1
|
Li X, Wang J, Baptist A, Wu W, Heuer‐Jungemann A, Zhang T. Crystalline Assemblies of DNA Nanostructures and Their Functional Properties. Angew Chem Int Ed Engl 2025; 64:e202416948. [PMID: 39576670 PMCID: PMC11735872 DOI: 10.1002/anie.202416948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 01/18/2025]
Abstract
Self-assembly presents a remarkable approach for creating intricate structures by positioning nanomaterials in precise locations, with control over molecular interactions. For example, material arrays with interplanar distances similar to the wavelength of light can generate structural color through complex interactions like scattering, diffraction, and interference. Moreover, enzymes, plasmonic nanoparticles, and luminescent materials organized in periodic lattices are envisioned to create functional materials with various applications. Focusing on structural DNA nanotechnology, here, we summarized the recent developments of two- and three-dimensional lattices made purely from DNA nanostructures. We review DNA-based monomer design for different lattices, guest molecule assembly, and inorganic material coating techniques and discuss their functional properties and potential applications in photonic crystals, nanoelectronics, and bioengineering as well as future challenges and perspectives.
Collapse
Affiliation(s)
- Xueqiao Li
- Department of Applied Chemistry, School of Chemistry and Chemical EngineeringYantai UniversityYantai264005China
| | - Jiaoyang Wang
- Department of Applied Chemistry, School of Chemistry and Chemical EngineeringYantai UniversityYantai264005China
| | - Anna Baptist
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
- Center for NanoScience (CeNS)Ludwig-Maximilians-University81377MunichGermany
| | - Wenna Wu
- Department of Applied Chemistry, School of Chemistry and Chemical EngineeringYantai UniversityYantai264005China
| | - Amelie Heuer‐Jungemann
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
- Center for NanoScience (CeNS)Ludwig-Maximilians-University81377MunichGermany
| | - Tao Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical EngineeringYantai UniversityYantai264005China
| |
Collapse
|
2
|
Cai B, Rong X, Sun Y, Liu L, Li Z. Engineered 3D DNA Crystals: A Molecular Design Perspective. SMALL METHODS 2025:e2401455. [PMID: 39777863 DOI: 10.1002/smtd.202401455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Recent advances in biomolecular self-assembly have transformed material science, enabling the creation of novel materials with unparalleled precision and functionality. Among these innovations, 3D DNA crystals have emerged as a distinctive class of macroscopic materials, engineered through the bottom-up approach by DNA self-assembly. These structures uniquely combine precise molecular ordering with high programmability, establishing their importance in advanced material design. This review delves into the molecular design of engineered 3D DNA crystals, classifying current crystal structures based on "crystal bond orientations" and examining key aspects of in-silico molecular design, self-assembly, and crystal modifications. The functionalization of 3D DNA crystals for applications in crystallization scaffolding, biocatalysis, biosensing, electrical and optical devices, as well as in the emerging fields of DNA computing and data storage are explored. Finally, the ongoing challenges are addressed and future directions to advance the field of engineered 3D DNA crystals are proposed.
Collapse
Affiliation(s)
- Baoshuo Cai
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao Rong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yifan Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Longfei Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06484, USA
- Nanobiology Institute, Yale University, West Haven, CT, 06484, USA
| | - Zhe Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Vecchioni S, Lo R, Huang Q, Wang K, Ohayon YP, Sha R, Rothschild LJ, Wind SJ. Silver(I)-Mediated 2D DNA Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407604. [PMID: 39564738 DOI: 10.1002/smll.202407604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Structural DNA nanotechnology enables the self-organization of matter at the nanometer scale, but approaches to expand the inorganic and electrical functionality of these scaffolds remain limited. Developments in nucleic acid metallics have enabled the incorporation of site-specific metal ions in DNA duplexes and provide a means of functionalizing the double helix with atomistic precision. Here a class of 2D DNA nanostructures that incorporate the cytosine-Ag+-cytosine (dC:Ag+:dC) base pair as a chemical trigger for self-assembly is described. It is demonstrated that Ag+-functionalized DNA can undergo programmable assembly into large arrays and rings, and can be further coassembled with guanine tetraplexes (G4). It is shown that 2D DNA lattices can be assembled with a variety of embedded nanowires at tunable spacing. These results serve as a foundation for further development of self-assembled, metalated DNA nanostructures, with potential for high-precision DNA nanoelectronics with nanometer pitch.
Collapse
Affiliation(s)
- Simon Vecchioni
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Rainbow Lo
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London, W12 0BZ, UK
| | - Qiuyan Huang
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Kun Wang
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Lynn J Rothschild
- Planetary Systems Branch, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Shalom J Wind
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
4
|
Lai Z, Jin D, Tian Y, Chen X, Han D, Chen H, Wang J, Yang Y. Enhanced Sensitivity of Cell Identification in Complex Environments Using Chirally Inverted L-DNA-Based Logic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410642. [PMID: 39401418 PMCID: PMC11615743 DOI: 10.1002/advs.202410642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/16/2024] [Indexed: 12/06/2024]
Abstract
Accurate identification and isolation of target cells are crucial for precision diagnosis and treatment. DNA aptamer-based logic devices provide a distinct advantage in this context, as they can logically analyze multiple cell surface markers with high efficiency. However, the susceptibility of natural DNA (D-DNA) to degradation can compromise the sensitivity and specificity of these devices, potentially leading to false-positive and false-negative results, particularly in complex biological environments. To address this issue, dual- and triple-aptamer-based cell-surface logic devices are designed and developed using mirror-image L-DNA, a chiral molecule of D-DNA with high biostability. These devices allow for simultaneous analysis of multiple cell surface proteins, achieving greater specificity in cell identification and isolation than D-DNA-based logic devices. The L-DNA probes realized 98.7% and 70.5% sensitivities in FBS buffer with dual- and triple-aptamer-based logic devices for target cell identification, while D-DNA probes only showed 27.9% and 0.1%. It is believed that the high stability of L-DNA and the high efficiency of the devices for labeling cell subpopulations will have broad applications in the life sciences, biomedical engineering, and personalized medicine.
Collapse
Affiliation(s)
- Zixi Lai
- Shanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200092China
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Di Jin
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yuan Tian
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Xiaoxing Chen
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Da Han
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Haige Chen
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Junyan Wang
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yang Yang
- Shanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200092China
- Central LaboratoryShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
- School of Materials Science and EngineeringTongji UniversityShanghai201804China
| |
Collapse
|
5
|
Yudkina AV, Kim DV, Zharkov TD, Zharkov DO, Endutkin AV. Probing the Conformational Restraints of DNA Damage Recognition with β-L-Nucleotides. Int J Mol Sci 2024; 25:6006. [PMID: 38892193 PMCID: PMC11172447 DOI: 10.3390/ijms25116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA building blocks 2'-deoxynucleotides are enantiomeric, with their natural β-D-configuration dictated by the sugar moiety. Their synthetic β-L-enantiomers (βLdNs) can be used to obtain L-DNA, which, when fully substituted, is resistant to nucleases and is finding use in many biosensing and nanotechnology applications. However, much less is known about the enzymatic recognition and processing of individual βLdNs embedded in D-DNA. Here, we address the template properties of βLdNs for several DNA polymerases and the ability of base excision repair enzymes to remove these modifications from DNA. The Klenow fragment was fully blocked by βLdNs, whereas DNA polymerase κ bypassed them in an error-free manner. Phage RB69 DNA polymerase and DNA polymerase β treated βLdNs as non-instructive but the latter enzyme shifted towards error-free incorporation on a gapped DNA substrate. DNA glycosylases and AP endonucleases did not process βLdNs. DNA glycosylases sensitive to the base opposite their cognate lesions also did not recognize βLdNs as a correct pairing partner. Nevertheless, when placed in a reporter plasmid, pyrimidine βLdNs were resistant to repair in human cells, whereas purine βLdNs appear to be partly repaired. Overall, βLdNs are unique modifications that are mostly non-instructive but have dual non-instructive/instructive properties in special cases.
