1
|
Cai LX, Hu YH, Zhou LP, Cheng PM, Guo XQ, Chan YT, Sun QF. Polyoxometalate condensation and transformation mediated by adaptive coordination-assembled molecular flasks. Chem Sci 2025; 16:7956-7962. [PMID: 40201166 PMCID: PMC11973575 DOI: 10.1039/d4sc08729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/08/2025] [Indexed: 04/10/2025] Open
Abstract
Here we report polyoxometalate (POM) condensation or transformation reactions mediated by adaptive coordination-assembled molecular flasks. Addition of Na2SiO3 to the (Mo6O19)2⊂1·(NO3)8 complex containing Lindquist-type clusters as guests leads to the formation of a new (SiMo12O40)⊂2·(NO3)8 host-guest complex, where the in situ generated Keggin-type cluster served as a trigger for the host transformation from cage 1 to isomeric bowl 2. Conversion from 1 to 2 driven by the in situ condensation was found to be 27.5-fold faster than the direct templation with independently prepared SiMo12O40 4-. As a comparison, cage 1 was noticed to bind only one W6O19 2- cluster in its cavity, and the formation of (W10O32)⊂2·(NO3)8 as the main product and (SiW12O40)⊂2·(NO3)8 as the minor host-guest complex was observed when it was used for the above condensation reaction, highlighting the crucial role of encapsulation in cavity-confined POM transformations. The reaction processes and the final structure of all the new host-guest complexes have been investigated by NMR, ESI-TOF-MS and SCXRD. Our findings not only showcase a unique example of inorganic-reaction-driven responsive supramolecular system, but also provide a new approach for the preparation of functional POMs⊂cage composite materials.
Collapse
Affiliation(s)
- Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yu-Hang Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Pei-Ming Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University Taipei 10617 Taiwan
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
2
|
Liu CY, Mu YJ, Chen WJ, Yin YA, Lin CG, Miras HN, Song YF. Modulating the Supramolecular Assembly of α-Cyclodextrin and Anderson-type Polyoxometalate through Covalent Modifications. Chemistry 2025; 31:e202403520. [PMID: 39523520 DOI: 10.1002/chem.202403520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
A series of unprecedented supramolecular complexes of covalently modified Anderson-type polyoxometalates (POMs) and α-cyclodextrins (α-CDs) have been obtained and characterized in solid state by single-crystal X-ray diffraction, and in aqueous solution using various techniques including 1H DOSY NMR, 2D NOESY 1H NMR, isothermal titration calorimetry (ITC), and electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS). It has been demonstrated that the supramolecular assembly process could be modulated by different covalent modification modes of the Anderson POMs, giving rise to a new type of POM/α-CD complexes featuring organic-inorganic pseudo-rotaxane structures, which are in good contrast to those of POM/γ-CD complexes of poly-rotaxane structures. Moreover, it is delighted to find that these pseudo-rotaxanes of POM/α-CD complexes exhibit stable chirality in aqueous solution, which has not been accomplished in previously reported POM/CD assemblies.
Collapse
Affiliation(s)
- Chun-Yan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yun-Jing Mu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wu-Ji Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yi-An Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chang-Gen Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | | | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Dagar M, De A, Lu Z, Matson EM, Thorarinsdottir AE. Implications of Charge and Heteroatom Dopants on the Thermodynamics and Kinetics of Redox Reactions in Keggin-Type Polyoxometalates. ACS MATERIALS AU 2025; 5:200-210. [PMID: 39802152 PMCID: PMC11718532 DOI: 10.1021/acsmaterialsau.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025]
Abstract
The utilization of polyoxometalate-based materials is largely dictated by their redox properties. Detailed understanding of the thermodynamic and kinetic efficiency of charge transfer is therefore essential to the development of polyoxometalate-based systems for target applications. Toward this end, we report electrochemical studies of a series of heteroatom-doped Keggin-type polyoxotungstate clusters [PW12O40]3- (PW 12 ), [VW12O40]3- (V in W 12 ), [P(VW11)O40]4- (PV out W 11 ), and [V(VW11)O40]4- (V in V out W 11 ) to elucidate the role of the identity and spatial location of heteroatoms and overall cluster charge on the rate constants of electron transfer and redox reaction entropies. Electrochemical analyses of the polyoxotungstates reveal that the kinetics of electron transfer for W-based redox processes change as a function of the redox activity of the heteroatom, whereas the spatial location of the heteroatom dopant does not significantly impact the electrokinetics. Variable temperature cyclic voltammetry measurements in organic solutions containing noncoordinating electrolyte ions establish that redox reaction entropies are primarily dictated by the overall charge of the clusters. Specifically, the redox entropy exhibits a good linear relationship with the dielectric continuum function Z ox 2 - Z red 2 (Z ox = charge of oxidized species, Z red = charge of reduced species). Finally, our experimental data do not show a prominent correlation between the kinetics of electron transfer and redox entropy, implying that the charge-transfer kinetics are not solely governed by structural reorganization. Taken together, these results highlight how structural and electronic parameters can influence the kinetics and thermodynamics of charge transfer in polyoxotungstates and provide insights into the design of polyoxometalate compounds with target redox properties.
Collapse
Affiliation(s)
- Mamta Dagar
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Anyesh De
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Zhou Lu
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | | |
Collapse
|
4
|
Liu YJ, Zheng C, Xiao H, Wang Z, Zhang CY, Wang ST, Fang WH, Zhang J. Designed Synthesis of an Aluminum Molecular Ring Based Rotaxane and Polyrotaxane. Angew Chem Int Ed Engl 2024; 63:e202411576. [PMID: 38984566 DOI: 10.1002/anie.202411576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Mechanically interlocked molecules, such as rotaxanes, have drawn significant attention within supramolecular chemistry. Although a variety of macrocycles have been thoroughly explored in rotaxane synthesis, metal-organic macrocycles remain relatively under-investigated. Aluminum molecular rings, with their inner cavities and numerous binding sites, present a promising option for constructing rotaxanes. Here, we introduce an innovative "ring-donor⋅⋅⋅axle-acceptor" motif utilizing Al8 molecular rings, enabling the stepwise assembly of molecules, complexes, and polymers through tailored coordination chemistry. This novel approach can not only be applied to macrocycle-based systems like catenanes but also enhance specific functionalities progressively.
Collapse
Affiliation(s)
- Ya-Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chan Zheng
- School of Materials Science and Engineering, Fujian University of Technology, 3 Xueyuan Road, Fuzhou, Fujian, 350108, P. R. China
| | - Han Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zirui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng-Yang Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Zhu Z, Zhang G, Li B, Liu M, Wu L. Stereospecific supramolecular polymerization of nanoclusters into ultra-long helical chains and enantiomer separation. Nat Commun 2024; 15:8033. [PMID: 39271685 PMCID: PMC11399154 DOI: 10.1038/s41467-024-52402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
During the construction of supramolecular polymers of smaller nanoparticles/nanoclusters bearing hierarchy and homochirality, the mechanism understanding via intuitive visualization and precise cross-scale chirality modulation is still challenging. For this goal, a cooperative self-assembly strategy is here proposed by using ionic complexes with uniform chemical composition comprising polyanionic nanocluster cores and surrounded chiral cationic organic components as monomers for supramolecular polymerization. The single helical polymer chains bearing a core-shell structure at utmost length over 20 μm are demonstrated showing comparable flexibility resembling covalent polymers. A nucleation-elongation growth mechanism that is not dealt with in nanoparticle systems is confirmed to be accompanied by strict chiral self-sorting. A permeable membrane prepared by simple suction of such supramolecular polymers displays high enantioselectivity (e.e. 98% after four runs) for separating histidine derivatives, which discloses a benefiting helical chain structure-induced functionalization for macroscopic supramolecular materials in highly efficient racemate separation.
Collapse
Affiliation(s)
- Zexi Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Guohua Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China.
| |
Collapse
|
6
|
Su P, Zhu X, Wilson SM, Feng Y, Samayoa-Oviedo HY, Sonnendecker C, Smith AJ, Zimmermann W, Laskin J. The effect of host size on binding in host-guest complexes of cyclodextrins and polyoxometalates. Chem Sci 2024; 15:11825-11836. [PMID: 39092096 PMCID: PMC11290418 DOI: 10.1039/d4sc01061b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/07/2024] [Indexed: 08/04/2024] Open
Abstract
Harnessing flexible host cavities opens opportunities for the design of novel supramolecular architectures that accommodate nanosized guests. This research examines unprecedented gas-phase structures of Keggin-type polyoxometalate PW12O40 3- (WPOM) and cyclodextrins (X-CD, X = α, β, γ, δ, ε, ζ) including previously unexplored large, flexible CDs. Using ion mobility spectrometry coupled to mass spectrometry (IM-MS) in conjunction with molecular dynamics (MD) simulations, we provide first insights into the binding modes between WPOM and larger CD hosts as isolated structures. Notably, γ-CD forms two distinct structures with WPOM through binding to its primary and secondary faces. We also demonstrate that ε-CD forms a deep inclusion complex, which encapsulates WPOM within its annular inner cavity. In contrast, ζ-CD adopts a saddle-like conformation in its complex with WPOM, which resembles its free form in solution. More intriguingly, the gas-phase CD-WPOM structures are highly correlated with their counterparts in solution as characterized by nuclear magnetic resonance (NMR) spectroscopy. The strong correlation between the gas- and solution phase structures of CD-WPOM complexes highlight the power of gas-phase IM-MS for the structural characterization of supramolecular complexes with nanosized guests, which may be difficult to examine using conventional approaches.
