1
|
Sarkar S, Guha A, Narayanan TN, Mondal J. Osmolyte-Induced Modulation of Hofmeister Series. J Phys Chem B 2024; 128:9436-9446. [PMID: 39359138 DOI: 10.1021/acs.jpcb.4c05049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Natural selection has driven the convergence toward a selected set of osmolytes, endowing them with the necessary efficiency to manage stress arising from salt diversity. This study combines atomistic simulations and experiments to investigate how two osmolytes, glycine and betaine, individually modulate the Hofmeister ion ordering of alkali metal salts (LiCl, KCl, and CsCl) near a charged silica interface. Both osmolytes are found to prevent salt-induced aggregation of the charged entities, yet their mode and degree of relative modulation depend on their intricate interplay with specific salt cations. Betaine's ion-mediated surface interaction maintains Hofmeister ion ordering, whereas glycine alters the relative Hofmeister order of the cation by salt-specific ion desorption from the surface. Experimental validation through surface-enhanced Raman spectroscopy supports these findings, elucidating osmolyte-mediated alterations in interfacial water structures. These observations based on an inorganic interface are reciprocated in amyloid beta 40 dimerization dynamics, highlighting osmolytes' efficacy in mitigating salt-induced aggregation. A molecular analysis suggests that the differential modes of interaction, as found here for glycine and betaine, are prevalent across classes of zwitterionic osmolytes.
Collapse
Affiliation(s)
- Susmita Sarkar
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| | - Anku Guha
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| | - Tharangattu N Narayanan
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| |
Collapse
|
2
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
3
|
Wang S, Walker-Gibbons R, Watkins B, Flynn M, Krishnan M. A charge-dependent long-ranged force drives tailored assembly of matter in solution. NATURE NANOTECHNOLOGY 2024; 19:485-493. [PMID: 38429493 PMCID: PMC11026162 DOI: 10.1038/s41565-024-01621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
The interaction between charged objects in solution is generally expected to recapitulate two central principles of electromagnetics: (1) like-charged objects repel, and (2) they do so regardless of the sign of their electrical charge. Here we demonstrate experimentally that the solvent plays a hitherto unforeseen but crucial role in interparticle interactions, and importantly, that interactions in the fluid phase can break charge-reversal symmetry. We show that in aqueous solution, negatively charged particles can attract at long range while positively charged particles repel. In solvents that exhibit an inversion of the net molecular dipole at an interface, such as alcohols, we find that the converse can be true: positively charged particles may attract whereas negatives repel. The observations hold across a wide variety of surface chemistries: from inorganic silica and polymeric particles to polyelectrolyte- and polypeptide-coated surfaces in aqueous solution. A theory of interparticle interactions that invokes solvent structuring at an interface captures the observations. Our study establishes a nanoscopic interfacial mechanism by which solvent molecules may give rise to a strong and long-ranged force in solution, with immediate ramifications for a range of particulate and molecular processes across length scales such as self-assembly, gelation and crystallization, biomolecular condensation, coacervation, and phase segregation.
Collapse
Affiliation(s)
- Sida Wang
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Rowan Walker-Gibbons
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Bethany Watkins
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Melissa Flynn
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Madhavi Krishnan
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, Oxford, UK.
| |
Collapse
|
4
|
Sarkar S, Guha A, Sadhukhan R, Narayanan TN, Mondal J. Osmolytes as Cryoprotectants under Salt Stress. ACS Biomater Sci Eng 2023; 9:5639-5652. [PMID: 37697623 DOI: 10.1021/acsbiomaterials.3c00763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Cryoprotecting agent (CPA)-guided preservation is essential for effective protection of cells from cryoinjuries. However, current cryoprotecting technologies practiced to cryopreserve cells for biomedical applications are met with extreme challenges due to the associated toxicity of CPAs. Because of these limitations of present CPAs, the quest for nontoxic alternatives for useful application in cell-based biomedicines has been attracting growing interest. Toward this end, here, we investigate naturally occurring osmolytes' scope as biocompatible cryoprotectants under cold stress conditions in high-saline medium. Via a combination of the simulation and experiment on charged silica nanostructures, we render first-hand evidence that a pair of archetypal osmolytes, glycine and betaine, would act as a cryoprotectant by restoring the indigenous intersurface electrostatic interaction, which had been a priori screened due to the cold effect under salt stress. While these osmolytes' individual modes of action are sensitive to subtle chemical variation, a uniform augmentation in the extent of osmolytic activity is observed with an increase in temperature to counter the proportionately enhanced salt screening. The trend as noted in inorganic nanostructures is found to be recurrent and robustly transferable in a charged protein interface. In hindsight, our observation justifies the sufficiency of the reduced requirement of osmolytes in cells during critical cold conditions and encourages their direct usage and biomimicry for cryopreservation.
