1
|
Kephart J, Zhou DY, Sandwisch J, Cajiao N, Krajewski SM, Malinowski P, Chu JH, Neidig ML, Kaminsky W, Velian A. Caught in the Act of Substitution: Interadsorbate Effects on an Atomically Precise Fe/Co/Se Nanocluster. ACS CENTRAL SCIENCE 2024; 10:1276-1282. [PMID: 38947197 PMCID: PMC11212139 DOI: 10.1021/acscentsci.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024]
Abstract
Directing groups guide substitution patterns in organic synthetic schemes, but little is known about pathways to control reactivity patterns, such as regioselectivity, in complex inorganic systems such as bioinorganic cofactors or extended surfaces. Interadsorbate effects are known to encode surface reactivity patterns in inorganic materials, modulating the location and binding strength of ligands. However, owing to limited experimental resolution into complex inorganic structures, there is little opportunity to resolve these effects on the atomic scale. Here, we utilize an atomically precise Fe/Co/Se nanocluster platform, [Fe3(L)2Co6Se8L'6]+ ([1(L)2]+; L = CN t Bu, THF; L' = Ph2PN(-)Tol), in which allosteric interadsorbate effects give rise to pronounced site-differentiation. Using a combination of spectroscopic techniques and single-crystal X-ray diffractometry, we discover that coordination of THF at the ligand-free Fe site in [1(CN t Bu)2]+ sets off a domino effect wherein allosteric through-cluster interactions promote the regioselective dissociation of CN t Bu at a neighboring Fe site. Computational analysis reveals that this active site correlation is a result of delocalized Fe···Se···Co···Se covalent interactions that intertwine edge sites on the same cluster face. This study provides an unprecedented atom-scale glimpse into how interfacial metal-support interactions mediate a collective and regiospecific path for substrate exchange across multiple active sites.
Collapse
Affiliation(s)
- Jonathan
A. Kephart
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Daniel Y. Zhou
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jason Sandwisch
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nathalia Cajiao
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Sebastian M. Krajewski
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Paul Malinowski
- Department
of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Jiun-Haw Chu
- Department
of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Michael L. Neidig
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Werner Kaminsky
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alexandra Velian
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Biswas B, Siddiqui AI, Majee MC, Saha SK, Mondal B, Saha R, Gómez García CJ. Heptanuclear Mixed-Valence Co 4IIICo 3II Molecular Wheel─A Molecular Analogue of Layered Double Hydroxides with Single-Molecule Magnet Behavior and Electrocatalytic Activity for Hydrogen Evolution Reactions. Inorg Chem 2024; 63:6161-6172. [PMID: 38526851 PMCID: PMC11005049 DOI: 10.1021/acs.inorgchem.3c04065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
We present a bifunctional heptanuclear cobalt(II)/cobalt(III) molecular complex formulated as [Co7(μ3-OH)4(H2L1)2(HL2)2](NO3)6·6H2O (1) (where H5L1 is 2,2'-(((1E,1'E)-((2-hydroxy-5-methyl-1,3-phenylene)bis(methanylylidene))bis(azanylylidene))bis(propane-1,3-diol)) and H2L2 is 2-amino-1,3-propanediol). Compound 1 has been characterized by single-crystal X-ray diffraction analysis along with other spectral and magnetic measurements. Structural analysis indicates that 1 contains a mixed-valence Co7 cluster where a central Co(II) ion is connected to six different Co centers (four CoIII and two CoII ions) by four μ3-OH groups, giving rise to a planar heptanuclear cluster that resembles a molecular fragment of a layered double hydroxide (LDH). Two triply deprotonated (H2L1)3- ligands form the outer side of the cluster while two singly deprotonated (HL2)- ligands are located at the top and bottom of the central heptanuclear core. Variable temperature magnetic measurements indicate the presence of weak ferromagnetic CoII···CoII interactions (J = 3.53(6) cm-1) within the linear trinuclear CoII cluster. AC susceptibility measurements show that 1 is a field-induced single-molecule magnet (SMM) with τ0 = 8.2(7) × 10-7 s and Ueff = 11.3(4) K. The electrocatalytic hydrogen evolution reaction (HER) activity of 1 in homogeneous phase shows an overpotential of 455 mV, with a Faradaic efficiency of 81% and a TOF of 8.97 × 104 μmol H2 h-1 mol-1.
Collapse
Affiliation(s)
- Biplab Biswas
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
- Department
of Chemistry, Hooghly Mohsin College, Chinsurah 712101, West Bengal, India
| | | | | | - Swadhin Kumar Saha
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
| | - Biswajit Mondal
- Department
of Chemistry, IIT Gandhinagar, Palaj 382355, Gujarat, India
| | - Rajat Saha
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
- Departamento
de Química Inorgánica, Universidad
de Valencia, Burjasot, Valencia 46100, Spain
| | - Carlos J. Gómez García
- Departamento
de Química Inorgánica, Universidad
de Valencia, Burjasot, Valencia 46100, Spain
| |
Collapse
|
4
|
Manohar EM, Dhandapani HN, Roy S, Pełka R, Rams M, Konieczny P, Tothadi S, Kundu S, Dey A, Das S. Tetranuclear Co II4O 4 Cubane Complex: Effective Catalyst Toward Electrochemical Water Oxidation. Inorg Chem 2024; 63:4883-4897. [PMID: 38494956 DOI: 10.1021/acs.inorgchem.3c03956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The reaction of Co(OAc)2·6H2O with 2,2'-[{(1E,1'E)-pyridine-2,6-diyl-bis(methaneylylidene)bis(azaneylylidene)}diphenol](LH2) a multisite coordination ligand and Et3N in a 1:2:3 stoichiometric ratio forms a tetranuclear complex Co4(L)2(μ-η1:η1-OAc)2(η2-OAc)2]· 1.5 CH3OH· 1.5 CHCl3 (1). Based on X-ray diffraction investigations, complex 1 comprises a distorted Co4O4 cubane core consisting of two completely deprotonated ligands [L]2- and four acetate ligands. Two distinct types of CoII centers exist in the complex, where the Co(2) center has a distorted octahedral geometry; alternatively, Co(1) has a distorted pentagonal-bipyramidal geometry. Analysis of magnetic data in 1 shows predominant antiferromagnetic coupling (J = -2.1 cm-1), while the magnetic anisotropy is the easy-plane type (D1 = 8.8, D2 = 0.76 cm-1). Furthermore, complex 1 demonstrates an electrochemical oxygen evolution reaction (OER) with an overpotential of 325 mV and Tafel slope of 85 mV dec-1, required to attain a current density of 10 mA cm-2 and moderate stability under alkaline conditions (pH = 14). Electrochemical impedance spectroscopy studies reveal that compound 1 has a charge transfer resistance (Rct) of 2.927 Ω, which is comparatively lower than standard Co3O4 (5.242 Ω), indicating rapid charge transfer kinetics between electrode and electrolyte solution that enhances higher catalytic activity toward OER kinetics.