Collapse
Affiliation(s)
- Pei Su
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Xiao Zhu
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
- Rosen Center for Advanced Computing, Purdue University West Lafayette Indiana 47907 USA
| | - Solita M Wilson
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
| | - Yuanning Feng
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
- Department of Chemistry and Biochemistry, The University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Hugo Y Samayoa-Oviedo
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
| | - Christian Sonnendecker
- Institute of Analytical Chemistry, Universität Leipzig Johannisallee 29 Leipzig 04103 Germany
| | - Andrew J Smith
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
| | - Wolfgang Zimmermann
- Institute of Analytical Chemistry, Universität Leipzig Johannisallee 29 Leipzig 04103 Germany
| | - Julia Laskin
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette Indiana 47907 USA
| |
Collapse
|
7
|
Xie X, Jiang Y, Yao X, Zhang J, Zhang Z, Huang T, Li R, Chen Y, Li SL, Lan YQ. A solvent-free processed low-temperature tolerant adhesive. Nat Commun 2024; 15:5017. [PMID: 38866776 PMCID: PMC11169673 DOI: 10.1038/s41467-024-49503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Ultra-low temperature resistant adhesive is highly desired yet scarce for material adhesion for the potential usage in Arctic/Antarctic or outer space exploration. Here we develop a solvent-free processed low-temperature tolerant adhesive with excellent adhesion strength and organic solvent stability, wide tolerable temperature range (i.e. -196 to 55 °C), long-lasting adhesion effect ( > 60 days, -196 °C) that exceeds the classic commercial hot melt adhesives. Furthermore, combine experimental results with theoretical calculations, the strong interaction energy between polyoxometalate and polymer is the main factor for the low-temperature tolerant adhesive, possessing enhanced cohesion strength, suppressed polymer crystallization and volumetric contraction. Notably, manufacturing at scale can be easily achieved by the facile scale-up solvent-free processing, showing much potential towards practical application in Arctic/Antarctic or planetary exploration.
Collapse
Affiliation(s)
- Xiaoming Xie
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| | - Yulian Jiang
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| | - Xiaoman Yao
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Jiaqi Zhang
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zilin Zhang
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China
| | - Taoping Huang
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Runhan Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China.
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China.
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China.
| |
Collapse
|
8
|
Fahy KM, Sha F, Reischauer S, Lee S, Tai TY, Farha OK. Role of Metal-Organic Framework Topology on Thermodynamics of Polyoxometalate Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30296-30305. [PMID: 38825765 DOI: 10.1021/acsami.4c05016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Polyoxometalates (POMs) are discrete anionic clusters whose rich redox properties, strong Bro̷nsted acidity, and high availability of active sites make them potent catalysts for oxidation reactions. Metal-organic frameworks (MOFs) have emerged as tunable, porous platforms to immobilize POMs, thus increasing their solution stability and catalytic activity. While POM@MOF composite materials have been widely used for a variety of applications, little is known about the thermodynamics of the encapsulation process. Here, we utilize an up-and-coming technique in the field of heterogeneous materials, isothermal titration calorimetry (ITC), to obtain full thermodynamic profiles (ΔH, ΔS, ΔG, and Ka) of POM binding. Six different 8-connected hexanuclear Zr-MOFs were investigated to determine the impact of MOF topology (csq, scu, and the) on POM encapsulation thermodynamics.
Collapse
Affiliation(s)
- Kira M Fahy
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Susanne Reischauer
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Seryeong Lee
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tzu-Yi Tai
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Petrovskii SK, Grachova EV, Monakhov KY. Bioorthogonal chemistry of polyoxometalates - challenges and prospects. Chem Sci 2024; 15:4202-4221. [PMID: 38516091 PMCID: PMC10952089 DOI: 10.1039/d3sc06284h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Bioorthogonal chemistry has enabled scientists to carry out controlled chemical processes in high yields in vivo while minimizing hazardous effects. Its extension to the field of polyoxometalates (POMs) could open up new possibilities and new applications in molecular electronics, sensing and catalysis, including inside living cells. However, this comes with many challenges that need to be addressed to effectively implement and exploit bioorthogonal reactions in the chemistry of POMs. In particular, how to protect POMs from the biological environment but make their reactivity selective towards specific bioorthogonal tags (and thereby reduce their toxicity), as well as which bioorthogonal chemistry protocols are suitable for POMs and how reactions can be carried out are questions that we are exploring herein. This perspective conceptualizes and discusses advances in the supramolecular chemistry of POMs, their click chemistry, and POM-based surface engineering to develop innovative bioorthogonal approaches tailored to POMs and to improve POM biological tolerance.
Collapse
Affiliation(s)
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg University Universitetskii pr. 26 St. Petersburg 198504 Russia
| | - Kirill Yu Monakhov
- Leibniz Institute of Surface Engineering (IOM) Permoserstr. 15 Leipzig 04318 Germany
| |
Collapse
|
10
|
Denikaev A, Kuznetsova Y, Bykov A, Zhilyakov A, Belova K, Abramov P, Moskalenko N, Skorb E, Grzhegorzhevskii K. Keplerate {Mo 132}-Stearic Acid Conjugates: Supramolecular Synthons for the Design of Dye-Loaded Nanovesicles, Langmuir-Schaefer Films, and Infochemical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7430-7443. [PMID: 38299992 DOI: 10.1021/acsami.3c16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Self-assembly gives rise to the versatile strategies of smart material design but requires precise control on the supramolecular level. Here, inorganic-organic synthons (conjugates) are produced by covalently grafting stearic acid tails to giant polyoxometalate (POM) Keplerate-type {Mo132} through an organosilicon linker (3-aminopropyltrimethoxysilane, APTMS). Using the liposome production approach, the synthons self-assemble to form hollow nanosized vesicles (100-200 nm in diameter), which can be loaded with organic dyes─eriochrome black T (ErChB) and fluorescein (FL)─where the POM layer serves as a membrane with subnanopores for cell-like communication. The dye structure plays an essential role in embedding dyes into the vesicle's shell, which opens the way to control the colloidal stability of the system. The produced vesicles are moved by an electric field and used for the creation of an infochemistry scheme with three types of logic gates (AND, OR, and IMP). To design 2D materials, synthons can form spread films, from simple addition on the water-air interface to lateral compression in the Langmuir bath, and highly ordered structures appear, demonstrating electron diffraction in Langmuir-Schaefer (LS) films. These results show the significant potential of POM-based synthons and nanosized vesicles to supramolecular design the diversity of smart materials.
Collapse
Affiliation(s)
- Andrey Denikaev
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
| | - Yulia Kuznetsova
- Institute of Solid State Chemistry of the Ural Branch of the RAS, 91, Pervomaiskaya St., 620990 Ekaterinburg, Russia
| | - Alexey Bykov
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Arkadiy Zhilyakov
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
- M.N. Mikheev lnstitute of Metal Physics of Ural Branch of RAS,18 S. Kovalevskaya St., 620108 Ekaterinburg, Russia
| | - Ksenia Belova
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
- Institute of High Temperature Electrochemistry of the Ural Branch of RAS, 22 S. Kovalevskoy St./20 Akademicheskaya St., 620066 Ekaterinburg, Russia
| | - Pavel Abramov
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Nikolai Moskalenko
- Institute of High Temperature Electrochemistry of the Ural Branch of RAS, 22 S. Kovalevskoy St./20 Akademicheskaya St., 620066 Ekaterinburg, Russia
| | - Ekaterina Skorb
- Infochemistry Scientific Center, ITMO University, Kronverksky Pr. 49, bldg. A, 197101 St. Petersburg, Russia
| | | |
Collapse
|
11
|
Gao Y, Guo J, Lai Y, Lin J, Liu J, Ji J, Yin P, Wang W, Zhao H, Chen G, Wang L, Fang X. Polyoxometalate-Organic Hybrid "Calixarenes" as Supramolecular Hosts. Angew Chem Int Ed Engl 2024; 63:e202315691. [PMID: 38038694 DOI: 10.1002/anie.202315691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
Calixarenes are among the most useful and versatile macrocycles in supramolecular chemistry. The one thing that has not changed in the 80 years since their discovery, despite numerous derivatizations, is their fully organic, covalent scaffolds. Here, we report a new type of organic-inorganic hybrid "calixarenes" constructed by means of coordination-driven assembly. Replacing acetate ligands on the {SiW10 Cr2 (OAc)2 } clusters with 5-hydroxyisophthalates allows these 95° inorganic building blocks to be linked into bowl-shaped, hybrid "calix[n]arenes" (n=3, 4). With a large concave cavity, the metal-organic calix[4]arene can accommodate nanometer-sized polyoxoanions in an entropically driven process. The development of hybrid variants of calixarenes is expected to expand the scope of their physicochemical properties, guest/substrate binding, and applications on multiple fronts.