Collapse
Affiliation(s)
- Susmita Sarkar
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Anku Guha
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Rayantan Sadhukhan
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Tharangattu N Narayanan
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
5
|
Yan P, Zheng X, Liu S, Dong Y, Fu T, Tian Z, Wu Y. Colorimetric Sensor Array for Identification of Proteins and Classification of Metabolic Profiles under Various Osmolyte Conditions. ACS Sens 2023; 8:133-140. [PMID: 36630575 DOI: 10.1021/acssensors.2c01847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rapid and efficient detection and identification of proteins hold great promise in medical diagnostics, treatment of different diseases, and proteomics. Here, we present a simple colorimetric sensor array for the differentiation of proteins in various osmolyte solutions. Osmolytes have different influences on the conformation of proteins, which have differential binding to silver nanoparticles, resulting in color changes. The sensor array shows unique color change patterns for each of the 19 proteins, allowing unambiguous identification. Very interestingly, the differentiation of 19 proteins is related to their molecular weight. Moreover, the sensor array can be used to identify protein mixtures, thermal denaturized proteins, and unknown protein samples. Finally, the sensor array can also analyze the plasma or liver samples of the four groups of salt-sensitive rats fed with different diets, indicating that it has the potential for the classification of metabolic profiles.
Collapse
Affiliation(s)
- Peng Yan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China
| | - Xuewei Zheng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China
| | - Shuang Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China
| | - Yanhua Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China
| | - Tao Fu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China
| | - Zhongmin Tian
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China
| | - Yayan Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China
| |
Collapse
|
6
|
Obstbaum T, Sivan U. Thermodynamics of Charge Regulation near Surface Neutrality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8477-8483. [PMID: 35759684 DOI: 10.1021/acs.langmuir.2c01352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interaction between two adjacent charged surfaces immersed in aqueous solution is known to be affected by charge regulation─the modulation of surface charge as two charged surfaces approach each other. This phenomenon is particularly important near surface neutrality where the stability of objects such as colloids or biomolecules is jeopardized. Focusing on this ubiquitous case, we elucidate the underlying thermodynamics and show that charge regulation is governed in this case by surface entropy. We derive explicit expressions for charge regulation and formulate a new universal limiting law for the free energy of ion adsorption to the surfaces. The latter turns out to be proportional to kBT, and independent of the association energy of ions to surface groups. These new results are applied to the analysis of unipolar as well as amphoteric surfaces such as oxides near their point of zero charge or proteins near their isoelectric point.
Collapse
Affiliation(s)
- Tal Obstbaum
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Uri Sivan
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
7
|
Sarkar S, Guha A, Narayanan TN, Mondal J. Zwitterionic Osmolytes Revive Surface Charges under Salt Stress via Dual Mechanisms. J Phys Chem Lett 2022; 13:5660-5668. [PMID: 35709362 DOI: 10.1021/acs.jpclett.2c00853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To counter the stress of a salt imbalance, the cell often produces low molecular weight osmolytes to resuscitate homeostasis. However, how zwitterionic osmolytes would tune the electrostatic interactions among charged biomacromolecular surfaces under salt stress has eluded mainstream investigations. Here, via combination of molecular simulation and experiment, we demonstrate that a set of zwitterionic osmolytes is able to restore the electrostatic interaction between two negatively charged surfaces that had been masked in the presence of salt. Interestingly, the mechanisms of resurrecting charge interaction under excess salt are revealed to be mutually divergent and osmolyte specific. In particular, glycine is found to competitively desorb the salt ions from the surface via its direct interaction with the surface. On the contrary, TMAO and betaine counteract salt stress by retaining adsorbed cations but partially neutralizing their charge density via ion-mediated interaction. These access to alternative modes of osmolytic actions would provide the cell the required flexibility in combating salt stress.