Collapse
Affiliation(s)
- Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Daria V. Kim
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
| | - Timofey D. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
| |
Collapse
|
6
|
Janowski J, Pham VAB, Vecchioni S, Woloszyn K, Lu B, Zou Y, Erkalo B, Perren L, Rueb J, Madnick J, Mao C, Saito M, Ohayon YP, Jonoska N, Sha R. Engineering tertiary chirality in helical biopolymers. Proc Natl Acad Sci U S A 2024; 121:e2321992121. [PMID: 38684000 PMCID: PMC11087804 DOI: 10.1073/pnas.2321992121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience.
Collapse
Affiliation(s)
- Jordan Janowski
- Department of Chemistry, New York University, New York, NY10003
| | - Van A. B. Pham
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL33620
| | - Simon Vecchioni
- Department of Chemistry, New York University, New York, NY10003
| | - Karol Woloszyn
- Department of Chemistry, New York University, New York, NY10003
| | - Brandon Lu
- Department of Chemistry, New York University, New York, NY10003
| | - Yijia Zou
- Department of Chemistry, New York University, New York, NY10003
| | - Betel Erkalo
- Department of Chemistry, New York University, New York, NY10003
| | - Lara Perren
- Department of Chemistry, New York University, New York, NY10003
| | - Joe Rueb
- Department of Chemistry, New York University, New York, NY10003
| | - Jesse Madnick
- Department of Mathematics, University of Oregon, Eugene, OR97403
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Masahico Saito
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL33620
| | - Yoel P. Ohayon
- Department of Chemistry, New York University, New York, NY10003
| | - Nataša Jonoska
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL33620
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY10003
| |
Collapse
|
7
|
Chen J, Dai Z, Lv H, Jin Z, Tang Y, Xie X, Shi J, Wang F, Li Q, Liu X, Fan C. Programming crystallization kinetics of self-assembled DNA crystals with 5-methylcytosine modification. Proc Natl Acad Sci U S A 2024; 121:e2312596121. [PMID: 38437555 PMCID: PMC10945798 DOI: 10.1073/pnas.2312596121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Self-assembled DNA crystals offer a precise chemical platform at the ångström-scale for DNA nanotechnology, holding enormous potential in material separation, catalysis, and DNA data storage. However, accurately controlling the crystallization kinetics of such DNA crystals remains challenging. Herein, we found that atomic-level 5-methylcytosine (5mC) modification can regulate the crystallization kinetics of DNA crystal by tuning the hybridization rates of DNA motifs. We discovered that by manipulating the axial and combination of 5mC modification on the sticky ends of DNA tensegrity triangle motifs, we can obtain a series of DNA crystals with controllable morphological features. Through DNA-PAINT and FRET-labeled DNA strand displacement experiments, we elucidate that atomic-level 5mC modification enhances the affinity constant of DNA hybridization at both the single-molecule and macroscopic scales. This enhancement can be harnessed for kinetic-driven control of the preferential growth direction of DNA crystals. The 5mC modification strategy can overcome the limitations of DNA sequence design imposed by limited nucleobase numbers in various DNA hybridization reactions. This strategy provides a new avenue for the manipulation of DNA crystal structure, valuable for the advancement of DNA and biomacromolecular crystallography.
Collapse
Affiliation(s)
- Jielin Chen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zheze Dai
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Hui Lv
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- Zhangjiang Laboratory, Shanghai201210, China
| | - Zhongchao Jin
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yuqing Tang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiaodong Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jiye Shi
- Division of Physical Biology, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai201800, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
8
|
Simmons CR, Buchberger A, Henry SJW, Novacek A, Fahmi NE, MacCulloch T, Stephanopoulos N, Yan H. Site-Specific Arrangement and Structure Determination of Minor Groove Binding Molecules in Self-Assembled Three-Dimensional DNA Crystals. J Am Chem Soc 2023; 145:26075-26085. [PMID: 37987645 PMCID: PMC10789492 DOI: 10.1021/jacs.3c07802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The structural analysis of guest molecules in rationally designed and self-assembling DNA crystals has proven an elusive goal since its conception. Oligonucleotide frameworks provide an especially attractive route toward studying DNA-binding molecules by using three-dimensional lattices with defined sequence and structure. In this work, we site-specifically position a suite of minor groove binding molecules, and solve their structures via X-ray crystallography as a proof-of-principle toward scaffolding larger guest species. Two crystal motifs were used to precisely immobilize the molecules DAPI, Hoechst, and netropsin at defined positions in the lattice, allowing us to control occupancy within the crystal. We also solved the structure of a three-ring imidazole-pyrrole-pyrrole polyamide molecule, which sequence-specifically packs in an antiparallel dimeric arrangement within the minor groove. Finally, we engineered a crystal designed to position both netropsin and the polyamide at two distinct locations within the same lattice. Our work elucidates the design principles for the spatial arrangement of functional guests within lattices and opens new potential opportunities for the use of DNA crystals to display and structurally characterize small molecules, peptides, and ultimately proteins of unknown structure.
Collapse
Affiliation(s)
- Chad R Simmons
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
| | - Alex Buchberger
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Skylar J W Henry
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Alexandra Novacek
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Nour Eddine Fahmi
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
| | - Tara MacCulloch
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| |
Collapse
|
9
|
Simmons CR, Buchberger A, Henry SJW, Novacek A, Fahmi NE, MacCulloch T, Stephanopoulos N, Yan H. Site-specific arrangement and structure determination of minor groove binding molecules in self-assembled three-dimensional DNA crystals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561756. [PMID: 37873139 PMCID: PMC10592734 DOI: 10.1101/2023.10.10.561756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The structural analysis of guest molecules in rationally designed and self-assembling DNA crystals has proven elusive since its conception. Oligonucleotide frameworks provide an especially attractive route towards studying DNA-binding molecules by using three-dimensional lattices with defined sequence and structure. In this work, we site-specifically position a suite of minor groove binding molecules, and solve their structures via x-ray crystallography, as a proof-of-principle towards scaffolding larger guest species. Two crystal motifs were used to precisely immobilize the molecules DAPI, Hoechst, and netropsin at defined positions in the lattice, allowing us to control occupancy within the crystal. We also solved the structure of a three-ring imidazole-pyrrole-pyrrole polyamide molecule, which sequence-specifically packs in an anti-parallel dimeric arrangement within the minor groove. Finally, we engineered a crystal designed to position both netropsin and the polyamide at two distinct locations within the same lattice. Our work elucidates the design principles for the spatial arrangement of functional guests within lattices and opens new potential opportunities for the use of DNA crystals to display and structurally characterize small molecules, peptides, and ultimately proteins of unknown structure.
Collapse
|
10
|
Talbot H, Madhanagopal BR, Hayden A, Halvorsen K, Chandrasekaran AR. Fluorometric Determination of DNA Nanostructure Biostability. ACS APPLIED BIO MATERIALS 2023; 6:3074-3078. [PMID: 37262927 PMCID: PMC10999248 DOI: 10.1021/acsabm.3c00287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The analysis and improvement of DNA nanostructure biostability is one of the keys areas of progress needed in DNA nanotechnology applications. Here, we present a plate-compatible fluorometric assay for measuring DNA nanostructure biostability using the common intercalator ethidium bromide. We demonstrate the assay by testing the biostability of duplex DNA, a double crossover DNA motif, and a DNA origami nanostructure against different nucleases and in fetal bovine serum. This method scales well to measure a large number of samples using a plate reader and can complement existing methods for assessing and developing robust DNA nanostructures.