Collapse
Affiliation(s)
- Yuan Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ji Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuyan Lai
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Jiaheng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Junrui Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jianming Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Hongmei Zhao
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
12
|
Falaise C, Khlifi S, Bauduin P, Schmid P, Degrouard J, Leforestier A, Shepard W, Marrot J, Haouas M, Landy D, Mellot-Draznieks C, Cadot E. Cooperative Self-Assembly Process Involving Giant Toroidal Polyoxometalate as a Membrane Building Block in Nanoscale Vesicles. J Am Chem Soc 2024; 146:1501-1511. [PMID: 38189235 DOI: 10.1021/jacs.3c11004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of organic amphiphilic species into various aggregates such as spherical or elongated micelles and cylinders up to the formation of lyotropic hexagonal or lamellar phases results from cooperative processes orchestrated by the hydrophobic effect, while those involving ionic inorganic polynuclear entities and nonionic organic components are still intriguing. Herein, we report on the supramolecular behavior of giant toroidal molybdenum blue-type polyoxometalate, namely, the {Mo154} species in the presence of n-octyl-β-glucoside (C8G1), widely used as a surfactant in biochemistry. Structural investigations were carried out using a set of complementary multiscale methods including single-crystal X-ray diffraction analysis supported by molecular modeling, small-angle X-ray scattering and cryo-TEM observations. In addition, liquid NMR, viscosimetry, surface tension measurement, and isothermal titration calorimetry provided further information to decipher the complex aggregation pathway. Elucidation of the assembly process reveals a rich scenario where the presence of the large {Mo154} anion disrupts the self-assembly of the C8G1, well-known to produce micelles, and induces striking successive phase transitions from fluid-to-gel and from gel-to-fluid. Herein, intimate organic-inorganic primary interactions arising from the superchaotropic nature of the {Mo154} lead to versatile nanoscopic hybrid C8G1-{Mo154} aggregates including crystalline discrete assemblies, smectic lamellar liquid crystals, and large uni- or multilamellar vesicles where the large torus {Mo154} acts a trans-membrane component.
Collapse
Affiliation(s)
- Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Soumaya Khlifi
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Pierre Bauduin
- ICSM, CEA, CNRS, ENSCM, Université Montpellier, Marcoule 34199, France
| | - Philipp Schmid
- ICSM, CEA, CNRS, ENSCM, Université Montpellier, Marcoule 34199, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Amélie Leforestier
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), ULCO, Dunkerque 59140, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, Paris, Cedex 05 75231, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles 78035, France
| |
Collapse
|
13
|
Yin JF, Amidani L, Chen J, Li M, Xue B, Lai Y, Kvashnina K, Nyman M, Yin P. Spatiotemporal Studies of Soluble Inorganic Nanostructures with X-rays and Neutrons. Angew Chem Int Ed Engl 2024; 63:e202310953. [PMID: 37749062 DOI: 10.1002/anie.202310953] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
This Review addresses the use of X-ray and neutron scattering as well as X-ray absorption to describe how inorganic nanostructured materials assemble, evolve, and function in solution. We first provide an overview of techniques and instrumentation (both large user facilities and benchtop). We review recent studies of soluble inorganic nanostructure assembly, covering the disciplines of materials synthesis, processes in nature, nuclear materials, and the widely applicable fundamental processes of hydrophobic interactions and ion pairing. Reviewed studies cover size regimes and length scales ranging from sub-Ångström (coordination chemistry and ion pairing) to several nanometers (molecular clusters, i.e. polyoxometalates, polyoxocations, and metal-organic polyhedra), to the mesoscale (supramolecular assembly processes). Reviewed studies predominantly exploit 1) SAXS/WAXS/SANS (small- and wide-angle X-ray or neutron scattering), 2) PDF (pair-distribution function analysis of X-ray total scattering), and 3) XANES and EXAFS (X-ray absorption near-edge structure and extended X-ray absorption fine structure, respectively). While the scattering techniques provide structural information, X-ray absorption yields the oxidation state in addition to the local coordination. Our goal for this Review is to provide information and inspiration for the inorganic/materials science communities that may benefit from elucidating the role of solution speciation in natural and synthetic processes.
Collapse
Affiliation(s)
- Jia-Fu Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Lucia Amidani
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR) P.O. Box 510119, 01314, Dresden, Germany
| | - Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Mu Li
- Institute of Advanced Science Facilities, Shenzhen, 518107, China
| | - Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Kristina Kvashnina
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR) P.O. Box 510119, 01314, Dresden, Germany
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97330, USA
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
14
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
15
|
Assaf KI, Nau WM. Dispersion Interactions in Condensed Phases and inside Molecular Containers. Acc Chem Res 2023; 56:3451-3461. [PMID: 37956240 DOI: 10.1021/acs.accounts.3c00523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
ConspectusThe past decade has seen significant progress in the understanding and appreciation of the importance of London dispersion interactions (LDIs) in supramolecular systems and solutions. The Slater-Kirkwood formula relates LDIs to the molecular polarizabilities of the two interacting molecular species (α) and their interaction distance (a dependence of R-6). When advancing arguments related to intermolecular interactions, it is frequently assumed that molecules with larger molecular polarizabilities are more amenable to larger LDIs. However, arguments related to molecular polarizabilities are not always transferable to the condensed phase. In fact, the underlying bulk and molecular polarizabilities of common solvents show opposing trends. The intuitive concept that aromatic molecules are more polarizable than saturated hydrocarbons and that perfluorinated molecules are less polarizable than saturated hydrocarbons applies to the condensed phase only. When treating association phenomena in solution, where LDIs are generally very attenuated, the use of bulk polarizabilities is recommended, which are experimentally accessible through either refractive index measurements or suitable solvatochromic probes. Such probes can also be used to assess polarizabilities inside molecular container compounds, such as cucurbit[n]urils (CBn), cyclodextrins, calixarenes, and hemicarcerands. These macrocyclic cavities can have extreme microenvironments. For example, the inner concave phase of CB7 has been shown to be weakly polarizable, falling in between the gas phase and perfluorohexane; those of β-cyclodextrin and p-sulfonatocalix[4]arene have been found to be similarly polarizable as water and alkanes, respectively, and the inside of hemicarcerands displays a very large bulk polarizability, exceeding that of diiodomethane. CBn compounds are privileged molecular container compounds, which we exemplify in this Account through case studies. (1) CBn macrocycles are prime water-soluble receptors for hydrocarbons, allowing for the reduction of the binding free energies to two components: the hydrophobic effect and dispersion interactions. To understand hydrocarbon binding, we initiated the HYDROPHOBE challenge, which revealed the shortcomings of both quantum-chemical and molecular dynamics approaches. (2) The smallest CBn receptor, CB5, is uniquely suited to bind the entire noble gas series, where hydrophobic effects and dispersion interactions operate in opposite directions. CB5 was revaled to be a unique synthetic receptor for noble gases, with the dominant driving force being the recovery of the cavitation energies for the hydration of noble gases in aqueous solution. Computational methods that encounter challenges in predicting hydrocarbon affinities and trends for CB6 and CB7 perform well for noble gases binding to CB5. (3) The larger homologue, CB8, allows one to set up intermolecular interaction chambers by the encapsulation of a (first) aromatic guest, thereby tuning LDIs inside the receptor cavity. In this manner, CB8 can be modulated to preferentially bind unsaturated and aromatic rather than saturated hydrocarbons, while the unmodified cavities of the smaller macrocycles CB6 and CB7 show selective binding of saturated hydrocarbons. (4) The (charged) host-guest complexes of CBn hosts are sufficiently stable in the gas phase, allowing for the study of the influence of LDIs on inner-phase chemical reactions. These studies are particularly interesting for the theoretical analysis of isolated host-guest LDIs, as experimental and computational data are directly comparable in the gas phase due to the absence of the solvation effect.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Al-Balqa Applied University, Faculty of Science, Department of Chemistry, 19117 Al-Salt, Jordan
| | - Werner M Nau
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
16
|
Nie SQ, Yuan YY, Zeng HM, Jiang ZG, Zhan CH. Homohelical Self-Assembly of Trimer of α-Cyclodextrin and Octamolybdate. Inorg Chem 2023; 62:19153-19158. [PMID: 37934703 DOI: 10.1021/acs.inorgchem.3c03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The ability to conceptually mimic biomolecules to construct emergency-functional homospiral aggregates remains a long-standing challenge. Herein, we report artificial homohelical assembly by blending inorganic polyoxometalates (POMs) and organic cyclodextrin molecules. The chiral double-helical chains have been achieved by a left-hand arrangement of trimer-trimer. The trimer is formed by three {Mo8}@α-CD inclusive complexes as a Whittaker-style paddle wheel. During the process of assembly, chiral transfer and amplification from molecule to superstructure were observed. The enantioselective adsorption of the homohelical aggregate toward (R/S)-1,1'-binaphthyl-2,2'-diamine was further demonstrated. The interaction of {Mo8} and α-CD in solution was investigated. This work opens a wide scope for the design of a homohelix, enriching POM-based inorganic-organic materials.