Collapse
Affiliation(s)
- Ezhava Manu Manohar
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| | - Hariharan N Dhandapani
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Soumalya Roy
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| | - Robert Pełka
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Krakow PL-31342, Poland
| | - Michał Rams
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30348, Poland
| | - Piotr Konieczny
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Krakow PL-31342, Poland
| | - Srinu Tothadi
- Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Atanu Dey
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru, Karnataka 561203, India
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| |
Collapse
|
5
|
Xiong G, Feng C, Chen HC, Li J, Jiang F, Tao S, Wang Y, Li Y, Pan Y. Atomically Dispersed Pt-Doped Co 3 O 4 Spinel Nanoparticles Embedded in Polyhedron Frames for Robust Propane Oxidation at Low Temperature. SMALL METHODS 2023:e2300121. [PMID: 37002182 DOI: 10.1002/smtd.202300121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Indexed: 06/19/2023]
Abstract
This study adopts a facile and effective in situ encapsulation-oxidation strategy for constructing a coupling catalyst composed of atomically dispersed Pt-doped Co3 O4 spinel nanoparticles (NPs) embedded in polyhedron frames (PFs) for robust propane total oxidation. Benefiting from the abundant oxygen vacancies and more highly valent active Co3+ species caused by the doping of Pt atoms as well as the confinement effect, the optimized 0.2Pt-Co3 O4 NPs/PFs catalyst exhibits excellent propane catalytic activity with low T90 (184 °C), superior apparent reaction rate (21.62×108 (mol gcat -1 s-1 )), low apparent activation energy (Ea = 17.89 kJ mol-1 ), high turnover frequency ( 811×107 (mol gcat -1 s-1 )) as well as good stability. In situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculations indicate that the doping of Pt atoms enhances the oxygen activation ability, and decreases the energy barrier required for CH bond breaking, thus improving the deep oxidation process of the intermediate species. This study opens up new ideas for constructing coupling catalysts from atomic scale with low cost to enhance the activation of oxygen molecules and the deep oxidation of linear short chain alkanes at low temperature.
Collapse
Affiliation(s)
- Gaoyan Xiong
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chao Feng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Center for Green Technology, Chang Gung University, Taoyuan, 33302, Taiwan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunxia Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yichuan Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
6
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
7
|
Cooney SE, Fertig AA, Buisch MR, Brennessel WW, Matson EM. Coordination-induced bond weakening of water at the surface of an oxygen-deficient polyoxovanadate cluster. Chem Sci 2022; 13:12726-12737. [PMID: 36519047 PMCID: PMC9645371 DOI: 10.1039/d2sc04843d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 10/19/2023] Open
Abstract
Hydrogen-atom (H-atom) transfer at the surface of heterogeneous metal oxides has received significant attention owing to its relevance in energy conversion and storage processes. Here, we present the synthesis and characterization of an organofunctionalized polyoxovanadate cluster, (calix)V6O5(OH2)(OMe)8 (calix = 4-tert-butylcalix[4]arene). Through a series of equilibrium studies, we establish the BDFE(O-H)avg of the aquo ligand as 62.4 ± 0.2 kcal mol-1, indicating substantial bond weaking of water upon coordination to the cluster surface. Subsequent kinetic isotope effect studies and Eyring analysis indicate the mechanism by which the hydrogenation of organic substrates occurs proceeds through a concerted proton-electron transfer from the aquo ligand. Atomistic resolution of surface reactivity presents a novel route of hydrogenation reactivity from metal oxide surfaces through H-atom transfer from surface-bound water molecules.
Collapse
Affiliation(s)
- Shannon E Cooney
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
| | - Alex A Fertig
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
| | | | | | - Ellen M Matson
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
| |
Collapse
|
8
|
Yao S, Chang LP, Guo GC, Wang YJ, Tian ZY, Guo S, Lu TB, Zhang ZM. Microenvironment Regulation of {Co 4IIO 4} Cubane for Syngas Photosynthesis. Inorg Chem 2022; 61:13058-13066. [PMID: 35838661 DOI: 10.1021/acs.inorgchem.2c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is a great challenging task for selectivity control of both CO2 photoreduction and water splitting to produce syngas via precise microenvironment regulation. Herein, a series of UiO-type Eu-MOFs (Eu-bpdc, Eu-bpydc, Rux-Eu-bpdc, and Rux-Eu-bpydc) with different surrounding confined spaces were designed and synthesized. These photosensitizing Rux-Eu-MOFs were used as the molecular platform to encapsulate the [CoII4(dpy{OH}O)4(OAc)2(H2O)2]2+ (Co4) cubane cluster for constructing Co4@Rux-Eu-MOF (x = 0.1, 0.2, and 0.4) heterogeneous photocatalysts for efficient CO2 photoreduction and water splitting. The H2 and CO yields can reach 446.6 and 459.8 μmol·g-1, respectively, in 10 h with Co4@Ru0.1-Eu-bpdc as the catalyst, and their total yield can be dramatically improved to 2500 μmol·g-1 with the ratio of CO/H2 ranging from 1:1 to 1:2 via changing the photosensitizer content in the confined space. By increasing the N content around the cubane, the photocatalytic performance drops sharply in Co4@Ru0.1-Eu-bpydc, but with an enhanced proportion of CO in the final products. In the homogeneous system, the Co4 cubane was surrounding with Ru photosensitizers via week interactions, which can drive water splitting into H2 with >99% selectivity. Comprehensive structure-function analysis highlights the important role of microenvironment regulation in the selectivity control via constructing homogeneous and heterogeneous photocatalytic systems. This work provides a new insight for engineering a catalytic microenvironment of the cubane cluster for selectivity control of CO2 photoreduction and water splitting.