Collapse
Affiliation(s)
- Hannah Talbot
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12203, United States
| | - Bharath Raj Madhanagopal
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12203, United States
| | - Andrew Hayden
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12203, United States
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12203, United States
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12203, United States
| |
Collapse
|
11
|
Kong H, Sun B, Yu F, Wang Q, Xia K, Jiang D. Exploring the Potential of Three-Dimensional DNA Crystals in Nanotechnology: Design, Optimization, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302021. [PMID: 37327311 PMCID: PMC10460852 DOI: 10.1002/advs.202302021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Indexed: 06/18/2023]
Abstract
DNA has been used as a robust material for the building of a variety of nanoscale structures and devices owing to its unique properties. Structural DNA nanotechnology has reported a wide range of applications including computing, photonics, synthetic biology, biosensing, bioimaging, and therapeutic delivery, among others. Nevertheless, the foundational goal of structural DNA nanotechnology is exploiting DNA molecules to build three-dimensional crystals as periodic molecular scaffolds to precisely align, obtain, or collect desired guest molecules. Over the past 30 years, a series of 3D DNA crystals have been rationally designed and developed. This review aims to showcase various 3D DNA crystals, their design, optimization, applications, and the crystallization conditions utilized. Additionally, the history of nucleic acid crystallography and potential future directions for 3D DNA crystals in the era of nanotechnology are discussed.
Collapse
Affiliation(s)
- Huating Kong
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Bo Sun
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Feng Yu
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Kai Xia
- Shanghai Frontier Innovation Research InstituteShanghai201108China
- Shanghai Stomatological HospitalFudan UniversityShanghai200031China
| | - Dawei Jiang
- Wuhan Union HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
- Key Laboratory of Biological Targeted Therapythe Ministry of EducationWuhan430022China
| |
Collapse
|
12
|
Zhao J, Zhang C, Lu B, Sha R, Noinaj N, Mao C. Divergence and Convergence: Complexity Emerges in Crystal Engineering from an 8-mer DNA. J Am Chem Soc 2023; 145:10475-10479. [PMID: 37134185 DOI: 10.1021/jacs.3c01941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biology provides plenty of examples on achieving complicated structures out of minimal numbers of building blocks. In contrast, structural complexity of designed molecular systems is achieved by increasing the numbers of component molecules. In this study, the component DNA strand assembles into a highly complex crystal structure via an unusual path of divergence and convergence. This assembly path suggests a route to minimalists for increasing structural complexity. The original purpose of this study is to engineer DNA crystals with high resolution, which is the primary motivation and a key objective for structural DNA nanotechnology. Despite great efforts in the last 40 years, engineered DNA crystals have not yet consistently reached resolution better than 2.5 Å, limiting their potential uses. Our research has shown that small, symmetrical building blocks generally lead to high resolution crystals. Herein, by following this principle, we report an engineered DNA crystal with unprecedented high resolution (2.17 Å) assembled from one single DNA component: an 8-base-long DNA strand. This system has three unique characteristics: (1) It has a very complex architecture, (2) the same DNA strand forms two different structural motifs, both of which are incorporated into the final crystal, and (3) the component DNA molecule is only an 8-base-long DNA strand, which is, arguably, the smallest DNA motif for DNA nanostructures to date. This high resolution opens the possibility of using these DNA crystals to precisely organize guest molecules at the Å level, which could stimulate a range of new investigations.
Collapse
Affiliation(s)
- Jiemin Zhao
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei 230032, China
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Cuizheng Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brandon Lu
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem Rev 2023; 123:3976-4050. [PMID: 36990451 PMCID: PMC10103138 DOI: 10.1021/acs.chemrev.3c00028] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/31/2023]
Abstract
DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.
Collapse
Affiliation(s)
- Pengfei Zhan
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Peil
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Qiao Jiang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Dongfang Wang
- School
of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shikufa Mousavi
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Qiancheng Xiong
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Qi Shen
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yingxu Shang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Baoquan Ding
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Chenxiang Lin
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
14
|
Vecchioni S, Lu B, Janowski J, Woloszyn K, Jonoska N, Seeman NC, Mao C, Ohayon YP, Sha R. The Rule of Thirds: Controlling Junction Chirality and Polarity in 3D DNA Tiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206511. [PMID: 36585389 DOI: 10.1002/smll.202206511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The successful self-assembly of tensegrity triangle DNA crystals heralded the ability to programmably construct macroscopic crystalline nanomaterials from rationally-designed, nanoscale components. This 3D DNA tile owes its "tensegrity" nature to its three rotationally stacked double helices locked together by the tensile winding of a center strand segmented into 7 base pair (bp) inter-junction regions, corresponding to two-thirds of a helical turn of DNA. All reported tensegrity triangles to date have employed ( Z + 2 / 3 ) \[\left( {Z{\bm{ + }}2{\bf /}3} \right)\] turn inter-junction segments, yielding right-handed, antiparallel, "J1" junctions. Here a minimal DNA triangle motif consisting of 3-bp inter-junction segments, or one-third of a helical turn is reported. It is found that the minimal motif exhibits a reversed morphology with a left-handed tertiary structure mediated by a locally-parallel Holliday junction-the "L1" junction. This parallel junction yields a predicted helical groove matching pattern that breaks the pseudosymmetry between tile faces, and the junction morphology further suggests a folding mechanism. A Rule of Thirds by which supramolecular chirality can be programmed through inter-junction DNA segment length is identified. These results underscore the role that global topological forces play in determining local DNA architecture and ultimately point to an under-explored class of self-assembling, chiral nanomaterials for topological processes in biological systems.
Collapse
Affiliation(s)
- Simon Vecchioni
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Brandon Lu
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Jordan Janowski
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Karol Woloszyn
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Nataša Jonoska
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL, 33620, USA
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY, 10003, USA
| |
Collapse
|
15
|
Zhang C, Zhao J, Lu B, Seeman NC, Sha R, Noinaj N, Mao C. Engineering DNA Crystals toward Studying DNA-Guest Molecule Interactions. J Am Chem Soc 2023; 145:4853-4859. [PMID: 36791277 DOI: 10.1021/jacs.3c00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Sequence-selective recognition of DNA duplexes is important for a wide range of applications including regulating gene expression, drug development, and genome editing. Many small molecules can bind DNA duplexes with sequence selectivity. It remains as a challenge how to reliably and conveniently obtain the detailed structural information on DNA-molecule interactions because such information is critically needed for understanding the underlying rules of DNA-molecule interactions. If those rules were understood, we could design molecules to recognize DNA duplexes with a sequence preference and intervene in related biological processes, such as disease treatment. Here, we have demonstrated that DNA crystal engineering is a potential solution. A molecule-binding DNA sequence is engineered to self-assemble into highly ordered DNA crystals. An X-ray crystallographic study of molecule-DNA cocrystals reveals the structural details on how the molecule interacts with the DNA duplex. In this approach, the DNA will serve two functions: (1) being part of the molecule to be studied and (2) forming the crystal lattice. It is conceivable that this method will be a general method for studying drug/peptide-DNA interactions. The resulting DNA crystals may also find use as separation matrices, as hosts for catalysts, and as media for material storage.