Collapse
Affiliation(s)
- Susmita Sarkar
- Tata Institute of Fundamental Research, Hyderabad500046, India
| | - Anku Guha
- Tata Institute of Fundamental Research, Hyderabad500046, India
| | | | | |
Collapse
|
8
|
Feng B, Li Y, Li R, Li H. Error analysis in calculation and interpretation of AFM tip-surface interaction forces. Adv Colloid Interface Sci 2022; 306:102710. [PMID: 35691096 DOI: 10.1016/j.cis.2022.102710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 11/01/2022]
Abstract
This review addresses some possible errors in calculation and interpretation of AFM tip-surface interaction forces. These usually ignored errors can affect the accuracy and correctness of the interpretation results obtained from measured interaction forces, thus hindering the application of AFM technology in related fields of colloid and interface science. Based on comprehensive analysis and assessment, three important aspects in the existing literature that may introduce significant errors in calculation and interpretation of AFM tip-surface interaction forces have been identified, and corresponding reasonable suggestions have been proposed. (1) The frequently used over-approximated electrostatic force formulas can cause great errors in the electrostatic force and the fitting of surface potential and surface charge density. Therefore, adequate electrostatic force calculation methods, like linear superposition approximation (LSA) or exact numerical solutions, should be used. (2) The over-approximated AFM tip-surface interaction models (spherical tip and flat tip-flat surface interaction models (s-f and f-f)) will lead to large errors in the electrostatic force and van der Waals force, and the subsequently fitted surface potential, surface charge density, and Hamaker constant. Therefore, the conical tip with spherical end and the conical tip with flat circular end-flat surface interaction models (cs-f and cf-f) rather than the over-approximated models (s-f and f-f) should be applied. Besides, it is recommended to use cf-f instead of cs-f to measure the interaction forces for more accuracy. (3) The inaccurately obtained (usually by SEM image) AFM tip geometry parameters (radius and half angle) have significant impacts on the fitting results of surface potential, surface charge density, and Hamaker constant. More accurate AFM tip geometry parameters and reasonable assessment of errors in calculation and interpretation are necessary.
Collapse
|
9
|
Rauwolf S, Bag S, Rouqueiro R, Schwaminger SP, Dias-Cabral AC, Berensmeier S, Wenzel W. Insights on Alanine and Arginine Binding to Silica with Atomic Resolution. J Phys Chem Lett 2021; 12:9384-9390. [PMID: 34551250 DOI: 10.1021/acs.jpclett.1c02398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interactions of biomolecules with inorganic oxide surfaces such as silica in aqueous solutions are of profound interest in various research fields, including chemistry, biotechnology, and medicine. While there is a general understanding of the dominating electrostatic interactions, the binding mechanism is still not fully understood. Here, chromatographic zonal elution and flow microcalorimetry experiments were combined with molecular dynamic simulations to describe the interaction of different capped amino acids with the silica surface. We demonstrate that ion pairing is the dominant electrostatic interaction. Surprisingly, the interaction strength is more dependent on the repulsive carboxy group than on the attracting amino group. These findings are essential for conducting experimental and simulative studies on amino acids when transferring the results to biomolecule-surface interactions.
Collapse
Affiliation(s)
- Stefan Rauwolf
- Department Mechanical Engineering, Bioseparation Engineering Group, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Saientan Bag
- Institute for Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rodrigo Rouqueiro
- Department of Chemistry, CICS-UBI Health Science Research Center, University Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sebastian Patrick Schwaminger
- Department Mechanical Engineering, Bioseparation Engineering Group, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Ana Cristina Dias-Cabral
- Department of Chemistry, CICS-UBI Health Science Research Center, University Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sonja Berensmeier
- Department Mechanical Engineering, Bioseparation Engineering Group, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Wolfgang Wenzel
- Institute for Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Abstract
The ubiquity of aqueous solutions in contact with charged surfaces and the realization that the molecular-level details of water-surface interactions often determine interfacial functions and properties relevant in many natural processes have led to intensive research. Even so, many open questions remain regarding the molecular picture of the interfacial organization and preferential alignment of water molecules, as well as the structure of water molecules and ion distributions at different charged interfaces. While water, solutes and charge are present in each of these systems, the substrate can range from living tissues to metals. This diversity in substrates has led to different communities considering each of these types of aqueous interface. In this Review, by considering water in contact with metals, oxides and biomembranes, we show the essential similarity of these disparate systems. While in each case the classical mean-field theories can explain many macroscopic and mesoscopic observations, it soon becomes apparent that such theories fail to explain phenomena for which molecular properties are relevant, such as interfacial chemical conversion. We highlight the current knowledge and limitations in our understanding and end with a view towards future opportunities in the field.