Collapse
Affiliation(s)
- Shuang Yao
- Institute for New Energy Materials & Low Carbon Technologies, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lu-Ping Chang
- Institute for New Energy Materials & Low Carbon Technologies, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Guang-Chen Guo
- Institute for New Energy Materials & Low Carbon Technologies, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yu-Jie Wang
- Institute for New Energy Materials & Low Carbon Technologies, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Zhi-Yuan Tian
- Institute for New Energy Materials & Low Carbon Technologies, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Song Guo
- Institute for New Energy Materials & Low Carbon Technologies, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Tong-Bu Lu
- Institute for New Energy Materials & Low Carbon Technologies, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials & Low Carbon Technologies, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
9
|
Nakazono T, Amino N, Matsuda R, Sugawara D, Wada T. High quantum yield photochemical water oxidation using a water-soluble cobalt phthalocyanine as a homogenous catalyst. Chem Commun (Camb) 2022; 58:7674-7677. [PMID: 35726648 DOI: 10.1039/d2cc01985j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrated high catalytic activity (TON = 670, TOFmax = 2.7 s-1) of a water-soluble cobalt phthalocyanine complex (CoPcTS, PcTS = phthalocyaninetetrasulfonate) for visible light-driven photochemical water oxidation and investigated its reaction mechanism by electrochemical and spectroscopic measurements.
Collapse
Affiliation(s)
- Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| | - Nagisa Amino
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Toshima-ku, Tokyo, 171-8501, Japan
| | - Risa Matsuda
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Toshima-ku, Tokyo, 171-8501, Japan
| | - Daichi Sugawara
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Toshima-ku, Tokyo, 171-8501, Japan
| | - Tohru Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Toshima-ku, Tokyo, 171-8501, Japan
| |
Collapse
|
10
|
Nestke S, Stubbe J, Koehler R, Ronge E, Albold U, Vioel W, Jooss C, Sarkar B, Siewert I. A Binuclear Cobalt Complex in the Electrochemical Water Oxidation Reaction. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sebastian Nestke
- Universität Göttingen Institut für Anorganische Chemie Tammannstr. 4 37077 Göttingen Germany
| | - Jessica Stubbe
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstraße 34–36 14195 Berlin Germany
| | - Robert Koehler
- Hochschule für Angewandte Wissenschaft und Kunst Göttingen Fakultät Ingenieurwissenschaften und Gesundheit Von-Ossietzky-Straße 99 37085 Göttingen Germany
| | - Emanuel Ronge
- Universität Göttingen Institut für Materialphysik Chemie Friedrich-Hund-Platz 1 37077 Göttingen Germany
| | - Uta Albold
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstraße 34–36 14195 Berlin Germany
| | - Wolfgang Vioel
- Hochschule für Angewandte Wissenschaft und Kunst Göttingen Fakultät Ingenieurwissenschaften und Gesundheit Von-Ossietzky-Straße 99 37085 Göttingen Germany
| | - Christian Jooss
- Universität Göttingen Institut für Materialphysik Chemie Friedrich-Hund-Platz 1 37077 Göttingen Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstraße 34–36 14195 Berlin Germany
- Lehrstuhl für Anorganische Koordinationschemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Inke Siewert
- Universität Göttingen Institut für Anorganische Chemie Tammannstr. 4 37077 Göttingen Germany
| |
Collapse
|
11
|
Kephart JA, Mitchell BS, Kaminsky W, Velian A. Multi-active Site Dynamics on a Molecular Cr/Co/Se Cluster Catalyst. J Am Chem Soc 2022; 144:9206-9211. [PMID: 35593888 DOI: 10.1021/jacs.2c00234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study uncovers the interconnected reactivity of the three catalytically active sites of an atomically precise nanocluster Cr3(py)3Co6Se8L6 (1(py)3, L = Ph2PNTol-, Ph = phenyl, Tol = 4-tolyl). Catalytic and stoichiometric studies into tosyl azide activation and carbodiimide formation enabled the isolation and crystallographic characterization of key catalytically competent metal-imido intermediates, including the tris(imido) cluster 1(NTs)3, the catalytic resting state 1(NTs)3(CNtBu)3, and the site-differentiated mono(imido) cluster 1(NTs)(CNtBu)2. In the stoichiometric regime, nitrene transfer proceeds via a stepwise mechanism, with the three active sites engaging sequentially to produce carbodiimide. Moreover, the chemical state of neighboring active sites was found to regulate the affinity for substrates of an individual Cr-imido edge site, as revealed by comparative structural analysis and CNtBu binding studies.
Collapse
Affiliation(s)
- Jonathan A Kephart
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Benjamin S Mitchell
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alexandra Velian
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Resorcin[4]arene-based [Co12] supermolecule cage functionalized by bio-inspired [Co4O4] cubanes for visible light-driven water oxidation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
San Esteban ACM, Kuwamura N, Yoshinari N, Konno T. Serendipitous formation of oxygen-bridged CuII6M (M = Mn II, Co II) double cubanes showing electrocatalytic water oxidation. Chem Commun (Camb) 2022; 58:4192-4195. [PMID: 35274119 DOI: 10.1039/d1cc07199h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxido-bridged CuII6M double-cubane clusters (M = MnII, CoII) supported by D-penicillaminedisulfide were unexpectedly formed by treating a D-penicillaminato CuII2PtII2 complex with MBr2 in water. The clusters displayed heterogeneous electrocatalytic activities for water oxidation dependent on the central M shared by two CuII cubane units.