Collapse
Affiliation(s)
- Si-Qi Nie
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yun-Yue Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hui-Min Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zhan-Guo Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Cai-Hong Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
17
|
Haouas M, Falaise C, Leclerc N, Floquet S, Cadot E. NMR spectroscopy to study cyclodextrin-based host-guest assemblies with polynuclear clusters. Dalton Trans 2023; 52:13467-13481. [PMID: 37691564 DOI: 10.1039/d3dt02367b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Natural cyclodextrin (CD) macrocycles are known to form diverse inclusion complexes with a wide variety of organic molecules, but recent work has revealed that inorganic clusters also form multicomponent supramolecular complexes and edifices. Such molecular assemblies exhibit a high degree of organization in solution governed by various chemical processes including molecular recognition, host-guest attraction, hydrophobic repulsion, or chaotropic effect. Nuclear magnetic resonance (NMR) spectroscopy is one of the most efficient and practical analytical techniques to characterize the nature, the strength and the mechanism of these interactions in solution. This review provides a brief overview on recent examples of the contribution of NMR to the characterization of hybrid systems in solution based on CD with polynuclear clusters, including polyoxometalates (POMs), metallic clusters and hydroborate clusters. The focus will be first on using 1H (and 13C) NMR of the host, i.e., CD, to identify the nature of the interactions and measure their strength. Then, 2D NMR methods will be illustrated by DOSY as a means of highlighting the clustering phenomena, and by NOESY/ROESY to evidence the spatial proximity and contact within the supramolecular assemblies. Finally, other NMR nuclei will be selected to probe the inorganic part as a guest molecule. Attention will be paid to classical host-guest complexes Cluster@CD, but also to hierarchical multi-scale, multi-component assemblies such as Cluster@CD@Cluster.
Collapse
Affiliation(s)
- Mohamed Haouas
- Institut Lavoisier de Versailles (ILV), Université Paris-Saclay, UVSQ, CNRS, 45 avenue des Etats-Unis, 78000, Versailles, France.
| | - Clément Falaise
- Institut Lavoisier de Versailles (ILV), Université Paris-Saclay, UVSQ, CNRS, 45 avenue des Etats-Unis, 78000, Versailles, France.
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles (ILV), Université Paris-Saclay, UVSQ, CNRS, 45 avenue des Etats-Unis, 78000, Versailles, France.
| | - Sébastien Floquet
- Institut Lavoisier de Versailles (ILV), Université Paris-Saclay, UVSQ, CNRS, 45 avenue des Etats-Unis, 78000, Versailles, France.
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles (ILV), Université Paris-Saclay, UVSQ, CNRS, 45 avenue des Etats-Unis, 78000, Versailles, France.
| |
Collapse
|
18
|
Ni L, Gu J, Jiang X, Xu H, Wu Z, Wu Y, Liu Y, Xie J, Wei Y, Diao G. Polyoxometalate-Cyclodextrin-Based Cluster-Organic Supramolecular Framework for Polysulfide Conversion and Guest-Host Recognition in Lithium-sulfur Batteries. Angew Chem Int Ed Engl 2023; 62:e202306528. [PMID: 37464580 DOI: 10.1002/anie.202306528] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Developing polyoxometalate-cyclodextrin cluster-organic supramolecular framework (POM-CD-COSF) still remains challenging due to an extremely difficult task in rationally interconnecting two dissimilar building blocks. Here we report an unprecedented POM-CD-COSF crystalline structure produced through the self-assembly process of a Krebs-type POM, [Zn2 (WO2 )2 (SbW9 O33 )2 ]10- , and two β-CD units. The as-prepared POM-CD-COSF-based battery separator can be applied as a lightweight barrier (approximately 0.3 mg cm-2 ) to mitigate the polysulfide shuttle effect in lithium-sulfur batteries. The designed Li-S batteries equipped with the POM-CD-COSF modified separator exhibit remarkable electrochemical performance, attributed to fast Li+ diffusion through the supramolecular channel of β-CD, efficient polysulfide-capture ability by the dynamic host-guest interaction of β-CD, and improved sulfur redox kinetics by the bidirectional catalysis of POM cluster. This research provides a broad perspective for the development of multifunctional supramolecular POM frameworks and their applications in Li-S batteries.
Collapse
Affiliation(s)
- Lubin Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Jie Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Xinyuan Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Hongjie Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Zhen Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Yuchao Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Guowang Diao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| |
Collapse
|
19
|
Abstract
Large water-soluble anions with chaotropic character display surprisingly strong supramolecular interactions in water, for example, with macrocyclic receptors, polymers, biomembranes, and other hydrophobic cavities and interfaces. The high affinity is traced back to a hitherto underestimated driving force, the chaotropic effect, which is orthogonal to the common hydrophobic effect. This review focuses on the binding of large anions with water-soluble macrocyclic hosts, including cyclodextrins, cucurbiturils, bambusurils, biotinurils, and other organic receptors. The high affinity of large anions to molecular receptors has been implemented in several lines of new applications, which are highlighted herein.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117 Al-Salt, Jordan.
| | - Werner M Nau
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
20
|
Wei M, Li B, Wu L. Structure Transformation and Morphologic Modulation of Supramolecular Frameworks for Nanoseparation and Enzyme Loading. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207047. [PMID: 37060107 DOI: 10.1002/advs.202207047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/13/2023] [Indexed: 06/04/2023]
Abstract
Supramolecular framework (SF) encourages the emergence of porous structures with molecular flexibility while the dimension and morphology controls are less involved even though critical factors are vital for various utilizations. Targeting this purpose, two isolated components are designed and their stepped combinations via ionic interaction, metal coordination, and hydrogen bond into framework assembly with two morphologic states are realized. The zinc coordination to an ionic complex of polyoxometalate with three cationic terpyridine ligands constructs 2D hexagonal SF structure. A further growth along perpendicular direction driven by hydrogen bonding between grafted mannose groups leads to 3D SF assemblies, providing a modulation superiority in one framework for multiple utilizations. The large area of multilayered SF sheet affords a filtration membrane for strict separation of nanoparticles/proteins under gently reduced pressures while the granular SF assembly demonstrates an efficient carrier to load and fix horse radish peroxidase with maintained activity for enzymatic catalysis.
Collapse
Affiliation(s)
- Mingfeng Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
21
|
Ponchel A, Monflier E. Application of cyclodextrins as second-sphere coordination ligands for gold recovery. Nat Commun 2023; 14:1283. [PMID: 36894552 PMCID: PMC9998855 DOI: 10.1038/s41467-023-36700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Affiliation(s)
- Anne Ponchel
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), F-62300, Lens, France
| | - Eric Monflier
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), F-62300, Lens, France.
| |
Collapse
|
22
|
Supramolecular Host–Guest Assemblies of [M6Cl14]2–, M = Mo, W, Clusters with γ-Cyclodextrin for the Development of CLUSPOMs. INORGANICS 2023. [DOI: 10.3390/inorganics11020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Host–guest assemblies open up opportunities for developing novel functional CLUSPOM multicomponent systems based on transition metal clusters (CLUS), polyoxometalates (POMs) and macrocyclic organic ligands. In water–ethanol solution γ-cyclodextrin (γ-CD) interacts with halide metal clusters [M6Cl14]2– (M = Mo, W) to form sandwich-type structures. The supramolecular association between the clusters and CDs, however, remains weak in solution, and the interactions are not strong enough to prevent the hydrolysis of the inorganic guest. Although analysis of the resulting crystal structures reveals inclusion complexation, 1H NMR experiments in solution show no specific affinity between the two components. The luminescent properties of the host–guest compounds in comparison with the initial cluster complexes are also studied to evaluate the influence of CD.
Collapse
|
23
|
Sinclair ZL, Bell NL, Bame JR, Long DL, Cronin L. Water-soluble Self-assembled {Pd 84 } Ac Polyoxopalladate Nano-wheel as a Supramolecular Host. Angew Chem Int Ed Engl 2023; 62:e202214203. [PMID: 36336660 PMCID: PMC10100005 DOI: 10.1002/anie.202214203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Polyoxopalladates (POPs) are a class of self-assembling palladium-oxide clusters that span a variety of sizes, shapes and compositions. The largest of this family, {Pd84 }Ac , is constructed from 14 building units of {Pd6 } and lined on the inner and outer torus by 28 acetate ligands. Due to its high water solubility, large hydrophobic cavity and distinct 1 H NMR fingerprint {Pd84 }Ac is an ideal molecule for exploring supramolecular behaviour with small organic molecules in aqueous media. Molecular visualisation studies highlighted potential binding sites between {Pd84 }Ac and these species. Nuclear Magnetic Resonance (NMR) techniques, including 1 H NMR, 1 H Diffusion Ordered Spectroscopy (DOSY) and Nuclear Overhauser Spectroscopy (NOESY), were employed to study the supramolecular chemistry of this system. Here, we provide conclusive evidence that {Pd84 }Ac forms a 1 : 7 host-guest complex with benzyl viologen (BV2+ ) in aqueous solution.
