3621-3632. [PMID: 34780697 PMCID: PMC8638259 DOI: 10.1021/acs.biochem.1c00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methionine adenosyltransferase (MAT) catalyzes the adenosine 5'-triphosphate (ATP) and l-methionine (l-Met) dependent formation of S-adenosyl-l-methionine (SAM), the principal methyl donor of most biological transmethylation reactions. We carried out in-depth kinetic studies to further understand its mechanism and interaction with a potential regulator, Mat2B. The initial velocity pattern and results of product inhibition by SAM, phosphate, and pyrophosphate, and dead-end inhibition by the l-Met analog cycloleucine (l-cLeu) suggest that Mat2A follows a strictly ordered kinetic mechanism where ATP binds before l-Met and with SAM released prior to random release of phosphate and pyrophosphate. Isothermal titration calorimetry (ITC) showed binding of ATP to Mat2A with a Kd of 80 ± 30 μM, which is close to the Km(ATP) of 50 ± 10 μM. In contrast, l-Met or l-cLeu showed no binding to Mat2A in the absence of ATP; however, binding to l-cLeu was observed in the presence of ATP. The ITC results are fully consistent with the product and dead-inhibition results obtained. We also carried out kinetic studies in the presence of the physiological regulator Mat2B. Under conditions where all Mat2A is found in complex with Mat2B, no significant change in the kinetic parameters was observed despite confirmation of a very high binding affinity of Mat2A to Mat2B (Kd of 6 ± 1 nM). Finally, we found that while Mat2A is unstable at low concentrations (<100 nM), rapidly losing activity at 37 °C, it retained full activity for at least 2 h when Mat2B was present at the known 2:1 Mat2A/Mat2B stoichiometry.
Collapse
Affiliation(s)
- Jonathan Bailey
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.,Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Holly Douglas
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Laura Masino
- Structural Biology Scientific Technology Platform, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Luiz Pedro Sorio de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Argyrides Argyrou
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| |
Collapse
|
11
|
Ghosh A, Niland CN, Cahill SM, Karadkhelkar NM, Schramm VL. Mechanism of Triphosphate Hydrolysis by Human MAT2A at 1.07 Å Resolution. J Am Chem Soc 2021; 143:18325-18330. [PMID: 34668717 DOI: 10.1021/jacs.1c09328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Human methionine adenosyltransferase MAT2A provides S-adenosyl-l-methionine (AdoMet) for methyl-transfer reactions. Epigenetic methylations influence expression patterns in development and in cancer. Transition-state analysis and kinetic studies have described the mechanism of AdoMet and triphosphate formation at the catalytic site. Hydrolysis of triphosphate to pyrophosphate and phosphate by MAT2A is required for product release and proceeds through a second chemical transition state. Crystal structures of MAT2A with analogues of AdoMet and pyrophosphate were obtained in the presence of Mg2+, Al3+, and F-. MgF3- is trapped as a PO3- mimic in a structure with malonate filling the pyrophosphate site. NMR demonstrates that MgF3- and AlF30 are bound by MAT2A as mimics of the departing phosphoryl group. Crystallographic analysis reveals a planar MgF3- acting to mimic a phosphoryl (PO3-) leaving group. The modeled transition state with PO3- has the phosphorus atom sandwiched symmetrically and equidistant (approximately 2 Å) between a pyrophosphate oxygen and the water nucleophile. A catalytic site arginine directs the nucleophilic water to the phosphoryl leaving group. The catalytic geometry of the transition-state reconstruction predicts a loose transition state with characteristics of symmetric nucleophilic displacement.