Collapse
Affiliation(s)
- Cuizheng Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jiemin Zhao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei 230032, China
| | - Brandon Lu
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Walczak M, Brady RA, Leathers A, Kotar J, Di Michele L. Influence of hydrophobic moieties on the crystallization of amphiphilic DNA nanostructures. J Chem Phys 2023; 158:084501. [PMID: 36859089 DOI: 10.1063/5.0132484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional crystalline frameworks with nanoscale periodicity are valuable for many emerging technologies, from nanophotonics to nanomedicine. DNA nanotechnology has emerged as a prime route for constructing these materials, with most approaches taking advantage of the structural rigidity and bond directionality programmable for DNA building blocks. Recently, we have introduced an alternative strategy reliant on flexible, amphiphilic DNA junctions dubbed C-stars, whose ability to crystallize is modulated by design parameters, such as nanostructure topology, conformation, rigidity, and size. While C-stars have been shown to form ordered phases with controllable lattice parameter, response to stimuli, and embedded functionalities, much of their vast design space remains unexplored. Here, we investigate the effect of changing the chemical nature of the hydrophobic modifications and the structure of the DNA motifs in the vicinity of these moieties. While similar design variations should strongly alter key properties of the hydrophobic interactions between C-stars, such as strength and valency, only limited differences in self-assembly behavior are observed. This finding suggests that long-range order in C-star crystals is likely imposed by structural features of the building block itself rather than the specific characteristics of the hydrophobic tags. Nonetheless, we find that altering the hydrophobic regions influences the ability of C-star crystals to uptake hydrophobic molecular cargoes, which we exemplify by studying the encapsulation of antibiotic penicillin V. Besides advancing our understanding of the principles governing the self-assembly of amphiphilic DNA building blocks, our observations thus open up new routes to chemically program the materials without affecting their structure.
Collapse
Affiliation(s)
- Michal Walczak
- Department of Physics-Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ryan A Brady
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Adrian Leathers
- Department of Physics-Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Jurij Kotar
- Department of Physics-Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
17
|
Lu B, Woloszyn K, Ohayon YP, Yang B, Zhang C, Mao C, Seeman NC, Vecchioni S, Sha R. Programmable 3D Hexagonal Geometry of DNA Tensegrity Triangles. Angew Chem Int Ed Engl 2023; 62:e202213451. [PMID: 36520622 DOI: 10.1002/anie.202213451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Non-canonical interactions in DNA remain under-explored in DNA nanotechnology. Recently, many structures with non-canonical motifs have been discovered, notably a hexagonal arrangement of typically rhombohedral DNA tensegrity triangles that forms through non-canonical sticky end interactions. Here, we find a series of mechanisms to program a hexagonal arrangement using: the sticky end sequence; triangle edge torsional stress; and crystallization condition. We showcase cross-talking between Watson-Crick and non-canonical sticky ends in which the ratio between the two dictates segregation by crystal forms or combination into composite crystals. Finally, we develop a method for reconfiguring the long-range geometry of formed crystals from rhombohedral to hexagonal and vice versa. These data demonstrate fine control over non-canonical motifs and their topological self-assembly. This will vastly increase the programmability, functionality, and versatility of rationally designed DNA constructs.
Collapse
Affiliation(s)
- Brandon Lu
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Karol Woloszyn
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Bena Yang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Cuizheng Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Simon Vecchioni
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
18
|
Lu B, Vecchioni S, Ohayon YP, Woloszyn K, Markus T, Mao C, Seeman NC, Canary JW, Sha R. Highly Symmetric, Self-Assembling 3D DNA Crystals with Cubic and Trigonal Lattices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205830. [PMID: 36408817 DOI: 10.1002/smll.202205830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The rational design of nanoscopic DNA tiles has yielded highly ordered crystalline matter in 2D and 3D. The most well-studied 3D tile is the DNA tensegrity triangle, which is known to self-assemble into macroscopic crystals. However, contemporary rational design parameters for 3D DNA crystals nearly universally invoke integer numbers of DNA helical turns and Watson-Crick (WC) base pairs. In this study, 24-bp edges are substituted into a previously 21-bp (two helical turns of DNA) tensegrity triangle motif to explore whether such unconventional motif can self-assemble into 3D crystals. The use of noncanonical base pairs in the sticky ends results in a cubic arrangement of tensegrity triangles with exceedingly high symmetry, assembling a lattice from winding helical axes and diamond-like tessellation patterns. Reverting this motif to sticky ends with Watson-Crick pairs results in a trigonal hexagonal arrangement, replicating this diamond arrangement in a hexagonal context. These results showcase that the authors can generate unexpected, highly complex, pathways for materials design by testing modifications to 3D tiles without prior knowledge of the ensuing symmetry. This study expands the rational design toolbox for DNA nanotechnology; and it further illustrates the existence of yet-unexplored arrangements of crystalline soft matter.
Collapse
Affiliation(s)
- Brandon Lu
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Simon Vecchioni
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Karol Woloszyn
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Tiffany Markus
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - James W Canary
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY, 10003, USA
| |
Collapse
|
19
|
Lu B, Vecchioni S, Ohayon YP, Canary JW, Sha R. The wending rhombus: Self-assembling 3D DNA crystals. Biophys J 2022; 121:4759-4765. [PMID: 36004779 PMCID: PMC9808540 DOI: 10.1016/j.bpj.2022.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/11/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023] Open
Abstract
In this perspective, we provide a summary of recent developments in self-assembling three-dimensional (3D) DNA crystals. Starting from the inception of this subfield, we describe the various advancements in structure that have led to an increase in the diversity of macromolecular crystal motifs formed through self-assembly, and we further comment on the future directions of the field, which exploit noncanonical base pairing interactions beyond Watson-Crick. We then survey the current applications of self-assembling 3D DNA crystals in reversibly active nanodevices and materials engineering and provide an outlook on the direction researchers are taking these structures. Finally, we compare 3D DNA crystals with DNA origami and suggest how these distinct subfields might work together to enhance biomolecule structure solution, nanotechnological motifs, and their applications.
Collapse
Affiliation(s)
- Brandon Lu
- Department of Chemistry, New York University, New York, New York
| | - Simon Vecchioni
- Department of Chemistry, New York University, New York, New York
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, New York
| | - James W Canary
- Department of Chemistry, New York University, New York, New York.
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, New York.
| |
Collapse
|
20
|
The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly. Nat Commun 2022; 13:3112. [PMID: 35662248 PMCID: PMC9166708 DOI: 10.1038/s41467-022-30779-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/04/2022] [Indexed: 12/31/2022] Open
Abstract
The programmable synthesis of rationally engineered crystal architectures for the precise arrangement of molecular species is a foundational goal in nanotechnology, and DNA has become one of the most prominent molecules for the construction of these materials. In particular, branched DNA junctions have been used as the central building block for the assembly of 3D lattices. Here, crystallography is used to probe the effect of all 36 immobile Holliday junction sequences on self-assembling DNA crystals. Contrary to the established paradigm in the field, most junctions yield crystals, with some enhancing the resolution or resulting in unique crystal symmetries. Unexpectedly, even the sequence adjacent to the junction has a significant effect on the crystal assemblies. Six of the immobile junction sequences are completely resistant to crystallization and thus deemed “fatal,” and molecular dynamics simulations reveal that these junctions invariably lack two discrete ion binding sites that are pivotal for crystal formation. The structures and dynamics detailed here could be used to inform future designs of both crystals and DNA nanostructures more broadly, and have potential implications for the molecular engineering of applied nanoelectronics, nanophotonics, and catalysis within the crystalline context. Engineered crystal architectures from DNA have become a foundational goal for nanotechnological precise arrangement. Here, the authors systematically investigate the structures of 36 immobile Holliday junction sequences and identify the features allowing the crystallisation of most of them, while 6 are considered fatal.