Collapse
Affiliation(s)
- Zoë L Sinclair
- Digital Chemistry, Advanced Research Centre (ARC), University of Glasgow, Glasgow, G11 6EW, UK
| | - Nicola L Bell
- Digital Chemistry, Advanced Research Centre (ARC), University of Glasgow, Glasgow, G11 6EW, UK
| | - Jessica R Bame
- Digital Chemistry, Advanced Research Centre (ARC), University of Glasgow, Glasgow, G11 6EW, UK
| | - De-Liang Long
- Digital Chemistry, Advanced Research Centre (ARC), University of Glasgow, Glasgow, G11 6EW, UK
| | - Leroy Cronin
- Digital Chemistry, Advanced Research Centre (ARC), University of Glasgow, Glasgow, G11 6EW, UK
| |
Collapse
|
24
|
Moorthy H, Datta LP, Samanta S, Govindaraju T. Multifunctional Architectures of Cyclic Dipeptide Copolymers and Composites, and Modulation of Multifaceted Amyloid-β Toxicity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56535-56547. [PMID: 36516435 DOI: 10.1021/acsami.2c16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disorder primarily characterized by the β-amyloid (Aβ42) misfolding and aggregation-associated multifaceted amyloid toxicity encompassing oxidative stress, neuronal death, and severe cognitive impairment. Modulation of Aβ42 aggregation via various structurally anisotropic macromolecular systems is considered effective in protecting neuronal cells. In this regard, we have developed a cyclic dipeptide (CDP)-based copolymer (CP) and explored its material and biomedical properties. Owing to the structural versatility, CDP-CP forms solvent-dependent anisotropic architectures ranging from dense fibers and mesosheets to vesicles, which are shown to interact with dyes and nanoparticles and mimic synthetic protocells, providing a conceptually new approach to achieve advanced functional materials with the hierarchical organization. CP upon interaction with gold nanoparticles (GNP) and polyoxometalate (POM) generated faceted architectures (CP-GNP) and the nanocomposite (CP-POM), respectively. CP-GNP and CP-POM have shown remarkable ability to inhibit Aβ42 aggregation, dissolve the preformed aggregates, and scavenge reactive oxygen species (ROS) to ameliorate multifaceted amyloid toxicity. In cellulo studies show that CP-GNP and CP-POM protect neuronal cells from Aβ42-induced toxicity and reduce lipopolysaccharide (LPS)-activated neuroinflammation at sub-micromolar concentration. To our knowledge, this is the first report on the hierarchical organization of CDP-CP into 1D-to-2D architectures and their organic-inorganic hybrid nanocomposites to combat the multifaceted amyloid toxicity.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Lakshmi Priya Datta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
25
|
Hernández JS, Shamshurin M, Puche M, Sokolov MN, Feliz M. Nanostructured Hybrids Based on Tantalum Bromide Octahedral Clusters and Graphene Oxide for Photocatalytic Hydrogen Evolution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3647. [PMID: 36296837 PMCID: PMC9611948 DOI: 10.3390/nano12203647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The generation of hydrogen (H2) using sunlight has become an essential energy alternative for decarbonization. The need for functional nanohybrid materials based on photo- and electroactive materials and accessible raw materials is high in the field of solar fuels. To reach this goal, single-step synthesis of {Ta6Bri12}@GO (GO = graphene oxide) nanohybrids was developed by immobilization of [{Ta6Bri12}Bra2(H2O)a4]·4H2O (i = inner and a = apical positions of the Ta6 octahedron) on GO nanosheets by taking the advantage of the easy ligand exchange of the apical cluster ligands with the oxygen functionalities of GO. The nanohybrids were characterized by spectroscopic, analytical, and morphological techniques. The hybrid formation enhances the yield of photocatalytic H2 from water with respect to their precursors and this is without the presence of precious metals. This enhancement is attributed to the optimal cluster loading onto the GO support and the crucial role of GO in the electron transfer from Ta6 clusters into GO sheets, thus suppressing the charge recombination. In view of the simplicity and versatility of the designed photocatalytic system, octahedral tantalum clusters are promising candidates to develop new and environmentally friendly photocatalysts for H2 evolution.
Collapse
Affiliation(s)
- Jhon Sebastián Hernández
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain
| | - Maxim Shamshurin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Marta Puche
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Marta Feliz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
26
|
Nguyen NTK, Lebastard C, Wilmet M, Dumait N, Renaud A, Cordier S, Ohashi N, Uchikoshi T, Grasset F. A review on functional nanoarchitectonics nanocomposites based on octahedral metal atom clusters (Nb 6, Mo 6, Ta 6, W 6, Re 6): inorganic 0D and 2D powders and films. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:547-578. [PMID: 36212682 PMCID: PMC9542349 DOI: 10.1080/14686996.2022.2119101] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 05/29/2023]
Abstract
This review is dedicated to various functional nanoarchitectonic nanocomposites based on molecular octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6). Powder and film nanocomposites with two-dimensional, one-dimensional and zero-dimensional morphologies are presented, as well as film matrices from organic polymers to inorganic layered oxides. The high potential and synergetic effects of these nanocomposites for biotechnology applications, photovoltaic, solar control, catalytic, photonic and sensor applications are demonstrated. This review also provides a basic level of understanding how nanocomposites are characterized and processed using different techniques and methods. The main objective of this review would be to provide guiding significance for the design of new high-performance nanocomposites based on transition metal atom clusters.
Collapse
Affiliation(s)
- Ngan T. K. Nguyen
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- International Center for Young Scientists, ICYS-Sengen, Global Networking Division, NIMS, Tsukuba, Japan
| | - Clément Lebastard
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | - Maxence Wilmet
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
- Saint Gobain Research Paris, Aubervilliers, France
| | - Noée Dumait
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | - Adèle Renaud
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | | | - Naoki Ohashi
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Research Center for Functional Materials, NIMS, Tsukuba, Japan
| | - Tetsuo Uchikoshi
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Research Center for Functional Materials, NIMS, Tsukuba, Japan
| | - Fabien Grasset
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| |
Collapse
|
27
|
Fabre B, Falaise C, Cadot E. Polyoxometalates-Functionalized Electrodes for (Photo)Electrocatalytic Applications: Recent Advances and Prospects. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno Fabre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Clément Falaise
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| |
Collapse
|
28
|
Kuznetsova AA, Volchek VV, Yanshole VV, Fedorenko AD, Kompankov NB, Kokovkin VV, Gushchin AL, Abramov PA, Sokolov MN. Coordination of Pt(IV) by {P 8W 48} Macrocyclic Inorganic Cavitand: Structural, Solution, and Electrochemical Studies. Inorg Chem 2022; 61:14560-14567. [PMID: 36067043 DOI: 10.1021/acs.inorgchem.2c01362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrothermal reaction of a macrocyclic inorganic POM cavitand Li17(NH4)21H2[P8W48O184] with [Pt(H2O)2(OH)4] results in coordination of up to six {Pt(H2O)x(OH)4-x} fragments to the internal surface of the polyoxoanion. The product was isolated as K22(NH4)9H3[{Pt(OH)3(H2O)}6P8W48O184]·79H2O (1) and characterized by multiple techniques in the solid state (SCXRD, XRPD, XPS, FTIR, and TGA) and in solution (NMR, ESI-MS, and HPLC-ICP-AES). Electrochemical properties were studied both in solution and as components of the paste electrode. The complex shows electrocatalytic activity in water oxidation.
Collapse
Affiliation(s)
- Anna A Kuznetsova
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Victoria V Volchek
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vadim V Yanshole
- International Tomography Center, Institutskaya str. 3a, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova str. 1, Novosibirsk 630090, Russia
| | - Anastasiya D Fedorenko
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Nikolay B Kompankov
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vasily V Kokovkin
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Artem L Gushchin
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Pavel A Abramov
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Maxim N Sokolov
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
29
|
Ivanov AA, Haouas M, Evtushok DV, Pozmogova TN, Golubeva TS, Molard Y, Cordier S, Falaise C, Cadot E, Shestopalov MA. Stabilization of Octahedral Metal Halide Clusters by Host-Guest Complexation with γ-Cyclodextrin: Toward Nontoxic Luminescent Compounds. Inorg Chem 2022; 61:14462-14469. [PMID: 36041168 DOI: 10.1021/acs.inorgchem.2c02468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
γ-Cyclodextrin (γ-CD) interacts in aqueous solution with octahedral halide clusters Na2[{M6X8}Cl6] (M = Mo, W; X = Br, I) to form robust inclusion supramolecular complexes [{M6X8}Cl6@2γ-CD]2-. Single-crystal X-ray diffraction analyses revealed two conformational organizations within the adduct depending on the nature of the inner halide X within the {M6X8} core. Using 35Cl NMR and UV-vis as complementary techniques, the kinetics of the hydrolysis process were shown to increase with the following order: {W6I8} < {W6Br8} ≈ {Mo6I8} < {Mo6Br8}. The complexation with γ-CD drastically enhances the hydrolytic stability of luminescent [{M6X8}Cl6]2- cluster-based units, which was quantitatively proved by the same techniques. The resulting host-guest complexation provides a protective shell against contact with water and offers promising horizons for octahedral clusters in biology as revealed by the low dark cytotoxicity and cellular uptake.