Collapse
Affiliation(s)
- Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Courtney N Niland
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Sean M Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Nishant M Karadkhelkar
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
12
|
Firestone RS, Feng M, Basu I, Peregrina K, Augenlicht LH, Schramm VL. Transition state analogue of MTAP extends lifespan of APC Min/+ mice. Sci Rep 2021; 11:8844. [PMID: 33893330 PMCID: PMC8065027 DOI: 10.1038/s41598-021-87734-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/23/2021] [Indexed: 01/03/2023] Open
Abstract
A mouse model of human Familial Adenomatous Polyposis responds favorably to pharmacological inhibition of 5'-methylthioadenosine phosphorylase (MTAP). Methylthio-DADMe-Immucillin-A (MTDIA) is an orally available, transition state analogue inhibitor of MTAP. 5'-Methylthioadenosine (MTA), the substrate for MTAP, is formed in polyamine synthesis and is recycled by MTAP to S-adenosyl-L-methionine (SAM) via salvage pathways. MTDIA treatment causes accumulation of MTA, which inhibits growth of human head and neck (FaDu) and lung (H359, A549) cancers in immunocompromised mouse models. We investigated the efficacy of oral MTDIA as an anti-cancer therapeutic for intestinal adenomas in immunocompetent APCMin/+ mice, a murine model of human Familial Adenomatous Polyposis. Tumors in APCMin/+ mice were decreased in size by MTDIA treatment, resulting in markedly improved anemia and doubling of mouse lifespan. Metabolomic analysis of treated mice showed no changes in polyamine, methionine, SAM or ATP levels when compared with control mice but indicated an increase in MTA, the MTAP substrate. Generation of an MTDIA-resistant cell line in culture showed a four-fold amplification of the methionine adenosyl transferase (MAT2A) locus and expression of this enzyme. MAT2A is downstream of MTAP action and catalyzes synthesis of the SAM necessary for methylation reactions. Immunohistochemical analysis of treated mouse intestinal tissue demonstrated a decrease in symmetric dimethylarginine, a PRMT5-catalyzed modification. The anti-cancer effects of MTDIA indicate that increased cellular MTA inhibits PRMT5-mediated methylations resulting in attenuated tumor growth. Oral dosing of MTDIA as monotherapy has potential for delaying the onset and progression of colorectal cancers in Familial Adenomatous Polyposis (FAP) as well as residual duodenal tumors in FAP patients following colectomy. MTDIA causes a physiologic inactivation of MTAP and may also have efficacy in combination with inhibitors of MAT2A or PRMT5, known synthetic-lethal interactions in MTAP-/- cancer cell lines.
Collapse
Affiliation(s)
- Ross S Firestone
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mu Feng
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Indranil Basu
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Karina Peregrina
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Leonard H Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
13
|
Niland CN, Ghosh A, Cahill SM, Schramm VL. Mechanism and Inhibition of Human Methionine Adenosyltransferase 2A. Biochemistry 2021; 60:791-801. [PMID: 33656855 DOI: 10.1021/acs.biochem.0c00998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
S-Adenosyl-l-methionine (AdoMet) is synthesized by the MAT2A isozyme of methionine adenosyltransferase in most human tissues and in cancers. Its contribution to epigenetic control has made it a target for anticancer intervention. A recent kinetic isotope effect analysis of MAT2A demonstrated a loose nucleophilic transition state. Here we show that MAT2A has a sequential mechanism with a rate-limiting step of formation of AdoMet, followed by rapid hydrolysis of the β-γ bond of triphosphate, and rapid release of phosphate and pyrophosphate. MAT2A catalyzes the slow hydrolysis of both ATP and triphosphate in the absence of other reactants. Positional isotope exchange occurs with 18O as the 5'-oxygen of ATP. Loss of the triphosphate is sufficiently reversible to permit rotation and recombination of the α-phosphoryl group of ATP. Adenosine (α-β or β-γ)-imido triphosphates are slow substrates, and the respective imido triphosphates are inhibitors. The hydrolytically stable (α-β, β-γ)-diimido triphosphate (PNPNP) is a nanomolar inhibitor. The MAT2A protein structure is highly stabilized against denaturation by binding of PNPNP. A crystal structure of MAT2A with 5'-methylthioadenosine and PNPNP shows the ligands arranged appropriately in the ATP binding site. Two magnesium ions chelate the α- and γ-phosphoryl groups of PNPNP. The β-phosphoryl oxygen is in contact with an essential potassium ion. Imidophosphate derivatives provide contact models for the design of catalytic site ligands for MAT2A.