Collapse
|
21
|
Zhou X, Lin S, Yan H. Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. J Nanobiotechnology 2022; 20:257. [PMID: 35658974 PMCID: PMC9164479 DOI: 10.1186/s12951-022-01449-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Self-assembled photonic systems with well-organized spatial arrangement and engineered optical properties can be used as efficient energy materials and as effective biomedical agents. The lessons learned from natural light-harvesting antennas have inspired the design and synthesis of a series of biomimetic photonic complexes, including those containing strongly coupled dye aggregates with dense molecular packing and unique spectroscopic features. These photoactive components provide excellent features that could be coupled to multiple applications including light-harvesting, energy transfer, biosensing, bioimaging, and cancer therapy. Meanwhile, nanoscale DNA assemblies have been employed as programmable and addressable templates to guide the formation of DNA-directed multi-pigment complexes, which can be used to enhance the complexity and precision of artificial photonic systems and show the potential for energy and biomedical applications. This review focuses on the interface of DNA nanotechnology and biomimetic photonic systems. We summarized the recent progress in the design, synthesis, and applications of bioinspired photonic systems, highlighted the advantages of the utilization of DNA nanostructures, and discussed the challenges and opportunities they provide.
Collapse
Affiliation(s)
- Xu Zhou
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Su Lin
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA. .,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
22
|
Mandal PK, Collie GW, Kauffmann B, Huc I. Racemic crystal structures of A-DNA duplexes. Acta Crystallogr D Struct Biol 2022; 78:709-715. [PMID: 35647918 PMCID: PMC9159285 DOI: 10.1107/s2059798322003928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/10/2022] [Indexed: 11/20/2022] Open
Abstract
The ease with which racemic mixtures crystallize compared with the equivalent chiral systems is routinely taken advantage of to produce crystals of small molecules. However, biological macromolecules such as DNA and proteins are naturally chiral, and thus the limited range of chiral space groups available hampers the crystallization of such molecules. Inspiring work over the past 15 years has shown that racemic mixtures of proteins, which were made possible by impressive advances in protein chemical synthesis, can indeed improve the success rate of protein crystallization experiments. More recently, the racemic crystallization approach was extended to include nucleic acids as a possible aid in the determination of enantiopure DNA crystal structures. Here, findings are reported that suggest that the benefits may extend beyond this. Two racemic crystal structures of the DNA sequence d(CCCGGG) are described which were found to fold into A-form DNA. This form differs from the Z-form DNA conformation adopted by the chiral equivalent in the solid state, suggesting that the use of racemates may also favour the emergence of new conformations. Importantly, the racemic mixture forms interactions in the solid state that differ from the chiral equivalent (including the formation of racemic pseudo-helices), suggesting that the use of racemic DNA mixtures could provide new possibilities for the design of precise self-assembled nanomaterials and nanostructures.
Collapse
Affiliation(s)
- Pradeep K. Mandal
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), 33600 Pessac, France
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-University, Munich, Germany
| | - Gavin W. Collie
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), 33600 Pessac, France
| | - Brice Kauffmann
- Université de Bordeaux, CNRS, INSERM, Institut Européen de Chimie et Biologie (UAR3033 and US001), 33600 Pessac, France
| | - Ivan Huc
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), 33600 Pessac, France
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
23
|
Affiliation(s)
- Jason S. Kahn
- Department of Chemical Engineering Columbia University New York NY 10027 USA
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Oleg Gang
- Department of Chemical Engineering Columbia University New York NY 10027 USA
- Department of Applied Physics and Applied Mathematics Columbia University New York NY 10027 USA
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| |
Collapse
|
24
|
Narayanan RP, Abraham L. Structural DNA nanotechnology: Immobile Holliday junctions to artificial robots. Curr Top Med Chem 2022; 22:668-685. [PMID: 35023457 DOI: 10.2174/1568026622666220112143401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
DNA nanotechnology marvels the scientific world with its capabilities to design, engineer, and demonstrate nanoscale shapes. This review is a condensed version walking the reader through the structural developments in the field over the past 40 years starting from the basic design rules of the double-stranded building block to the most recent advancements in self-assembled hierarchically achieved structures to date. It builds off from the fundamental motivation of building 3-dimensional (3D) lattice structures of tunable cavities going all the way up to artificial nanorobots fighting cancer. The review starts by covering the most important developments from the fundamental bottom-up approach of building structures, which is the 'tile' based approach covering 1D, 2D, and 3D building blocks, after which, the top-down approach using DNA origami and DNA bricks is also covered. Thereafter, DNA nanostructures assembled using not so commonly used (yet promising) techniques like i-motifs, quadruplexes, and kissing loops are covered. Highlights from the field of dynamic DNA nanostructures have been covered as well, walking the reader through the various approaches used within the field to achieve movement. The article finally concludes by giving the authors a view of what the future of the field might look like while suggesting in parallel new directions that fellow/future DNA nanotechnologists could think about.
Collapse
Affiliation(s)
- Raghu Pradeep Narayanan
- Centre for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe-85281, USA
| | - Leeza Abraham
- Centre for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe-85281, USA
| |
Collapse
|
25
|
Liu Y, Ma L, Jiang S, Han C, Tang P, Yang H, Duan X, Liu N, Yan H, Lan X. DNA Programmable Self-Assembly of Planar, Thin-Layered Chiral Nanoparticle Superstructures with Complex Two-Dimensional Patterns. ACS NANO 2021; 15:16664-16672. [PMID: 34636539 DOI: 10.1021/acsnano.1c06639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Planar, thin-layered chiral plasmonic superstructures with complex two-dimensional (2D) patterns, namely, double-layered binary stars (bi-stars) and pinwheels, were realized through DNA programmable 2D supramolecular self-assembly of gold nanorods (AuNRs). The chirality of the chiral superstructures was defined by a finite number of AuNR pairs as enantiomeric motifs, and their sizes (∼240 nm) were precisely defined by the underlying DNA template. These planar, thin-layered chiral nanoparticle superstructures exhibited prescribed shapes and sizes at the dried state on the substrate surface and are characteristic of giant anisotropy of chiroptical responses, with enhanced g-factors from the axial incident excitation as compared to the in-plane excitation. This work will inspire possibilities for the construction of 2D chiral materials, for example, chiral metasurfaces, for the on-chip manipulation of chiral light-matter interactions via programmable self-assembly of nanoparticles.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, People's Republic of China
| | - Li Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, People's Republic of China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Shuoxing Jiang
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Cong Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, People's Republic of China
| | - Pan Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, People's Republic of China
| | - Hao Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiaoyang Duan
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Na Liu
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Hao Yan
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiang Lan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
26
|
Tahir U, Shim YB, Kamran MA, Kim DI, Jeong MY. Nanofabrication Techniques: Challenges and Future Prospects. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:4981-5013. [PMID: 33875085 DOI: 10.1166/jnn.2021.19327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanofabrication of functional micro/nano-features is becoming increasingly relevant in various electronic, photonic, energy, and biological devices globally. The development of these devices with special characteristics originates from the integration of low-cost and high-quality micro/nano-features into 3D-designs. Great progress has been achieved in recent years for the fabrication of micro/nanostructured based devices by using different imprinting techniques. The key problems are designing techniques/approaches with adequate resolution and consistency with specific materials. By considering optical device fabrication on the large-scale as a context, we discussed the considerations involved in product fabrication processes compatibility, the feature's functionality, and capability of bottom-up and top-down processes. This review summarizes the recent developments in these areas with an emphasis on established techniques for the micro/nano-fabrication of 3-dimensional structured devices on large-scale. Moreover, numerous potential applications and innovative products based on the large-scale are also demonstrated. Finally, prospects, challenges, and future directions for device fabrication are addressed precisely.
Collapse
Affiliation(s)
- Usama Tahir
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Young Bo Shim
- Department of Opto-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Muhammad Ahmad Kamran
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Doo-In Kim
- Department of Opto-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Myung Yung Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
27
|
Zhang A, Budow‐Busse S, Leonard P, Seela F. Anomeric and Enantiomeric 2'-Deoxycytidines: Base Pair Stability in the Absence and Presence of Silver Ions. Chemistry 2021; 27:10574-10577. [PMID: 34014006 PMCID: PMC8362019 DOI: 10.1002/chem.202101253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 12/25/2022]
Abstract
Dodecamer duplex DNA containing anomeric (α/β-d) and enantiomeric (β-l/β-d) 2'-deoxycytidine mismatches was studied with respect to base pair stability in the absence and presence of silver ions. Stable duplexes with silver-mediated cytosine-cytosine pairs were formed by all anomeric and enantiomeric combinations. Stability changes were observed depending on the composition of the mismatches. Most strikingly, the new silver-mediated base pair of anomeric α-d-dC with enantiomeric β-l-dC is superior to the well-noted β-d/β-d-dC pair in terms of stability. CD spectra were used to follow global helical changes of DNA structure.