Collapse
Affiliation(s)
- Anton A Ivanov
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France.,Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Darya V Evtushok
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Tatiana N Pozmogova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Tatiana S Golubeva
- Novosibirsk State University, Novosibirsk 630090, Russia.,Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Yann Molard
- Université de Rennes, CNRS, ISCR - UMR 6226, ScanMAT - UMS 2001, F-35000 Rennes, France
| | - Stéphane Cordier
- Université de Rennes, CNRS, ISCR - UMR 6226, ScanMAT - UMS 2001, F-35000 Rennes, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | | |
Collapse
|
30
|
Hu X, Guo D. Superchaotropic Boron Clusters as Membrane Carriers for the Transport of Hydrophilic Cargos. Angew Chem Int Ed Engl 2022; 61:e202204979. [DOI: 10.1002/anie.202204979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xin‐Yue Hu
- College of Chemistry Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of Chemistry Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
31
|
Ma CB, Xu Y, Wu L, Wang Q, Zheng JJ, Ren G, Wang X, Gao X, Zhou M, Wang M, Wei H. Guided Synthesis of a Mo/Zn Dual Single-Atom Nanozyme with Synergistic Effect and Peroxidase-like Activity. Angew Chem Int Ed Engl 2022; 61:e202116170. [PMID: 35238141 DOI: 10.1002/anie.202116170] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 01/08/2023]
Abstract
We present a facile route towards a dual single-atom nanozyme composed of Zn and Mo, which utilizes the non-covalent nano-assembly of polyoxometalates, supramolecular coordination complexes as the metal-atom precursor, and a macroscopic amphiphilic aerogel as the supporting substrate. The dual single-atoms of Zn and Mo have a high content (1.5 and 7.3 wt%, respectively) and exhibit a synergistic effect and a peroxidase-like activity. The Zn/Mo site was identified as the main active center by X-ray absorption fine structure spectroscopy and density functional theory calculation. The detection of versatile analytes, including intracellular H2 O2 , glucose in serum, cholesterol, and ascorbic acid in commercial beverages was achieved. The nanozyme has an outstanding stability and maintained its performance after one year's storage. This study develops a new peroxidase-like nanozyme and provides a robust synthetic strategy for single-atom catalysts by utilizing an aerogel as a facile substrate that is capable of stabilizing various metal atoms.
Collapse
Affiliation(s)
- Chong-Bo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Yaping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Guoxi Ren
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
32
|
Bhattacharya S, Barba‐Bon A, Zewdie TA, Müller AB, Nisar T, Chmielnicka A, Rutkowska IA, Schürmann CJ, Wagner V, Kuhnert N, Kulesza PJ, Nau WM, Kortz U. Discrete, Cationic Palladium(II)-Oxo Clusters via f-Metal Ion Incorporation and their Macrocyclic Host-Guest Interactions with Sulfonatocalixarenes. Angew Chem Int Ed Engl 2022; 61:e202203114. [PMID: 35384204 PMCID: PMC9324968 DOI: 10.1002/anie.202203114] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Indexed: 12/28/2022]
Abstract
We report on the discovery of the first two examples of cationic palladium(II)-oxo clusters (POCs) containing f-metal ions, [PdII6 O12 M8 {(CH3 )2 AsO2 }16 (H2 O)8 ]4+ (M=CeIV , ThIV ), and their physicochemical characterization in the solid state, in solution and in the gas phase. The molecular structure of the two novel POCs comprises an octahedral {Pd6 O12 }12- core that is capped by eight MIV ions, resulting in a cationic, cubic assembly {Pd6 O12 MIV8 }20+ , which is coordinated by a total of 16 terminal dimethylarsinate and eight water ligands, resulting in the mixed PdII -CeIV /ThIV oxo-clusters [PdII6 O12 M8 {(CH3 )2 AsO2 }16 (H2 O)8 ]4+ (M=Ce, Pd6 Ce8 ; Th, Pd6 Th8 ). We have also studied the formation of host-guest inclusion complexes of Pd6 Ce8 and Pd6 Th8 with anionic 4-sulfocalix[n]arenes (n=4, 6, 8), resulting in the first examples of discrete, enthalpically-driven supramolecular assemblies between large metal-oxo clusters and calixarene-based macrocycles. The POCs were also found to be useful as pre-catalysts for electrocatalytic CO2 -reduction and HCOOH-oxidation.
Collapse
Affiliation(s)
- Saurav Bhattacharya
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Andrea Barba‐Bon
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Tsedenia A. Zewdie
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Anja B. Müller
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Talha Nisar
- Department of Physics and Earth SciencesJacobs UniversityCampus Ring 128759BremenGermany
| | - Anna Chmielnicka
- Faculty of ChemistryUniversity of WarsawPasteura 102-093WarsawPoland
| | | | | | - Veit Wagner
- Department of Physics and Earth SciencesJacobs UniversityCampus Ring 128759BremenGermany
| | - Nikolai Kuhnert
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Pawel J. Kulesza
- Faculty of ChemistryUniversity of WarsawPasteura 102-093WarsawPoland
| | - Werner M. Nau
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Ulrich Kortz
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| |
Collapse
|
33
|
Nag A, Pradeep T. Assembling Atomically Precise Noble Metal Nanoclusters Using Supramolecular Interactions. ACS NANOSCIENCE AU 2022; 2:160-178. [PMID: 37101822 PMCID: PMC10114813 DOI: 10.1021/acsnanoscienceau.1c00046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Supramolecular chemistry (SC) of noble metal nanoclusters (NMNCs) is one of the fascinating areas of contemporary materials science. It is principally concerned with the noncovalent interactions between NMNCs, as well as between NMNCs and molecules or nanoparticles. This review focuses on recent advances in the supramolecular assembly of NMNCs and applications of the resulting structures. We have divided the topics into four distinct subgroups: (i) SC of NMNCs in gaseous and solution phases, (ii) supramolecular interactions of NMNCs in crystal lattices, (iii) supramolecular assemblies of NMNCs with nanoparticles and NMNCs, and (iv) SC of NMNCs with other molecules. The last explores their interactions with fullerenes, cyclodextrins, cucurbiturils, crown ethers, and more. After discussing these topics concisely, various emerging properties of the assembled systems in terms of their mechanical, optical, magnetic, charge-transfer, etc. properties and applications are presented. SC is seen to provide a crucial role to induce new physical and chemical properties in such hybrid nanomaterials. Finally, we highlight the scope for expansion and future research in the area. This review would be useful to those working on functional nanostructures in general and NMNCs in particular.
Collapse
|
34
|
Hua JA, Ma X, Niu J, Xia BX, Gao XY, Niu YL, Ma PT. A Novel Tetrameric Heptomolybdate with Reactive Oxygen Species Catalytic Ability. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Abstract
Multicharged cyclodextrin (CD) supramolecular assemblies, including those based on positively/negatively charged modified mono-6-deoxy-CDs, per-6-deoxy-CDs, and random 2,3,6-deoxy-CDs, as well as parent CDs binding positively/negatively charged guests, have been extensively applied in chemistry, materials science, medicine, biological science, catalysis, and other fields. In this review, we primarily focus on summarizing the recent advances in positively/negatively charged CDs and parent CDs encapsulating positively/negatively charged guests, especially the construction process of supramolecular assemblies and their applications. Compared with uncharged CDs, multicharged CDs display remarkably high antiviral and antibacterial activity as well as efficient protein fibrosis inhibition. Meanwhile, charged CDs can interact with oppositely charged dyes, drugs, polymers, and biomacromolecules to achieve effective encapsulation and aggregation. Consequently, multicharged CD supramolecular assemblies show great advantages in improving drug-delivery efficiency, the luminescence properties of materials, molecular recognition and imaging, and the toughness of supramolecular hydrogels, in addition to enabling the construction of multistimuli-responsive assemblies. These features are anticipated to not only promote the development of CD-based supramolecular chemistry but also contribute to the rapid exploitation of these assemblies in diverse interdisciplinary applications.
Collapse
Affiliation(s)
- Zhixue Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
36
|
Hu X, Guo D. Superchaotropic Boron Clusters as Membrane Carriers for the Transport of Hydrophilic Cargos. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xin‐Yue Hu
- College of Chemistry Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of Chemistry Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
37
|
Bhattacharya S, Barba‐Bon A, Zewdie TA, Müller AB, Nisar T, Chmielnicka A, Rutkowska IA, Schürmann CJ, Wagner V, Kuhnert N, Kulesza PJ, Nau WM, Kortz U. Discrete, Cationic Palladium(II)‐Oxo Clusters via f‐Metal Ion Incorporation and their Macrocyclic Host‐Guest Interactions with Sulfonatocalixarenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Saurav Bhattacharya
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Andrea Barba‐Bon
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Tsedenia A. Zewdie
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Anja B. Müller
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Talha Nisar
- Department of Physics and Earth Sciences Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Anna Chmielnicka
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Iwona A. Rutkowska
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | | | - Veit Wagner
- Department of Physics and Earth Sciences Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Nikolai Kuhnert
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Pawel J. Kulesza
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Werner M. Nau
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| |
Collapse
|
38
|
Zhu M, Iwano T, Tan M, Akutsu D, Uchida S, Chen G, Fang X. Macrocyclic Polyoxometalates: Selective Polyanion Binding and Ultrahigh Proton Conduction. Angew Chem Int Ed Engl 2022; 61:e202200666. [PMID: 35129876 DOI: 10.1002/anie.202200666] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 11/10/2022]
Abstract
The rational development of an anion templation strategy for the construction of macrocycles has been historically limited to small anions, but large polyoxoanions can offer unmatched structural diversity and ample binding sites. Here we report the formation of a {Mo22 Fe8 } macrocycle by using the Preyssler anion, [NaP5 W30 O110 ]14- ({P5 W30 }), as a supramolecular template. The {Mo22 Fe8 } macrocycle displays selective anion binding behavior in solution. In the solid state, the 1 : 2 host-guest complex, {P5 W30 }2 ⊂{Mo22 Fe8 }, transports protons more effectively, through an extended hydrogen-bonding network, than a related 1 : 1 complex where the guest is completely encapsulated. The results highlight the great potential this anion templation approach has in producing macrocyclic systems for selective anion recognition and proton conduction purposes.