Collapse
Affiliation(s)
- Courtney N Niland
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Sean M Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
14
|
Xiang S, Gao M, Cao J, Shu X, Cheng M, Wang F, Deng T, Liu J. Precise identification of an RNA methyltransferase's substrate modification site. Chem Commun (Camb) 2021; 57:2499-2502. [DOI: 10.1039/d0cc08260k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A simple and nonradioactive method to probe the substrate modification site and structural preference of an RNA methyltransferase.
Collapse
Affiliation(s)
- Siying Xiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Minsong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Xiao Shu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Mohan Cheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Fengqin Wang
- College of Animal Sciences
- Key Laboratory of Animal Nutrition & Feed Sciences
- Ministry of Agriculture
- Zhejiang University
- Hangzhou
| | - Ting Deng
- State Key Laboratory of Genetic Engineering
- Collaborative Innovation Centre of Genetics and Development
- Department of Biochemistry
- Institute of Plant Biology
- School of Life Sciences
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
15
|
Panmanee J, Antonyuk SV, Hasnain SS. Structural basis of the dominant inheritance of hypermethioninemia associated with the Arg264His mutation in the MAT1A gene. Acta Crystallogr D Struct Biol 2020; 76:594-607. [PMID: 32496220 PMCID: PMC7271947 DOI: 10.1107/s2059798320006002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Methionine adenosyltransferase (MAT) deficiency, characterized by isolated persistent hypermethioninemia (IPH), is caused by mutations in the MAT1A gene encoding MATαl, one of the major hepatic enzymes. Most of the associated hypermethioninemic conditions are inherited as autosomal recessive traits; however, dominant inheritance of hypermethioninemia is caused by an Arg264His (R264H) mutation. This mutation has been confirmed in a screening programme of newborns as the most common mutation in babies with IPH. Arg264 makes an inter-subunit salt bridge located at the dimer interface where the active site assembles. Here, it is demonstrated that the R264H mutation results in greatly reduced MAT activity, while retaining its ability to dimerize, indicating that the lower activity arises from alteration at the active site. The first crystallographic structure of the apo form of the wild-type MATαl enzyme is provided, which shows a tetrameric assembly in which two compact dimers combine to form a catalytic tetramer. In contrast, the crystal structure of the MATαl R264H mutant reveals a weaker dimeric assembly, suggesting that the mutation lowers the affinity for dimer-dimer interaction. The formation of a hetero-oligomer with the regulatory MATβV1 subunit or incubation with a quinolone-based compound (SCR0911) results in the near-full recovery of the enzymatic activity of the pathogenic mutation R264H, opening a clear avenue for a therapeutic solution based on chemical interventions that help to correct the defect of the enzyme in its ability to metabolize methionine.