Collapse
Affiliation(s)
| | - Naoto Kuwamura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
14
|
Srivastava AK, Mondal A, Konar S, Pal S. A tetra Co(II/III) complex with an open cubane Co 4O 4 core and square-pyramidal Co(II) and octahedral Co(III) centres: bifunctional electrocatalytic activity towards water splitting at neutral pH. Dalton Trans 2022; 51:4510-4521. [PMID: 35234225 DOI: 10.1039/d1dt04086c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The reaction of 2,6-diformyl-4-methylphenol, 4-methoxybenzoylhydrazine and Co(OAc)2·4H2O in 1 : 2 : 2 mole ratio in methanol under aerobic conditions produced in 61% yield a tetranuclear complex having the molecular formula [CoIICoIII(μ-OAc)(μ3-OH)(μ-L)]2 where OAc- and L3- represent acetate and N',N''-(5-methyl-2-oxido-1,3-phenylene)bis(methan-1-yl-1-ylidene)bis(4-methoxybenzoylhydrazonate), respectively. The elemental analysis and the mass spectrometric data confirmed the molecular formula of the complex. It is electrically non-conducting and paramagnetic. The complex crystallized as acetonitrile solvate. The X-ray structure shows that each Co(II) centre has a distorted square-pyramidal NO4 coordination sphere, while each Co(III) centre is in a distorted octahedral NO5 environment. The four metal atoms and the four bridging O-atoms form an open cubane type Co4O4 motif. In the crystal lattice, self-assembly of the solvated complex via intermolecular O-H⋯O interaction leads to a two-dimensional network structure. The infrared and electronic spectroscopic features of the complex are consistent with its molecular structure. Cryomagnetic measurements together with theoretical calculations suggest the presence of easy-axis anisotropy for the square-pyramidal Co(II) centres. The complex is redox-active and displays metal centred oxidation and reduction responses on the anodic and cathodic sides, respectively, of the Ag/AgCl electrode. Bifunctional heterogeneous electrocatalytic activity of the complex towards O2 and H2 evolution reactions (OER and HER) in neutral aqueous medium has been explored in detail.
Collapse
Affiliation(s)
| | - Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Samudranil Pal
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
15
|
Koellner CA, Gau MR, Polyak A, Bayana M, Zdilla MJ. Hemicubane topological analogs of the oxygen-evolving complex of photosystem II mediating water-assisted propylene carbonate oxidation. Chem Commun (Camb) 2022; 58:2532-2535. [PMID: 35098954 DOI: 10.1039/d1cc05825h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Ca-Mn clusters with the ligand 2-pyridinemethoxide (Py-CH2O) have been prepared with varying degrees of topological similarity to the biological oxygen-evolving complex. These clusters activate water as a substrate in the oxidative degradation of propylene carbonate, with activity correlated with topological similarity to the OEC, lowering the onset potential of the oxidation by as much as 700 mV.
Collapse
Affiliation(s)
- Connor A Koellner
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA.
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA, 19104, USA
| | - Aleksander Polyak
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA.
| | - Manish Bayana
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA.
| | - Michael J Zdilla
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA.
| |
Collapse
|
16
|
Amtawong J, Nguyen AI, Tilley TD. Mechanistic Aspects of Cobalt–Oxo Cubane Clusters in Oxidation Chemistry. J Am Chem Soc 2022; 144:1475-1492. [DOI: 10.1021/jacs.1c11445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jaruwan Amtawong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andy I. Nguyen
- Department of Chemistry, University of Illinois, Chicago, Chicago, Illinois 60607, United States
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Zheng H, Ye H, Xu T, Zheng K, Xie X, Zhu B, Wang X, Lin J, Ruan Z. Electrochemical water oxidation catalyzed by a mononuclear cobalt complex of a pentadentate ligand: the critical effect of the borate anion. NEW J CHEM 2022. [DOI: 10.1039/d2nj01154a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cobalt complex is found as a homogeneous water oxidation electrocatalyst. Electrochemical examinations indicate that the implementation of proton-couple electron transfer process and formation of O–O bond are assisted by borate anion.
Collapse
Affiliation(s)
- Haixia Zheng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Hui Ye
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Tao Xu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Kaibo Zheng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Xinyi Xie
- Institute for New Energy Materials & Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Binghui Zhu
- Institute for New Energy Materials & Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xichao Wang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Junqi Lin
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Zhijun Ruan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
18
|
Hosseinmardi S, Scheurer A, Heinemann FW, Kuepper K, Senft L, Waldschmidt P, Ivanović‐Burmazović I, Meyer K. Evaluation of Manganese Cubanoid Clusters for Water Oxidation Catalysis: From Well-Defined Molecular Coordination Complexes to Catalytically Active Amorphous Films. CHEMSUSCHEM 2021; 14:4741-4751. [PMID: 34409745 PMCID: PMC8596818 DOI: 10.1002/cssc.202101451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Indexed: 06/05/2023]
Abstract
With a view to developing multimetallic molecular catalysts that mimic the oxygen-evolving catalyst (OEC) in Nature's photosystem II, the synthesis of various dicubanoid manganese clusters is described and their catalytic activity investigated for water oxidation in basic, aqueous solution. Pyridinemethanol-based ligands are known to support polynuclear and cubanoid structures in manganese coordination chemistry. The chelators 2,6-pyridinedimethanol (H2 L1 ) and 6-methyl-2-pyridinemethanol (HL2 ) were chosen to yield polynuclear manganese complexes; namely, the tetranuclear defective dicubanes [MnII 2 MnIII 2 (HL1 )4 (OAc)4 (OMe)2 ] and [MnII 2 MnIII 2 (HL1 )6 (OAc)2 ] (OAc)2 ⋅2 H2 O, as well as the octanuclear-dicubanoid [MnII 6 MnIII 2 (L2 )4 (O)2 (OAc)10 (HOMe/OH2 )2 ]⋅3MeOH⋅MeCN. In freshly prepared solutions, polynuclear species were detected by electrospray ionization mass spectrometry, whereas X-band electron paramagnetic resonance studies in dilute, liquid solution suggested the presence of divalent mononuclear Mn species with g values of 2. However, the magnetochemical investigation of the complexes' solutions by the Evans technique confirmed a haphazard combination of manganese coordination complexes, from mononuclear to polynuclear species. Subsequently, the newly synthesized and characterized manganese molecular complexes were employed as precursors to prepare electrode-deposited films in a buffer-free solution to evaluate and compare their stability and catalytic activity for water oxidation electrocatalysis.