Collapse
Affiliation(s)
- Aigui Zhang
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
| | - Simone Budow‐Busse
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
- Laboratorium für Organische und Bioorganische ChemieInstitut für Chemie neuer MaterialienUniversität OsnabrückBarbarastrasse 749069OsnabrückGermany
| |
Collapse
|
28
|
Wang S, Xie X, Chen Z, Ma N, Zhang X, Li K, Teng C, Ke Y, Tian Y. DNA-Grafted 3D Superlattice Self-Assembly. Int J Mol Sci 2021; 22:7558. [PMID: 34299179 PMCID: PMC8306452 DOI: 10.3390/ijms22147558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
The exploitation of new methods to control material structure has historically been dominating the material science. The bottom-up self-assembly strategy by taking atom/molecule/ensembles in nanoscale as building blocks and crystallization as a driving force bring hope for material fabrication. DNA-grafted nanoparticle has emerged as a "programmable atom equivalent" and was employed for the assembly of hierarchically ordered three-dimensional superlattice with novel properties and studying the unknown assembly mechanism due to its programmability and versatility in the binding capabilities. In this review, we highlight the assembly strategies and rules of DNA-grafted three-dimensional superlattice, dynamic assembly by different driving factors, and discuss their future applications.
Collapse
Affiliation(s)
- Shuang Wang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (S.W.); (K.L.)
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China; (X.X.); (Z.C.); (N.M.); (X.Z.)
| | - Xiaolin Xie
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China; (X.X.); (Z.C.); (N.M.); (X.Z.)
| | - Zhi Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China; (X.X.); (Z.C.); (N.M.); (X.Z.)
| | - Ningning Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China; (X.X.); (Z.C.); (N.M.); (X.Z.)
| | - Xue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China; (X.X.); (Z.C.); (N.M.); (X.Z.)
| | - Kai Li
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (S.W.); (K.L.)
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China; (X.X.); (Z.C.); (N.M.); (X.Z.)
| | - Chao Teng
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (S.W.); (K.L.)
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Ye Tian
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
29
|
Wang ST, Minevich B, Liu J, Zhang H, Nykypanchuk D, Byrnes J, Liu W, Bershadsky L, Liu Q, Wang T, Ren G, Gang O. Designed and biologically active protein lattices. Nat Commun 2021; 12:3702. [PMID: 34140491 PMCID: PMC8211860 DOI: 10.1038/s41467-021-23966-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/13/2021] [Indexed: 01/13/2023] Open
Abstract
Versatile methods to organize proteins in space are required to enable complex biomaterials, engineered biomolecular scaffolds, cell-free biology, and hybrid nanoscale systems. Here, we demonstrate how the tailored encapsulation of proteins in DNA-based voxels can be combined with programmable assembly that directs these voxels into biologically functional protein arrays with prescribed and ordered two-dimensional (2D) and three-dimensional (3D) organizations. We apply the presented concept to ferritin, an iron storage protein, and its iron-free analog, apoferritin, in order to form single-layers, double-layers, as well as several types of 3D protein lattices. Our study demonstrates that internal voxel design and inter-voxel encoding can be effectively employed to create protein lattices with designed organization, as confirmed by in situ X-ray scattering and cryo-electron microscopy 3D imaging. The assembled protein arrays maintain structural stability and biological activity in environments relevant for protein functionality. The framework design of the arrays then allows small molecules to access the ferritins and their iron cores and convert them into apoferritin arrays through the release of iron ions. The presented study introduces a platform approach for creating bio-active protein-containing ordered nanomaterials with desired 2D and 3D organizations.
Collapse
Affiliation(s)
- Shih-Ting Wang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Brian Minevich
- Department of Chemical Engineering, Columbia University, New York City, NY, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Honghu Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - James Byrnes
- Energy Sciences Directorate/Photon Science Division, NSLS II, Brookhaven National Laboratory, Upton, NY, USA
| | - Wu Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Lev Bershadsky
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Tong Wang
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York City, NY, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.
- Department of Chemical Engineering, Columbia University, New York City, NY, USA.
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
| |
Collapse
|
30
|
Kahn JS, Gang O. Designer Nanomaterials through Programmable Assembly. Angew Chem Int Ed Engl 2021; 61:e202105678. [PMID: 34128306 DOI: 10.1002/anie.202105678] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 11/08/2022]
Abstract
Nanoparticles have long been recognized for their unique properties, leading to exciting potential applications across optics, electronics, magnetism, and catalysis. These specific functions often require a designed organization of particles, which includes the type of order as well as placement and relative orientation of particles of the same or different kinds. DNA nanotechnology offers the ability to introduce highly addressable bonds, tailor particle interactions, and control the geometry of bindings motifs. Here, we discuss how developments in structural DNA nanotechnology have enabled greater control over 1D, 2D, and 3D particle organizations through programmable assembly. This Review focuses on how the use of DNA binding between nanocomponents and DNA structural motifs has progressively allowed the rational formation of prescribed particle organizations. We offer insight into how DNA-based motifs and elements can be further developed to control particle organizations and how particles and DNA can be integrated into nanoscale building blocks, so-called "material voxels", to realize designer nanomaterials with desired functions.
Collapse
Affiliation(s)
- Jason S Kahn
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA.,Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA.,Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA.,Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
31
|
DNA Nanodevices as Mechanical Probes of Protein Structure and Function. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA nanotechnology has reported a wide range of structurally tunable scaffolds with precise control over their size, shape and mechanical properties. One promising application of these nanodevices is as probes for protein function or determination of protein structure. In this perspective we cover several recent examples in this field, including determining the effect of ligand spacing and multivalency on cell activation, applying forces at the nanoscale, and helping to solve protein structure by cryo-EM. We also highlight some future directions in the chemistry necessary for integrating proteins with DNA nanoscaffolds, as well as opportunities for computational modeling of hybrid protein-DNA nanomaterials.
Collapse
|
32
|
Kolenko P, Svoboda J, Černý J, Charnavets T, Schneider B. Structural variability of CG-rich DNA 18-mers accommodating double T-T mismatches. Acta Crystallogr D Struct Biol 2020; 76:1233-1243. [PMID: 33263329 PMCID: PMC7709200 DOI: 10.1107/s2059798320014151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/23/2020] [Indexed: 11/26/2022] Open
Abstract
Solution and crystal data are reported for DNA 18-mers with sequences related to those of bacterial noncoding single-stranded DNA segments called repetitive extragenic palindromes (REPs). Solution CD and melting data showed that the CG-rich, near-palindromic REPs from various bacterial species exhibit dynamic temperature-dependent and concentration-dependent equilibria, including architectures compatible with not only hairpins, which are expected to be biologically relevant, but also antiparallel duplexes and bimolecular tetraplexes. Three 18-mer oligonucleotides named Hpar-18 (PDB entry 6rou), Chom-18 (PDB entry 6ros) and its brominated variant Chom-18Br (PDB entry 6ror) crystallized as isomorphic right-handed A-like duplexes. The low-resolution crystal structures were solved with the help of experimental phases for Chom-18Br. The center of the duplexes is formed by two successive T-T noncanonical base pairs (mismatches). They do not deform the double-helical geometry. The presence of T-T mismatches prompted an analysis of the geometries of these and other noncanonical pairs in other DNA crystals in terms of their fit to the experimental electron densities (RSCC) and their geometric fit to the NtC (dinucleotide conformational) classes (https://dnatco.datmos.org/). Throughout this work, knowledge of the NtC classes was used to refine and validate the crystal structures, and to analyze the mismatches.