Collapse
Affiliation(s)
- Minghui Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Tsukasa Iwano
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Mengjin Tan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Daiki Akutsu
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
39
|
Pawar SA, Poojari SV, A VK. Cu2O‐CD nanosuperstructures as a BiomimeticCatalyst for Oxidation of Benzylicsp3 C–H bonds and SecondaryAmines using Molecular Oxygen:First Total Synthesis ofproposed SwerilactoneO. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Vijay Kumar A
- Institute of Chemical Technology Department of Chemistry C304,Advance CentreDepartment of Chemistry, Institute of Chemical TechnologyNP Marg,Matunga 400019 Mumbai INDIA
| |
Collapse
|
40
|
Ma CB, Xu Y, Wu L, Wang Q, Zheng JJ, Ren G, Wang X, Gao X, Zhou M, Wang M, Wei H. Guided Synthesis of a Mo/Zn Dual Single‐Atom Nanozyme with Synergistic Effect and Peroxidase‐like Activity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chong-Bo Ma
- Northeast Normal University Department of Chemistry CHINA
| | - Yaping Xu
- Jilin University College of Chemistry CHINA
| | - Lixin Wu
- Jilin University College of Chemistry CHINA
| | | | - Jia-Jia Zheng
- National Center for Nanoscience and Technology Laboratory of Theoretical and Computational Nanoscience CHINA
| | - Guoxi Ren
- Shanghai Institute of Microsystem and Information Technology State Key Laboratory of Functional Materials for Informatics CHINA
| | | | - Xingfa Gao
- National Center for Nanoscience and Technology Laboratory of Theoretical and Computational Nanoscience CHINA
| | - Ming Zhou
- Northeast Normal University Department of Chemistry CHINA
| | - Ming Wang
- Jilin University College of Chemistry CHINA
| | - Hui Wei
- Nanjing University Biomedical Engineering 22 Hankou Rd 210093 Nanjing CHINA
| |
Collapse
|
41
|
Khlifi S, Marrot J, Haouas M, Shepard WE, Falaise C, Cadot E. Chaotropic Effect as an Assembly Motif to Construct Supramolecular Cyclodextrin-Polyoxometalate-Based Frameworks. J Am Chem Soc 2022; 144:4469-4477. [PMID: 35230838 DOI: 10.1021/jacs.1c12049] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In aqueous solution, low-charged polyoxometalates (POMs) exhibit remarkable self-assembly properties with nonionic organic matter that have been recently used to develop groundbreaking advances in host-guest chemistry, as well as in soft matter science. Herein, we exploit the affinity between a chaotropic POM and native cyclodextrins (α-, β-, and γ-CD) to enhance the structural and functional diversity of cyclodextrin-based open frameworks. First, we reveal that the Anderson-Evans type polyoxometalate [AlMo6O18(OH)6]3- represents an efficient inorganic scaffold to design open hybrid frameworks built from infinite cyclodextrin channels connected through the disk-shaped POM. A single-crystal X-ray analysis demonstrates that the resulting supramolecular architectures contain large cavities (up to 2 nm) where the topologies are dictated by the rotational symmetry of the organic macrocycle, generating honeycomb (bnn net) and checkerboard-like (pcu net) networks for α-CD (C6) and γ-CD (C8), respectively. On the other hand, the use of β-CD, a macrocycle with C7 ideal symmetry, led to a distorted-checkerboard-like network. The cyclodextrin-based frameworks built from an Anderson-Evans type POM are easily functionalizable using the molecular recognition properties of the macrocycle building units. As a proof of concept, we successfully isolated a series of compartmentalized functional frameworks by the entrapment of polyiodides or superchaotropic redox-active polyanions within the macrocyclic host matrix. This set of results paves the way for designing multifunctional supramolecular frameworks whose pore dimensions are controlled by the size of inorganic entities.
Collapse
Affiliation(s)
- Soumaya Khlifi
- Université Paris-Saclay, UVSQ, CNRS, UMR8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Jérôme Marrot
- Université Paris-Saclay, UVSQ, CNRS, UMR8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Mohamed Haouas
- Université Paris-Saclay, UVSQ, CNRS, UMR8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - William E Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubain, 91192 Gif-sur-Yvette, France
| | - Clément Falaise
- Université Paris-Saclay, UVSQ, CNRS, UMR8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Emmanuel Cadot
- Université Paris-Saclay, UVSQ, CNRS, UMR8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| |
Collapse
|
42
|
Zhu M, Iwano T, Tan M, Akutsu D, Uchida S, Chen G, Fang X. Macrocyclic Polyoxometalates: Selective Polyanion Binding and Ultrahigh Proton Conduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Minghui Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Tsukasa Iwano
- Department of Basic Science School of Arts and Sciences The University of Tokyo Tokyo 153-8902 Japan
| | - Mengjin Tan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Daiki Akutsu
- Department of Basic Science School of Arts and Sciences The University of Tokyo Tokyo 153-8902 Japan
| | - Sayaka Uchida
- Department of Basic Science School of Arts and Sciences The University of Tokyo Tokyo 153-8902 Japan
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
43
|
Li B, Xuan L, Wu L. Polyoxometalate-Containing Supramolecular Gels. Macromol Rapid Commun 2022; 43:e2200019. [PMID: 35102624 DOI: 10.1002/marc.202200019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Indexed: 11/08/2022]
Abstract
Supramolecular gels are important soft materials with various applications, which are fabricated through hydrogen bonding, π-π stacking, electrostatic or host-guest interactions. Introducing functional groups, especially inorganic components, is an efficient strategy to obtain gels with robust architecture and high performance. Polyoxometalates (POMs), as a class of negatively-charged clusters, have defined structures and multiple interaction sites, resulting in their potential as building blocks for constructing POM-containing supramolecular gels. The introduction of POMs into gels not only provides strong driving forces for the formation of gels due to the characteristics of charged cluster and oxygen-rich surface, but also brings new properties sourcing from unique electronic structures of POMs. Though many POM-containing gels have been reported, a comprehensive review is still absent. Herein, the concept of POM-containing gels is discussed, following with the design strategies and driving forces. To better understand the results in the literature, detailed examples, which are classified into several categories based on the types of organic components, are presented to illustrate the gelation process and gel structures. Moreover, applications of POM-containing gels in energy chemistry, sustainable chemistry and other aspects are also reviewed, as well as the future developments of this field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Luyun Xuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
44
|
Zhang M, Zhang H, Jin L, Li H, Liu S, Chang S, Liang F. Evidenced cucurbit[ n]uril-based host-guest interactions using single-molecule force spectroscopy. Chem Commun (Camb) 2022; 58:1736-1739. [PMID: 35029268 DOI: 10.1039/d1cc06791e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, enhanced guest-pair interactions in the cavity of cucurbit[8]uril (CB[8]) are quantitatively determined using single-molecule force spectroscopy (SMFS). Significantly, the light-driven dynamic conformational change of guest pairs leads to a rupture force switching between the connected and broken CB[8]-mediated heteroternary complexation with viologen and bis(azobenzene) derivatives. SMFS is further utilized to detect methyl viologen based on the competitive host-guest interaction toward the guest in CB[8] or CB[7]. These findings highlight the extraordinary power of SMFS in supramolecular chemistry and will contribute to the fundamental understanding of the mechanochemical behavior of host-guest interactions.
Collapse
Affiliation(s)
- Mingyang Zhang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Hao Zhang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Lunqiang Jin
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Hao Li
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
45
|
Guan W, Li B, Wu L. Chiral hexamers of organically modified polyoxometalates via ionic complexation. Dalton Trans 2022; 51:4541-4548. [DOI: 10.1039/d2dt00093h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anderson-Evans type polyoxometalates (POMs) that are modified on double sides with anthracene groups through the linking of β-amino acid enantiomers covalently are synthesized. The modified Anderson-Evans POMs are successfully used...