Collapse
Affiliation(s)
- Soosan Hosseinmardi
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| | - Andreas Scheurer
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| | - Frank W. Heinemann
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| | - Karsten Kuepper
- Department of PhysicsUniversity of OsnabrückBarbarastraße 749069OsnabrückGermany
| | - Laura Senft
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
- Present address: Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| | - Pablo Waldschmidt
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| | - Ivana Ivanović‐Burmazović
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
- Present address: Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| | - Karsten Meyer
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| |
Collapse
|
19
|
Xu X, Yin X, Fu J, Ke D. Structural Modulation on NiCo 2 S 4 Nanoarray by N Doping to Enhance 2e-ORR Selectivity for Photothermal AOPs and Zn-O 2 Batteries*. Chemistry 2021; 27:14451-14460. [PMID: 34346117 DOI: 10.1002/chem.202101786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/13/2022]
Abstract
As a H2 O2 generator, a 2e- oxygen reduction reaction active electrocatalyst plays an important role in the advanced oxidation process to degrade organic pollutants in sewage. To enhance the tendency of NiCo2 S4 towards the 2e- reduction reaction, N atoms are doped in its structure and replace S2- . The result implies that this weakens the interaction between NiCo2 S4 and OOH*, suppresses O-O bond breaking and enhances H2 O2 selectivity. This electrocatalyst also shows photothermal effect. Under photothermal heating, H2 O2 produced by the oxidation reduction reaction can decompose and releaseOH, which degrades organic pollutants through the advanced oxidation process. Photothermal effect induced by the advance oxidation process shows obvious advantages over the traditional Fenton reaction, such as wide pH adaptation scope and low secondary pollutant due to its Fe2+ free character. With Zn as anode and the electrocatalyst as cathode material, a Zn-O2 battery is assembled. It achieves electricity generation and photothermal effect induced by the advance oxidation process simultaneously.
Collapse
Affiliation(s)
- Xinxin Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China.,Institute for Frontier Technologies of Low-Carbon Steelmaking, Northeastern University, Shenyang, Liaoning, 110819, China)
| | - Xunkai Yin
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| | - Jingnuo Fu
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| | - Di Ke
- Department of Chemistry, College of Science, Northeastern University, Shenyang City, Liaoning Province, 110819, China
| |
Collapse
|
20
|
Reith L, Triana CA, Pazoki F, Amiri M, Nyman M, Patzke GR. Unraveling Nanoscale Cobalt Oxide Catalysts for the Oxygen Evolution Reaction: Maximum Performance, Minimum Effort. J Am Chem Soc 2021; 143:15022-15038. [PMID: 34499506 DOI: 10.1021/jacs.1c03375] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The oxygen evolution reaction (OER) is a key bottleneck step of artificial photosynthesis and an essential topic in renewable energy research. Therefore, stable, efficient, and economical water oxidation catalysts (WOCs) are in high demand and cobalt-based nanomaterials are promising targets. Herein, we tackle two key open questions after decades of research into cobalt-assisted visible-light-driven water oxidation: What makes simple cobalt-based precipitates so highly active-and to what extent do we need Co-WOC design? Hence, we started from Co(NO3)2 to generate a precursor precipitate, which transforms into a highly active WOC during the photocatalytic process with a [Ru(bpy)3]2+/S2O82-/borate buffer standard assay that outperforms state of the art cobalt catalysts. The structural transformations of these nanosized Co catalysts were monitored with a wide range of characterization techniques. The results reveal that the precipitated catalyst does not fully change into an amorphous CoOx material but develops some crystalline features. The transition from the precipitate into a disordered Co3O4 material proceeds within ca. 1 min, followed by further transformation into highly active disordered CoOOH within the first 10 min. Furthermore, under noncatalytic conditions, the precursor directly transforms into CoOOH. Moreover, fast precipitation and isolation afford a highly active precatalyst with an exceptional O2 yield of 91% for water oxidation with the visible-light-driven [Ru(bpy)3]2+/S2O82- assay, which outperforms a wide range of carefully designed Co-containing WOCs. We thus demonstrate that high-performance cobalt-based OER catalysts indeed emerge effortlessly from a self-optimization process favoring the formation of Co(III) centers in all-octahedral environments. This paves the way to new low-maintenance flow chemistry OER processes.
Collapse
Affiliation(s)
- Lukas Reith
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Faezeh Pazoki
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Chemical Engineering Department, University of Tehran, District 6, 16th Azar St., Enghelab Sq., Tehran 1417935840, Iran
| | - Mehran Amiri
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
21
|
García-Álvarez AC, Gamboa-Ramírez S, Martínez-Otero D, Orio M, Castillo I. Self-assembled nickel cubanes as oxygen evolution catalysts. Chem Commun (Camb) 2021; 57:8608-8611. [PMID: 34369500 DOI: 10.1039/d1cc03227e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni4O4 cubanes [(μ3-L1O)NiCl(MeOH)]4 (1) and [(μ3-L2O)NiCl(H2O)]4 (2) (L1OH = 1-H-2-benzimidazolylmethanol, L2OH = 1-methyl-2-benzimidazolylmethanol) self-assemble from commercially available 1-H- and 1-methyl-2-benzimidazolylmethanol and NiCl2·6H2O in high yields under mild conditions. Both complexes were characterised spectroscopically and by X-ray crystallography. The cubanes oxidise water electrocatalytically to dioxygen at neutral pH in aqueous potassium phosphate buffer solutions.
Collapse
Affiliation(s)
- Ana C García-Álvarez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, Ciudad de México, 04510, Mexico.
| | | | | | | | | |
Collapse
|
22
|
Chen ZY, Long ZH, Wang XZ, Zhou JY, Wang XS, Zhou XP, Li D. Cobalt-Based Metal-Organic Cages for Visible-Light-Driven Water Oxidation. Inorg Chem 2021; 60:10380-10386. [PMID: 34171190 DOI: 10.1021/acs.inorgchem.1c00907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water oxidation to molecular oxygen is indispensable but a challenge for splitting H2O. In this work, a series of Co-based metal-organic cages (MOCs) for photoinduced water oxidation were prepared. MOC-1 with both bis(μ-oxo) bridged dicobalt and Co-O (O from H2O) displays catalytic activity with an initial oxygen evolution rate of 80.4 mmol/g/h and a TOF of 7.49 × 10-3 s-1 in 10 min. In contrast, MOC-2 containing only Co-O (O from H2O) in the structure results in a lower oxygen evolution rate (40.8 mmol/g/h, 4.78 × 10-3 s-1), while the amount of oxygen evolved from the solution of MOC-4 without both active sites is undetectable. Isotope experiments with or without H218O as the reactant successfully demonstrate that the molecular oxygen was produced from water oxidation. Photophysical and electrochemical studies reveal that photoinduced water oxidation initializes via electron transfer from the excited [Ru(bpy)3]2+* to Na2S2O8, and then, the cobalt active sites further donate electrons to the oxidized [Ru(bpy)3]3+ to drive water oxidation. This proof-of-concept study indicates that MOCs can work as potential efficient catalysts for photoinduced water oxidation.