Collapse
|
11
|
Mukherjee M, Mondal J. Bottom-Up View of the Mechanism of Action of Protein-Stabilizing Osmolytes. J Phys Chem B 2020; 124:11316-11323. [PMID: 33198465 DOI: 10.1021/acs.jpcb.0c06658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular mechanism of osmolytes on the stabilization of native states of protein is still controversial irrespective of extensive studies over several decades. Recent investigations in terms of experiments and molecular dynamics simulations challenge the popular osmophobic model explaining the mechanistic action of protein-stabilizing osmolytes. The current Perspective presents an updated view on the mechanistic action of osmolytes in light of resurgence of interesting experiments and computer simulations over the past few years in this direction. In this regard, the Perspective adopts a bottom-up approach starting from hydrophobic interactions and eventually adds complexity in the system, going toward the protein, in a complex topology of hydrophobic and electrostatic interactions. Finally, the Perspective unifies osmolyte-induced protein conformational equilibria in terms of preferential interaction theory, irrespective of individual preferential binding or exclusion of osmolytes depending on different osmolytes and protein surfaces. The Perspective also identifies future research directions that can potentially shape this interesting area.
Collapse
Affiliation(s)
- Mrinmoy Mukherjee
- Tata Institute of Fundamental Research, Center For Interdisciplinary Sciences, Hyderabad 500107, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center For Interdisciplinary Sciences, Hyderabad 500107, India
| |
Collapse
|
12
|
Li J, Chen J, An L, Yuan X, Yao L. Polyol and sugar osmolytes can shorten protein hydrogen bonds to modulate function. Commun Biol 2020; 3:528. [PMID: 32968183 PMCID: PMC7511342 DOI: 10.1038/s42003-020-01260-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Polyol and sugar osmolytes are commonly used in therapeutic protein formulations. How they may affect protein structure and function is an important question. In this work, through NMR measurements, we show that glycerol and sorbitol (polyols), as well as glucose (sugar), can shorten protein backbone hydrogen bonds. The hydrogen bond shortening is also captured by molecular dynamics simulations, which suggest a hydrogen bond competition mechanism. Specifically, osmolytes weaken hydrogen bonds between the protein and solvent to strengthen those within the protein. Although the hydrogen bond change is small, with the average experimental cross hydrogen bond 3hJNC' coupling of two proteins GB3 and TTHA increased by ~ 0.01 Hz by the three osmolytes (160 g/L), its effect on protein function should not be overlooked. This is exemplified by the PDZ3-peptide binding where several intermolecular hydrogen bonds are formed and osmolytes shift the equilibrium towards the bound state.
Collapse
Affiliation(s)
- Jingwen Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jingfei Chen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Liaoyuan An
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiang Yuan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lishan Yao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
13
|
Maneffa AJ, Whitwood AC, Whitehouse AS, Powell H, Clark JH, Matharu AS. Unforeseen crystal forms of the natural osmolyte floridoside. Commun Chem 2020; 3:128. [PMID: 36703387 PMCID: PMC9814874 DOI: 10.1038/s42004-020-00376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/14/2020] [Indexed: 01/29/2023] Open
Abstract
Floridoside (2-α-O-D-galactopyranosyl glycerol) is a glycerol glycoside that is biosynthesised by most species of red algae and has been implicated as an intracellular regulator of various homeostatic functions. Here, we report the identification of two unforeseen crystal forms of the ubiquitous natural osmolyte floridoside including a seemingly unheralded second anhydrous conformational polymorph and the unambiguous description of an elusive monohydrated variant. By employing a variety of thermal and spectroscopic techniques, we begin to explore both their macro and molecular physicochemical properties, which are notably different to that of the previously reported polymorph. This work advances the characterisation of this important natural biomolecule which could aid in facilitating optimised utilisation across a variety of anthropocentric applications and improve comprehension of its role in-vivo as a preeminent compatible solute.