Collapse
Affiliation(s)
- Petr Kolenko
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 11519 Prague 1, Czech Republic
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jakub Svoboda
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jiří Černý
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Tatsiana Charnavets
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
33
|
Simmons CR, MacCulloch T, Zhang F, Liu Y, Stephanopoulos N, Yan H. A Self-Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and High-Resolution Structural Detail. Angew Chem Int Ed Engl 2020; 59:18619-18626. [PMID: 32533629 DOI: 10.1002/anie.202005505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 11/08/2022]
Abstract
DNA is an ideal molecule for the construction of 3D crystals with tunable properties owing to its high programmability based on canonical Watson-Crick base pairing, with crystal assembly in all three dimensions facilitated by immobile Holliday junctions and sticky end cohesion. Despite the promise of these systems, only a handful of unique crystal scaffolds have been reported. Herein, we describe a new crystal system with a repeating sequence that mediates the assembly of a 3D scaffold via a series of Holliday junctions linked together with complementary sticky ends. By using an optimized junction sequence, we could determine a high-resolution (2.7 Å) structure containing R3 crystal symmetry, with a slight subsequent improvement (2.6 Å) using a modified sticky-end sequence. The immobile Holliday junction sequence allowed us to produce crystals that provided unprecedented atomic detail. In addition, we expanded the crystal cavities by 50 % by adding an additional helical turn between junctions, and we solved the structure to 4.5 Å resolution by molecular replacement.
Collapse
Affiliation(s)
- Chad R Simmons
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Tara MacCulloch
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Fei Zhang
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Yan Liu
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
34
|
Simmons CR, MacCulloch T, Zhang F, Liu Y, Stephanopoulos N, Yan H. A Self‐Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and High‐Resolution Structural Detail. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chad R. Simmons
- Biodesign Center for Molecular Design and Biomimetics Arizona State University USA
- School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
| | - Tara MacCulloch
- Biodesign Center for Molecular Design and Biomimetics Arizona State University USA
- School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
| | - Fei Zhang
- Biodesign Center for Molecular Design and Biomimetics Arizona State University USA
- School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
| | - Yan Liu
- Biodesign Center for Molecular Design and Biomimetics Arizona State University USA
- School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics Arizona State University USA
- School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics Arizona State University USA
- School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
| |
Collapse
|
35
|
Dong Y, Yao C, Zhu Y, Yang L, Luo D, Yang D. DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chem Rev 2020; 120:9420-9481. [DOI: 10.1021/acs.chemrev.0c00294] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuhang Dong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Lu Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
36
|
Jiang S, Zhang F, Yan H. Complex assemblies and crystals guided by DNA. NATURE MATERIALS 2020; 19:694-700. [PMID: 32581353 DOI: 10.1038/s41563-020-0719-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Shuoxing Jiang
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
37
|
Li X, Yang D, Kou B, Shen L, Li H, Wang P. Designer Structures Assembled from Modular DNA Superbricks. ACS APPLIED BIO MATERIALS 2020; 3:2850-2853. [PMID: 35025331 DOI: 10.1021/acsabm.9b01046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-assembled DNA structures hold great application potentials in many fields. The DNA structure of a specific feature, however, generally requires a distinct set of DNA strands with unique sequences, which is costly and error-prone. Herein, we expanded the modularity of DNA bricks to assemble a number of DNA structures including objects and lattices from the same set of DNA strands. We designed DNA superbricks composed of ∼200 conventional DNA bricks of 52 nucleotides. By modularly programming the sticky interactions between DNA superbricks, we have successfully assembled seven DNA structures of designer features including DNA objects and one-dimensional and two-dimensional DNA brick lattices.
Collapse
Affiliation(s)
- Xue Li
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bo Kou
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Luyao Shen
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haofei Li
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
38
|
|
39
|
An J, Choi J, Hwang D, Park J, Pemble CW, Duong THM, Kim KR, Ahn H, Chung HS, Ahn DR. The crystal structure of a natural DNA polymerase complexed with mirror DNA. Chem Commun (Camb) 2020; 56:2186-2189. [PMID: 31971182 DOI: 10.1039/c9cc09351f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The intrinsic l-DNA binding properties of a natural DNA polymerase was discovered. The binding affinity of Dpo4 polymerase for l-DNA was comparable to that for d-DNA. The crystal structure of Dpo4/l-DNA complex revealed a dimer formed by the little finger domain that provides a binding site for l-DNA.
Collapse
Affiliation(s)
- Jinsu An
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea. and Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Jaewoo Choi
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Dohyeon Hwang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Jihyun Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Charles W Pemble
- Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX, USA
| | - Thi Hoai Men Duong
- Department of Pharmacy, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi 13024, Republic of Korea
| | - Kyoung-Ran Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Heechul Ahn
- Department of Pharmacy, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi 13024, Republic of Korea
| | - Hak Suk Chung
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea. and Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Dae-Ro Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea. and Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
40
|
Abstract
In nature, DNA molecules carry the hereditary information. But DNA has physical and chemical properties that make it attractive for uses beyond heredity. In this Review, we discuss the potential of DNA for creating machines that are both encoded by and built from DNA molecules. We review the main methods of DNA nanostructure assembly, describe recent advances in building increasingly complex molecular structures and discuss strategies for creating machine-like nanostructures that can be actuated and move. We highlight opportunities for applications of custom DNA nanostructures as scientific tools to address challenges across biology, chemistry and engineering.
Collapse
|
41
|
Young BE, Kundu N, Sczepanski JT. Mirror-Image Oligonucleotides: History and Emerging Applications. Chemistry 2019; 25:7981-7990. [PMID: 30913332 PMCID: PMC6615976 DOI: 10.1002/chem.201900149] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 01/13/2023]
Abstract
As chiral molecules, naturally occurring d-oligonucleotides have enantiomers, l-DNA and l-RNA, which are comprised of l-(deoxy)ribose sugars. These mirror-image oligonucleotides have the same physical and chemical properties as that of their native d-counterparts, yet are highly orthogonal to the stereospecific environment of biology. Consequently, l-oligonucleotides are resistant to nuclease degradation and many of the off-target interactions that plague traditional d-oligonucleotide-based technologies; thus making them ideal for biomedical applications. Despite a flurry of interest during the early 1990s, the inability of d- and l-oligonucleotides to form contiguous Watson-Crick base pairs with each other has ultimately led to the perception that l-oligonucleotides have only limited utility. Recently, however, scientists have begun to uncover novel strategies to harness the bio-orthogonality of l-oligonucleotides, while overcoming (and even exploiting) their inability to Watson-Crick base pair with the natural polymer. Herein, a brief history of l-oligonucleotide research is presented and emerging l-oligonucleotide-based technologies, as well as their applications in research and therapy, are presented.
Collapse
Affiliation(s)
- Brian E. Young
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Nandini Kundu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jonathan T. Sczepanski
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
42
|
Ji M, Ma N, Tian Y. 3D Lattice Engineering of Nanoparticles by DNA Shells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805401. [PMID: 30785664 DOI: 10.1002/smll.201805401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/23/2019] [Indexed: 06/09/2023]
Abstract
With the development of structural DNA nanotechnology, DNA has now far exceeded its original function: as a genetic code. It can, in principle, self-assemble into desired shapes with accurate size. Moreover, it can perform as a functional linker to program other materials by grafting DNA onto these materials. Nanoparticles, both inorganic and organic, can now be programmatically assembled into complex 3D superlattices with high order when guided by DNA. By encoding functions into the as-assembled nanoparticles, materials with excellent collective effects may be invented. Here, how nanoparticles with different shapes or functions are successfully fabricated into 3D lattices with the help of DNA shells coated on the surface and how scientists can produce desired lattices by design are reviewed. The cases to achieve dynamic superlattices of nanoparticles by affecting the environment where DNA survives are also discussed.