Collapse
Affiliation(s)
- Zi-Ye Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zi-Hao Long
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xue-Zhi Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jie-Yi Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xu-Sheng Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
23
|
Ezhov R, Ravari AK, Bury G, Smith PF, Pushkar Y. Do multinuclear 3d metal catalysts achieve O-O bond formation via radical coupling or via water nucleophilic attack? WNA leads the way in [Co 4O 4] n. CHEM CATALYSIS 2021; 1:407-422. [PMID: 37378353 PMCID: PMC10296785 DOI: 10.1016/j.checat.2021.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Catalytic water oxidation is a required process for clean energy production based on the concept of artificial photosynthesis. Here, we provide in situ spectroscopic and computational analysis for the closest known photosystem II analog, [Co4O4]n+ ([Co4O4Py4Ac4]0, Py = pyridine and Ac = CH3COO-), which catalyzes electrochemical water oxidation. In situ extended X-ray absorption fine structure detects an ultrashort, CoIV=O (~1.67 Å) moiety, a crucial intermediate for O-O bond formation. Density function theory analyses show that the intermediate has two CoIV centers and a CoIV=O unit of strong radicaloid character sufficient to support a CoIV=O + H2O = Co-OOH + H+ transition, where the carboxyl ligand accepts the proton and the bridging oxygen stabilizes the peroxide via hydrogen bonding. The proposed water nucleophilic attack mechanism accounts for all prior spectroscopic evidence on the Co4O44+ core. Our results are important for the design and development of efficient water oxidation catalysts, which contribute to the ultimate goal of clean energy from artificial photosynthesis.
Collapse
Affiliation(s)
- Roman Ezhov
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | | | - Gabriel Bury
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Paul F. Smith
- Department of Chemistry, Valparaiso University, Valparaiso, IN 46383, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
- Lead contact
| |
Collapse
|
24
|
Liu C, Bos D, Hartog B, Meij D, Ramakrishnan A, Bonnet S. Ligand Controls the Activity of Light‐Driven Water Oxidation Catalyzed by Nickel(II) Porphyrin Complexes in Neutral Homogeneous Aqueous Solutions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chengyu Liu
- Leiden Institute of Chemistry Leiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Daan Bos
- Leiden Institute of Chemistry Leiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Barthold Hartog
- Leiden Institute of Chemistry Leiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Dennis Meij
- Leiden Institute of Chemistry Leiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Ashok Ramakrishnan
- Leiden Institute of Chemistry Leiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry Leiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| |
Collapse
|
25
|
Liu C, van den Bos D, den Hartog B, van der Meij D, Ramakrishnan A, Bonnet S. Ligand Controls the Activity of Light-Driven Water Oxidation Catalyzed by Nickel(II) Porphyrin Complexes in Neutral Homogeneous Aqueous Solutions. Angew Chem Int Ed Engl 2021; 60:13463-13469. [PMID: 33768670 PMCID: PMC8252617 DOI: 10.1002/anie.202103157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/22/2022]
Abstract
Finding photostable, first‐row transition metal‐based molecular systems for photocatalytic water oxidation is a step towards sustainable solar fuel production. Herein, we discovered that nickel(II) hydrophilic porphyrins are molecular catalysts for photocatalytic water oxidation in neutral to acidic aqueous solutions using [Ru(bpy)3]2+ as photosensitizer and [S2O8]2− as sacrificial electron acceptor. Electron‐poorer Ni‐porphyrins bearing 8 fluorine or 4 methylpyridinium substituents as electron‐poorer porphyrins afforded 6‐fold higher turnover frequencies (TOFs; ca. 0.65 min−1) than electron‐richer analogues. However, the electron‐poorest Ni‐porphyrin bearing 16 fluorine substituents was photocatalytically inactive under such conditions, because the potential at which catalytic O2 evolution starts was too high (+1.23 V vs. NHE) to be driven by the photochemically generated [Ru(bpy)3]3+. Critically, these Ni‐porphyrin catalysts showed excellent stability in photocatalytic conditions, as a second photocatalytic run replenished with a new dose of photosensitizer, afforded only 1–3 % less O2 than during the first photocatalytic run.
Collapse
Affiliation(s)
- Chengyu Liu
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, PO Box 9502, 2333CC, Leiden, The Netherlands
| | - Daan van den Bos
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, PO Box 9502, 2333CC, Leiden, The Netherlands
| | - Barthold den Hartog
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, PO Box 9502, 2333CC, Leiden, The Netherlands
| | - Dennis van der Meij
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, PO Box 9502, 2333CC, Leiden, The Netherlands
| | - Ashok Ramakrishnan
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, PO Box 9502, 2333CC, Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, PO Box 9502, 2333CC, Leiden, The Netherlands
| |
Collapse
|
26
|
Chen R, Chen CL, Du MH, Wang X, Wang C, Long LS, Kong XJ, Zheng LS. Soluble lanthanide-transition-metal clusters Ln 36Co 12 as effective molecular electrocatalysts for water oxidation. Chem Commun (Camb) 2021; 57:3611-3614. [PMID: 33723563 DOI: 10.1039/d0cc08132a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report for the first time soluble lanthanide-transition-metal clusters Ln36Co12 (Ln = Eu, Gd and Dy) as effective homogeneous water oxidation electrocatalysts. The stable 48-metal Ln36Co12 clusters show an effective water oxidation activity under acidic conditions because of the synergistic effect between lanthanide and transition metals in O-O bond formation.