Collapse
Affiliation(s)
- Andrew J. Maneffa
- grid.5685.e0000 0004 1936 9668Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD UK
| | - Adrian C. Whitwood
- grid.5685.e0000 0004 1936 9668Department of Chemistry, University of York, Heslington, York YO10 5DD UK
| | - A. Steve Whitehouse
- Nestlé Product Technology Centre (Nestec York Ltd.), Clifton, York YO31 8FY UK
| | - Hugh Powell
- Nestlé Product Technology Centre (Nestec York Ltd.), Clifton, York YO31 8FY UK
| | - James H. Clark
- grid.5685.e0000 0004 1936 9668Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD UK
| | - Avtar S. Matharu
- grid.5685.e0000 0004 1936 9668Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD UK
| |
Collapse
|
14
|
Holloway L, Roche A, Marzouk S, Uddin S, Ke P, Ekizoglou S, Curtis R. Determination of Protein-Protein Interactions at High Co-Solvent Concentrations Using Static and Dynamic Light Scattering. J Pharm Sci 2020; 109:2699-2709. [DOI: 10.1016/j.xphs.2020.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 01/21/2023]
|
15
|
Mukherjee M, Mondal J. Unifying the Contrasting Mechanisms of Protein-Stabilizing Osmolytes. J Phys Chem B 2020; 124:6565-6574. [DOI: 10.1021/acs.jpcb.0c04757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mrinmoy Mukherjee
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| |
Collapse
|
16
|
Govrin R, Obstbaum T, Sivan U. Common Source of Cryoprotection and Osmoprotection by Osmolytes. J Am Chem Soc 2019; 141:13311-13314. [DOI: 10.1021/jacs.9b06727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roy Govrin
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Tal Obstbaum
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Uri Sivan
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|
17
|
Govrin R, Tcherner S, Obstbaum T, Sivan U. Zwitterionic Osmolytes Resurrect Electrostatic Interactions Screened by Salt. J Am Chem Soc 2018; 140:14206-14210. [DOI: 10.1021/jacs.8b07771] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roy Govrin
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Shani Tcherner
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Tal Obstbaum
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Uri Sivan
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|
18
|
Heldt CL, Saksule A, Joshi PU, Ghafarian M. A generalized purification step for viral particles using mannitol flocculation. Biotechnol Prog 2018; 34:1027-1035. [DOI: 10.1002/btpr.2651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Caryn L. Heldt
- Dept. of Chemical Engineering; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
- Dept. of Biological Sciences; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| | - Ashish Saksule
- Dept. of Chemical Engineering; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| | - Pratik U. Joshi
- Dept. of Chemical Engineering; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| | - Majid Ghafarian
- Dept. of Biological Sciences; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| |
Collapse
|
19
|
Abstract
Up to 40% of intracellular water is confined due to the dense packing of macromolecules, ions, and osmolytes. Despite the large body of work concerning the effect of additives on the biomolecular structure and stability, the role of crowding and heterogeneity in these interactions is not well understood. Here, infrared spectroscopy and molecular dynamics simulations are used to describe the mechanisms by which crowding modulates hydrogen bonding interactions between water and dimethyl sulfoxide (DMSO). Specifically, we use formamide and dimethylformamide (DMF) as molecular crowders and show that the S═O hydrogen bond populations in aqueous mixtures are increased by both amides. These additives increase the amount of water within the DMSO first solvation shell through two mechanisms: (a) directly stabilizing water-DMSO hydrogen bonds; (b) increasing water exposure by destabilizing DMSO-DMSO self-interactions. Further, we quantified the hydrogen bond enthalpies between the different components: DMSO-water (61 kJ/mol) > DMSO-formamide (32 kJ/mol) > water-water (23 kJ/mol) ≫ formamide-water (4.7 kJ/mol). Spectra of carbonyl stretching vibrations show that DMSO induces the dehydration of amides as a result of strong DMSO-water interactions, which has been suggested as the main mechanism of protein destabilization.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry , University of Texas at Austin , 105 E 24th St. Stop A5300 , Austin , TX 78712 , United States
| | - Carlos R Baiz
- Department of Chemistry , University of Texas at Austin , 105 E 24th St. Stop A5300 , Austin , TX 78712 , United States
| |
Collapse
|