Collapse
Affiliation(s)
- Jiraporn Panmanee
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
16
|
McKean IJW, Hoskisson PA, Burley GA. Biocatalytic Alkylation Cascades: Recent Advances and Future Opportunities for Late‐Stage Functionalization. Chembiochem 2020; 21:2890-2897. [DOI: 10.1002/cbic.202000187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Iain J. W. McKean
- Department of Pure & Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL United Kingdom
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy & Biomedical Sciences University of Strathclyde 161 Cathedral Street Glasgow G4 0RE United Kingdom
| | - Glenn A. Burley
- Department of Pure & Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL United Kingdom
| |
Collapse
|
17
|
Panmanee J, Bradley-Clarke J, Mato JM, O'Neill PM, Antonyuk SV, Hasnain SS. Control and regulation of S-Adenosylmethionine biosynthesis by the regulatory β subunit and quinolone-based compounds. FEBS J 2019; 286:2135-2154. [PMID: 30776190 PMCID: PMC6850014 DOI: 10.1111/febs.14790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/17/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Methylation is an underpinning process of life and provides control for biological processes such as DNA synthesis, cell growth, and apoptosis. Methionine adenosyltransferases (MAT) produce the cellular methyl donor, S‐Adenosylmethionine (SAMe). Dysregulation of SAMe level is a relevant event in many diseases, including cancers such as hepatocellular carcinoma and colon cancer. In addition, mutation of Arg264 in MATα1 causes isolated persistent hypermethioninemia, which is characterized by low activity of the enzyme in liver and high level of plasma methionine. In mammals, MATα1/α2 and MATβV1/V2 are the catalytic and the major form of regulatory subunits, respectively. A gating loop comprising residues 113–131 is located beside the active site of catalytic subunits (MATα1/α2) and provides controlled access to the active site. Here, we provide evidence of how the gating loop facilitates the catalysis and define some of the key elements that control the catalytic efficiency. Mutation of several residues of MATα2 including Gln113, Ser114, and Arg264 lead to partial or total loss of enzymatic activity, demonstrating their critical role in catalysis. The enzymatic activity of the mutated enzymes is restored to varying degrees upon complex formation with MATβV1 or MATβV2, endorsing its role as an allosteric regulator of MATα2 in response to the levels of methionine or SAMe. Finally, the protein–protein interacting surface formed in MATα2:MATβ complexes is explored to demonstrate that several quinolone‐based compounds modulate the activity of MATα2 and its mutants, providing a rational for chemical design/intervention responsive to the level of SAMe in the cellular environment. Enzymes Methionine adenosyltransferase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC2/5/1/6.html). Database Structural data are available in the RCSB PDB database under the PDB ID http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6FBN (Q113A), http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6FBP (S114A: P22121), http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6FBO (S114A: I222), http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6FCB (P115G), http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6FCD (R264A), http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6FAJ (wtMATα2: apo), http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6G6R (wtMATα2: holo)
Collapse
Affiliation(s)
- Jiraporn Panmanee
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Jack Bradley-Clarke
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Jose M Mato
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Parque Tecnologico de Bizkaia, Derio, Spain
| | - Paul M O'Neill
- Department of Chemistry, School of Physical Sciences, University of Liverpool, UK
| | - Svetlana V Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - S Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| |
Collapse
|
18
|
Howe GW, van der Donk WA. 18O Kinetic Isotope Effects Reveal an Associative Transition State for Phosphite Dehydrogenase Catalyzed Phosphoryl Transfer. J Am Chem Soc 2018; 140:17820-17824. [PMID: 30525552 DOI: 10.1021/jacs.8b06301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphite dehydrogenase (PTDH) catalyzes an unusual phosphoryl transfer reaction in which water displaces a hydride leaving group. Despite extensive effort, it remains unclear whether PTDH catalysis proceeds via an associative or dissociative mechanism. Here, primary 2H and secondary 18O kinetic isotope effects (KIEs) were determined and used together with computation to characterize the transition state (TS) catalyzed by a thermostable PTDH (17X-PTDH). The large, normal 18O KIEs suggest an associative mechanism. Various transition state structures were computed within a model of the enzyme active site and 2H and 18O KIEs were predicted to evaluate the accuracy of each TS. This analysis suggests that 17X-PTDH catalyzes an associative process with little leaving group displacement and extensive nucleophilic participation. This tight TS is likely a consequence of the extremely poor leaving group requiring significant P-O bond formation to expel the hydride. This finding contrasts with the dissociative TSs in most phosphoryl transfer reactions from phosphate mono- and diesters.
Collapse
Affiliation(s)
- Graeme W Howe
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , 1206 West Gregory Drive , Urbana , Illinois 61801 , United States
| | - Wilfred A van der Donk
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , 1206 West Gregory Drive , Urbana , Illinois 61801 , United States.,Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , 1206 West Gregory Drive , Urbana , Illinois 61801 , United States
| |
Collapse
|