Collapse
Affiliation(s)
- Rong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Güttinger R, Wiprächtiger G, Blacque O, Patzke GR. Co/Ni-polyoxotungstate photocatalysts as precursor materials for electrocatalytic water oxidation. RSC Adv 2021; 11:11425-11436. [PMID: 35423616 PMCID: PMC8695939 DOI: 10.1039/d0ra10792a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/04/2021] [Indexed: 01/22/2023] Open
Abstract
An open-core cobalt polyoxometalate (POM) [(A-α-SiW9O34)Co4(OH)3(CH3COO)3]8-Co(1) and its isostructural Co/Ni-analogue [(A-α-SiW9O34)Co1.5Ni2.5(OH)3(CH3COO)3]8-CoNi(2) were synthesized and investigated for their photocatalytic and electrocatalytic performance. Co(1) shows high photocatalytic O2 yields, which are competitive with leading POM water oxidation catalysts (WOCs). Furthermore, Co(1) and CoNi(2) were employed as well-defined precursors for heterogeneous WOCs. Annealing at various temperatures afforded amorphous and crystalline CoWO4- and Co1.5Ni2.5WO4-related nanoparticles. CoWO4-related particles formed at 300 °C showed substantial electrocatalytic improvements and were superior to reference materials obtained from co-precipitation/annealing routes. Interestingly, no synergistic interactions between cobalt and nickel centers were observed for the mixed-metal POM precursor and the resulting tungstate catalysts. This stands in sharp contrast to a wide range of studies on various heterogeneous catalyst types which were notably improved through Co/Ni substitution. The results clearly demonstrate that readily accessible POMs are promising precursors for the convenient and low-temperature synthesis of amorphous heterogeneous water oxidation catalysts with enhanced performance compared to conventional approaches. This paves the way to tailoring polyoxometalates as molecular precursors with tuneable transition metal cores for high performance heterogeneous electrocatalysts. Our results furthermore illustrate the key influence of the synthetic history on the performance of oxide catalysts and highlight the dependence of synergistic metal interactions on the structural environment.
Collapse
Affiliation(s)
- Robin Güttinger
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland http://www.patzke.ch
| | - Giann Wiprächtiger
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland http://www.patzke.ch
| | - Olivier Blacque
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland http://www.patzke.ch
| | - Greta R Patzke
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland http://www.patzke.ch
| |
Collapse
|
28
|
Heidari S, Balaghi SE, Sologubenko AS, Patzke GR. Economic Manganese-Oxide-Based Anodes for Efficient Water Oxidation: Rapid Synthesis and In Situ Transmission Electron Microscopy Monitoring. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sima Heidari
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - S. Esmael Balaghi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Alla S. Sologubenko
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zurich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Greta R. Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
29
|
Nakazono T, Wada T. Photochemical Water Oxidation Using a Doubly N-Confused Hexaphyrin Dinuclear Cobalt Complex. Inorg Chem 2021; 60:1284-1288. [PMID: 33314915 DOI: 10.1021/acs.inorgchem.0c02602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A doubly N-confused hexaphyrin dinuclear cobalt complex (Co2DNCH) is revealed as an efficient water oxidation catalyst, outperforming the mononuclear cobalt porphyrin with the same aryl group as those in Co2DNCH. By photoirradiation of a water/acetone-d6 (9:1) mixture containing Co2DNCH, [RuII(bpy)3]2+, and S2O82- as the water oxidation catalyst, photosensitizer, and sacrificial electron acceptor, respectively, with visible light, O2 was obtained as the maximum with turnover number = 1200, turnover frequency = 3.9 s-1, and quantum yield = 0.30.
Collapse
Affiliation(s)
- Takashi Nakazono
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Tohru Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
30
|
Kang RK, Dong YY, Cao JP, Luo XM, Du ZY, Zhu D, Xu Y. An Unprecedented Bird Nest Molybdenum(V) Cobalto-Phosphate Nanosized Wheel Constructed from the [H 55 (Mo 24 O 48 )(Co 4 O) 2 Co 16 (PO 4 ) 42 (py) 6 (EtOH) 2 (H 2 O) 11 ] 3- Anion. Chemistry 2021; 27:1301-1305. [PMID: 32915481 DOI: 10.1002/chem.202004083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 01/06/2023]
Abstract
An unprecedented bird-nest high-nuclear molybdenum(V) cobalto-phosphate nanosized wheel modified by imidazole (im) and pyridine (py), {[H55 (Mo24 O48 )(Co4 O)2 Co16 (PO4 )42 (py)6 (EtOH)2 (H2 O)11 ]- @[(Him)2 (Hpy)]}(N-Et-py)(H2 PO4 )(py)7 (EtOH)⋅12 H2 O (1), has been successfully synthesized by self-assembly. The anionic huge wheel consists of two rare {Co4 O} squares, four {Co4 } tetramers, four {Mo4 } tetramers and four {Mo2 } dimers, linked by bridging oxygen atoms and [PO4 ] groups and encloses two imidazolium cations and a protonated pyridium for charge balance. Surprisingly, 1 represents the first twisted wheel-shaped cluster with a record high-nuclear molybdenum(V) cobalto-phosphate. The delocalized electron effects of the cluster are enhanced with the help of coordinated py ligands, which endows 1 with an excellent third-order nonlinear optical (NLO) response. Additionally, 1 also shows a better photocatalytic water oxidation activity than Co(NO3 )2 with the O2 production of 205 μmol during 6 h in the absence of the [Ru(bpy)3 ]2+ photosensitizer.
Collapse
Affiliation(s)
- Run-Kun Kang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Ya-Yu Dong
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Jia-Peng Cao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Xi-Ming Luo
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Ze-Yu Du
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Dunru Zhu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
31
|
Yang C, Wang S, Sai F, Liu D, Sun F, Gu Y, Wu G. Pentanuclear clusters resembling the cubane-dangler connectivity in the native oxygen-evolving center of photosystem II. Chem Commun (Camb) 2021; 57:113-116. [PMID: 33290473 DOI: 10.1039/d0cc07050e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of pentametallic "cubane-plus-dangler" complexes have been target synthesized. Among them, the [Fe3Ni2] aggregate strongly resembled the native oxygen-evolving center by mimicking the "cubane-plus-dangler" skeleton, the aqua binding site, and the connectivity between the pendent ion and the parent cubane. Our synthetic strategy that uses tri-substituted methanol as the "cubane-generator" and carboxylate as the pendant ligand provides a feasible approach for accessing model compounds of biological catalyst systems.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Li J, Triana CA, Wan W, Adiyeri Saseendran DP, Zhao Y, Balaghi SE, Heidari S, Patzke GR. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chem Soc Rev 2021; 50:2444-2485. [DOI: 10.1039/d0cs00978d] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The recent synthetic and mechanistic progress in molecular and heterogeneous water oxidation catalysts highlights the new, overarching strategies for knowledge transfer and unifying design concepts.