Collapse
|
46
|
Cameron JM, Guillemot G, Galambos T, Amin SS, Hampson E, Mall Haidaraly K, Newton GN, Izzet G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: from functional building blocks to hierarchical nanomaterials. Chem Soc Rev 2021; 51:293-328. [PMID: 34889926 DOI: 10.1039/d1cs00832c] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review provides a comprehensive overview of recent advances in the supramolecular organisation and hierarchical self-assembly of organo-functionalised hybrid polyoxometalates (hereafter referred to as hybrid POMs), and their emerging role as multi-functional building blocks in the construction of new nanomaterials. Polyoxometalates have long been studied as a fascinating outgrowth of traditional metal-oxide chemistry, where the unusual position they occupy between individual metal oxoanions and solid-state bulk oxides imbues them with a range of attractive properties (e.g. solubility, high structural modularity and tuneable properties/reactivity). Specifically, the capacity for POMs to be covalently coupled to an effectively limitless range of organic moieties has opened exciting new avenues in their rational design, while the combination of distinct organic and inorganic components facilitates the formation of complex molecular architectures and the emergence of new, unique functionalities. Here, we present a detailed discussion of the design opportunities afforded by hybrid POMs, where fine control over their size, topology and their covalent and non-covalent interactions with a range of other species and/or substrates makes them ideal building blocks in the assembly of a broad range of supramolecular hybrid nanomaterials. We review both direct self-assembly approaches (encompassing both solution and solid-state approaches) and the non-covalent interactions of hybrid POMs with a range of suitable substrates (including cavitands, carbon nanotubes and biological systems), while giving key consideration to the underlying driving forces in each case. Ultimately, this review aims to demonstrate the enormous potential that the rational assembly of hybrid POM clusters shows for the development of next-generation nanomaterials with applications in areas as diverse as catalysis, energy-storage and molecular biology, while providing our perspective on where the next major developments in the field may emerge.
Collapse
Affiliation(s)
- Jamie M Cameron
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Geoffroy Guillemot
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Theodor Galambos
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Sharad S Amin
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Elizabeth Hampson
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Kevin Mall Haidaraly
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Graham N Newton
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Guillaume Izzet
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| |
Collapse
|
47
|
Fa Bamba I, Falaise C, Marrot J, Atheba P, Gbassi G, Landy D, Shepard W, Haouas M, Cadot E. Host-Guest Complexation Between Cyclodextrins and Hybrid Hexavanadates: What are the Driving Forces? Chemistry 2021; 27:15516-15527. [PMID: 34523167 DOI: 10.1002/chem.202102684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/12/2022]
Abstract
Host-guest complexes between native cyclodextrins (α-, β- and γ-CD) and hybrid Lindqvist-type polyoxovanadates (POVs) [V6 O13 ((OCH2 )3 C-R)2 ]2- with R = CH2 CH3 , NO2 , CH2 OH and NH(BOC) (BOC = N-tert-butoxycarbonyl) were studied in aqueous solution. Six crystal structures determined by single-crystal X-ray diffraction analysis revealed the nature of the functional R group strongly influences the host-guest conformation and also the crystal packing. In all systems isolated in the solid-state, the organic groups R are embedded within the cyclodextrin cavities, involving only a few weak supramolecular contacts. The interaction between hybrid POVs and the macrocyclic organic hosts have been deeply studied in solution using ITC, cyclic voltammetry and NMR methods (1D 1 H NMR, and 2D DOSY, and ROESY). This set of complementary techniques provides clear insights about the strength of interactions and the binding host-guest modes occurring in aqueous solution, highlighting a dramatic influence of the functional group R on the supramolecular properties of the hexavanadate polyoxoanions (association constant K1:1 vary from 0 to 2 000 M-1 ) while isolated functional organic groups exhibit only very weak intrinsic affinity with CDs. Electrochemical and calorimetric investigations suggest that the driving force of the host-guest association involving larger CDs (β- and γ-CD) is mainly related to the chaotropic effect. In contrast, the hydrophobic effect supported by weak attractive forces appears as the main contributor for the formation of α-CD-containing host-guest complexes. In any cases, the origin of driving forces is clearly related to the ability of the macrocyclic host to desolvate the exposed moieties of the hybrid POVs.
Collapse
Affiliation(s)
- Ibrahima Fa Bamba
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France.,UFR Sciences Pharmaceutiques et Biologiques (UFR SPB), Université Félix Houphouet Boigny (UFHB), Abidjan, Côte d'Ivoire
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Patrick Atheba
- UFR Sciences des Structures de la Matière et Technologie (UFR SSMT), Université Félix Houphouet Boigny (UFHB), Abidjan, Côte d'Ivoire
| | - Gildas Gbassi
- UFR Sciences Pharmaceutiques et Biologiques (UFR SPB), Université Félix Houphouet Boigny (UFHB), Abidjan, Côte d'Ivoire
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant, ULCO, Dunkerque, UR 4492, France
| | - William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubain BP 48, 91192 Gif-sur-Yvette, CEDEX, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| |
Collapse
|
48
|
Hatami E, Ashraf N, Arbab-Zavar MH. Construction of β-Cyclodextrin-phosphomolybdate grafted polypyrrole composite: Application as a disposable electrochemical sensor for detection of propylparaben. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
49
|
Kojima T, Takeda H, Kuwamura N, Konno T. A Pseudorotaxane System Containing γ-Cyclodextrin Formed via Chiral Recognition with an Au I 6 Ag I 3 Cu II 3 Molecular Cap. Chemistry 2021; 27:15981-15985. [PMID: 34436804 DOI: 10.1002/chem.202102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/11/2022]
Abstract
Solvent-mediated crystal-to-crystal transformations of [Au6 Ag3 Cu3 (H2 O)3 (d-pen)6 (tdme)2 ]3+ (d-[1(H2 O)3 ]3+ ; pen2- =penicillaminate, tdme=1,1,1-tris(diphenylphosphinomethyl)ethane) to form unique supramolecular species are reported. Soaking crystals of d-[1(H2 O)3 ]3+ in aqueous Na2 bdc (bdc2- =1,4-benzenedicarboxylate) yielded crystals containing d-[1(bdc)(H2 O)2 ]+ due to the replacement of a terminal aqua ligand in d-[1(H2 O)3 ]3+ by a monodentate bdc2- ligand. When γ-cyclodextrin (γ-CD) was added to aqueous Na2 bdc, d-[1(H2 O)3 ]3+ was transformed to d-[1(bdc@γ-CD)(H2 O)2 ]+ , where a γ-CD ring was threaded by a bdc2- molecule to construct a pseudorotaxane structure. While the use of dicarboxylates with an aliphatic carbon chain instead of bdc2- afforded analogous pseudorotaxanes, such pseudorotaxane species were not formed when crystals of [Au6 Ag3 Cu3 (H2 O)3 (l-pen)6 (tdme)2 ]3+ (l-[1(H2 O)3 ]3+ ) enantiomeric to d-[1(H2 O)3 ]3+ were soaked in aqueous Na2 bdc and γ-CD, affording only crystals containing l-[1(bdc)(H2 O)2 ]+ .
Collapse
Affiliation(s)
- Tatsuhiro Kojima
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka, Osaka, 560-0043, Japan
| | - Hiroto Takeda
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka, Osaka, 560-0043, Japan
| | - Naoto Kuwamura
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka, Osaka, 560-0043, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
50
|
Leclerc N, Haouas M, Falaise C, Al Bacha S, Assaud L, Cadot E. Supramolecular Association between γ-Cyclodextrin and Preyssler-Type Polyoxotungstate. Molecules 2021; 26:molecules26175126. [PMID: 34500556 PMCID: PMC8434062 DOI: 10.3390/molecules26175126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
The development of hybrid materials based on polyoxometalates constitutes a strategy for the design of multifunctional materials. The slow evaporation of an aqueous solution of [NaP5W30O110]14− in the presence of γ-Cyclodextrin (γ-CD) led to the crystallization of a K6Na8{[NaP5W30O110]•(C48H80O40)}•23H2O (NaP5W30•1CD) supramolecular compound, which was characterized by single-crystal X-ray diffraction, IR-spectroscopy, thermogravimetric and elemental analyses. Structural analysis revealed the formation of 1:1 {[NaP5W30O110]•[γ-CD]}14− adduct in the solid state. Studies in solution by cyclic voltammetry, electrochemical impedance spectroscopy, 1H NMR spectroscopy, and 31P DOSY, have demonstrated weak interactions between the inorganic anion and the macrocyclic organic molecule.
Collapse
Affiliation(s)
- Nathalie Leclerc
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; (C.F.); (S.A.B.); (E.C.)
- Correspondence: (N.L.); (M.H.)
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; (C.F.); (S.A.B.); (E.C.)
- Correspondence: (N.L.); (M.H.)
| | - Clément Falaise
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; (C.F.); (S.A.B.); (E.C.)
| | - Serge Al Bacha
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; (C.F.); (S.A.B.); (E.C.)
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO)—ERIEE, UMR 8182 CNRS, Université Paris-Saclay, 91400 Orsay, France;
| | - Loïc Assaud
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO)—ERIEE, UMR 8182 CNRS, Université Paris-Saclay, 91400 Orsay, France;
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; (C.F.); (S.A.B.); (E.C.)
| |
Collapse
|