Collapse
Affiliation(s)
- Min Ji
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Ningning Ma
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Ye Tian
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
43
|
Abstract
BACKGROUND Numerous different types of variations can occur in DNA and have diverse effects and consequences. The Variation Ontology (VariO) was developed for systematic descriptions of variations and their effects at DNA, RNA and protein levels. RESULTS VariO use and terms for DNA variations are described in depth. VariO provides systematic names for variation types and detailed descriptions for changes in DNA function, structure and properties. The principles of VariO are presented along with examples from published articles or databases, most often in relation to human diseases. VariO terms describe local DNA changes, chromosome number and structure variants, chromatin alterations, as well as genomic changes, whether of genetic or non-genetic origin. CONCLUSIONS DNA variation systematics facilitates unambiguous descriptions of variations and their effects and further reuse and integration of data from different sources by both human and computers.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, BMC B13, SE-22184, Lund, Sweden.
| |
Collapse
|
44
|
Zhang B, Mei AR, Isbell MA, Wang D, Wang Y, Tan SF, Teo XL, Xu L, Yang Z, Heng JYY. DNA Origami as Seeds for Promoting Protein Crystallization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44240-44246. [PMID: 30484631 DOI: 10.1021/acsami.8b15629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study reports the first experimental evidence of DNA origami as a seed resulting in the increase in probability of protein crystallization. Using the DNA origami constructed from long single-stranded M13 DNA scaffolds folded with short single-stranded DNA staples, it was found that the addition of the DNA origami in concentrations of 2-6 nM to mixtures of a well-characterized protein (catalase) solution (1.0-7.0 mg/mL) resulted in a higher proportion of mixtures with successful crystallization, up to 11× greater. The improvement in crystallization is evident particularly for mixtures with low concentrations of catalase (<5 mg/mL). DNA origami in different conformations of a flat rectangular sheet and a tubular hollow cylinder were examined. Both conformations improved the crystallization as compared to control experiments without M13 DNA or nonfolded M13 DNA but exhibited little difference in the extent of protein crystallization improvement. This work confirms the predictions of the potential use of DNA origami to promote protein crystallization, with potential application to systems with limited protein availability or difficulty in crystallization.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , P. R. China
| | - Andy R Mei
- Surfaces and Particle Engineering Laboratory (SPEL), Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Mark Antonin Isbell
- Surfaces and Particle Engineering Laboratory (SPEL), Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | | | | | | | | | - Lijin Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , P. R. China
| | | | - Jerry Y Y Heng
- Surfaces and Particle Engineering Laboratory (SPEL), Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| |
Collapse
|
45
|
Brady RA, Brooks NJ, Foderà V, Cicuta P, Di Michele L. Amphiphilic-DNA Platform for the Design of Crystalline Frameworks with Programmable Structure and Functionality. J Am Chem Soc 2018; 140:15384-15392. [PMID: 30351920 DOI: 10.1021/jacs.8b09143] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The reliable preparation of functional, ordered, nanostructured frameworks would be a game changer for many emerging technologies, from energy storage to nanomedicine. Underpinned by the excellent molecular recognition of nucleic acids, along with their facile synthesis and breadth of available functionalizations, DNA nanotechnology is widely acknowledged as a prime route for the rational design of nanostructured materials. Yet, the preparation of crystalline DNA frameworks with programmable structure and functionality remains a challenge. Here we demonstrate the potential of simple amphiphilic DNA motifs, dubbed "C-stars", as a versatile platform for the design of programmable DNA crystals. In contrast to all-DNA materials, in which structure depends on the precise molecular details of individual building blocks, the self-assembly of C-stars is controlled uniquely by their topology and symmetry. Exploiting this robust self-assembly principle, we design a range of topologically identical, but structurally and chemically distinct C-stars that following a one-pot reaction self-assemble into highly porous, functional, crystalline frameworks. Simple design variations allow us to fine-tune the lattice parameter and thus control the partitioning of macromolecules within the frameworks, embed responsive motifs that can induce isothermal disassembly, and include chemical moieties to capture target proteins specifically and reversibly.
Collapse
Affiliation(s)
- Ryan A Brady
- Biological and Soft Systems, Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry , Imperial College London , London SW7 2AZ , United Kingdom
| | - Vito Foderà
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Pietro Cicuta
- Biological and Soft Systems, Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , United Kingdom
| | - Lorenzo Di Michele
- Biological and Soft Systems, Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , United Kingdom
| |
Collapse
|
46
|
Zhang F, Simmons CR, Gates J, Liu Y, Yan H. Self-Assembly of a 3D DNA Crystal Structure with Rationally Designed Six-Fold Symmetry. Angew Chem Int Ed Engl 2018; 57:12504-12507. [PMID: 30066355 DOI: 10.1002/anie.201807223] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 01/17/2023]
Abstract
Programming self-assembled designer DNA crystals with various lattices and functions is one of the most important goals for nanofabrication using nucleic acids. The resulting porous materials possess atomic precision for several potential applications that rely on crystalline lattices and cavities. Herein, we present a rationally designed and self-assembled 3D DNA crystal lattice with hexagonal symmetry. In our design, two 21-base oligonucleotides are used to form a duplex motif that further assembles into a 3D array. The interactions between the strands are programmed using Watson-Crick base-pairing. The six-fold symmetry, as well as the chirality, is directed by the Holliday junctions formed between the duplex motifs. The rationally designed DNA crystal provides a new avenue that could create self-assembled macromolecular 3D crystalline lattices with atomic precision. In addition, the structure contains a highly organized array of well-defined cavities that are suitable for future applications with immobilized guests.
Collapse
Affiliation(s)
- Fei Zhang
- School of Molecular Sciences and Biodesign Institution, Arizona State University, 1001 S McAllister Ave, Tempe, AZ, 85281, USA
| | - Chad R Simmons
- School of Molecular Sciences and Biodesign Institution, Arizona State University, 1001 S McAllister Ave, Tempe, AZ, 85281, USA
| | - Jade Gates
- School of Molecular Sciences and Biodesign Institution, Arizona State University, 1001 S McAllister Ave, Tempe, AZ, 85281, USA
| | - Yan Liu
- School of Molecular Sciences and Biodesign Institution, Arizona State University, 1001 S McAllister Ave, Tempe, AZ, 85281, USA
| | - Hao Yan
- School of Molecular Sciences and Biodesign Institution, Arizona State University, 1001 S McAllister Ave, Tempe, AZ, 85281, USA
| |
Collapse
|
47
|
Zhang F, Simmons CR, Gates J, Liu Y, Yan H. Self‐Assembly of a 3D DNA Crystal Structure with Rationally Designed Six‐Fold Symmetry. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fei Zhang
- School of Molecular Sciences and Biodesign Institution Arizona State University 1001 S McAllister Ave Tempe AZ 85281 USA
| | - Chad R. Simmons
- School of Molecular Sciences and Biodesign Institution Arizona State University 1001 S McAllister Ave Tempe AZ 85281 USA
| | - Jade Gates
- School of Molecular Sciences and Biodesign Institution Arizona State University 1001 S McAllister Ave Tempe AZ 85281 USA
| | - Yan Liu
- School of Molecular Sciences and Biodesign Institution Arizona State University 1001 S McAllister Ave Tempe AZ 85281 USA
| | - Hao Yan
- School of Molecular Sciences and Biodesign Institution Arizona State University 1001 S McAllister Ave Tempe AZ 85281 USA
| |
Collapse
|
48
|
|