Collapse
Affiliation(s)
- J. Li
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - C. A. Triana
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - W. Wan
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | | | - Y. Zhao
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. E. Balaghi
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. Heidari
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - G. R. Patzke
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
33
|
Wu HL, Li XB, Tung CH, Wu LZ. Bioinspired metal complexes for energy-related photocatalytic small molecule transformation. Chem Commun (Camb) 2020; 56:15496-15512. [PMID: 33300513 DOI: 10.1039/d0cc05870j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioinspired transformation of small-molecules to energy-related feedstocks is an attractive research area to overcome both the environmental issues and the depletion of fossil fuels. The highly effective metalloenzymes in nature provide blueprints for the utilization of bioinspired metal complexes for artificial photosynthesis. Through simpler structural and functional mimics, the representative herein is the pivotal development of several critical small molecule conversions catalyzed by metal complexes, e.g., water oxidation, proton and CO2 reduction and organic chemical transformation of small molecules. Of great achievement is the establishment of bioinspired metal complexes as catalysts with high stability, specific selectivity and satisfactory efficiency to drive the multiple-electron and multiple-proton processes related to small molecule transformation. Also, potential opportunities and challenges for future development in these appealing areas are highlighted.
Collapse
Affiliation(s)
- Hao-Lin Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | |
Collapse
|
34
|
Domestici C, Tensi L, Zaccaria F, Kissimina N, Valentini M, D'Amato R, Costantino F, Zuccaccia C, Macchioni A. Molecular and heterogenized dinuclear Ir-Cp* water oxidation catalysts bearing EDTA or EDTMP as bridging and anchoring ligands. Sci Bull (Beijing) 2020; 65:1614-1625. [PMID: 36659037 DOI: 10.1016/j.scib.2020.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 01/21/2023]
Abstract
The development of efficient water oxidation catalysts (WOCs) is of key importance in order to drive sustainable reductive processes aimed at producing renewable fuels. Herein, two novel dinuclear complexes, [(Cp*Ir)2(μ-κ3-O,N,O-H4-EDTMP)] (Ir-H4-EDTMP, H4-EDTMP4- = ethylenediamine tetra(methylene phosphonate)) and [(Cp*Ir)2(μ-κ3-O,N,O-EDTA)] (Ir-EDTA, EDTA4- = ethylenediaminetetraacetate), were synthesized and completely characterized in solution, by multinuclear and multidimensional NMR spectroscopy, and in the solid state, by single crystal X-Ray diffraction. They were supported onto rutile TiO2 nanocrystals obtaining Ir-H4-EDTMP@TiO2 and Ir-EDTA@TiO2 hybrid materials. Both molecular complexes and hybrid materials were found to be efficient catalysts for WO driven by NaIO4, providing almost quantitative yields, and TON values only limited by the amount of NaIO4 used. As for the molecular catalysts, Ir-H4-EDTMP (TOF up to 184 min-1) exhibited much higher activity than Ir-EDTA (TOF up to 19 min-1), likely owing to the higher propensity of the former to generate a coordination vacancy through the dissociation of a Ir-OP bond (2.123 Å, significantly longer than Ir-OC, 2.0913 Å), which is a necessary step to activate these saturated complexes. Ir-H4-EDTMP@TiO2 (up to 33 min-1) and Ir-EDTA@TiO2 (up to 41 min-1) hybrid materials showed similar activity that was only marginally reduced in the second and third catalytic runs carried out after having separated the supernatant, which did not show any sign of activity, instead. The observed TOF values for hybrid materials are higher than those reported for analogous systems deriving from heterogenized mononuclear complexes. This suggests that supporting dinuclear molecular precursors could be a successful strategy to obtain efficient heterogenized water oxidation catalysts.
Collapse
Affiliation(s)
- Chiara Domestici
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy
| | - Leonardo Tensi
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy
| | - Francesco Zaccaria
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy.
| | - Nade Kissimina
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy; École Supérieure d'Ingénieurs de Rennes, University of Rennes 1, Rennes 35042, France
| | | | - Roberto D'Amato
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy
| | - Ferdinando Costantino
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy.
| | - Cristiano Zuccaccia
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy.
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Perugia 06123, Italy.
| |
Collapse
|
35
|
Chen R, Zhuang GL, Wang ZY, Gao YJ, Li Z, Wang C, Zhou Y, Du MH, Zeng S, Long LS, Kong XJ, Zheng LS. Integration of bio-inspired lanthanide-transition metal cluster and P-doped carbon nitride for efficient photocatalytic overall water splitting. Natl Sci Rev 2020; 8:nwaa234. [PMID: 34691725 PMCID: PMC8433082 DOI: 10.1093/nsr/nwaa234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 01/28/2023] Open
Abstract
Photosynthesis in nature uses the Mn4CaO5 cluster as the oxygen-evolving center to catalyze the water oxidation efficiently in photosystem II. Herein, we demonstrate bio-inspired heterometallic LnCo3 (Ln = Nd, Eu and Ce) clusters, which can be viewed as synthetic analogs of the CaMn4O5 cluster. Anchoring LnCo3 on phosphorus-doped graphitic carbon nitrides (PCN) shows efficient overall water splitting without any sacrificial reagents. The NdCo3/PCN-c photocatalyst exhibits excellent water splitting activity and a quantum efficiency of 2.0% at 350 nm. Ultrafast transient absorption spectroscopy revealed the transfer of a photoexcited electron and hole into the PCN and LnCo3 for hydrogen and oxygen evolution reactions, respectively. A density functional theory (DFT) calculation showed the cooperative water activation on lanthanide and O−O bond formation on transition metal for water oxidation. This work not only prepares a synthetic model of a bio-inspired oxygen-evolving center but also provides an effective strategy to realize light-driven overall water splitting.
Collapse
Affiliation(s)
- Rong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gui-Lin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhi-Ye Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi-Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhe Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cheng Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Suyuan Zeng
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
36
|
Zhen W, Yuan X, Shi X, Xue C. Grafting Molecular Cobalt-oxo Cubane Catalyst on Polymeric Carbon Nitride for Efficient Photocatalytic Water Oxidation. Chem Asian J 2020; 15:2480-2486. [PMID: 32558309 DOI: 10.1002/asia.202000583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/10/2020] [Indexed: 01/05/2023]
Abstract
In this work, we have successfully constructed a cobalt-oxo (CoIII 4 O4 ) cubane complex on polymeric carbon nitride (PCN) through pyridine linkage. The covalently grafted CoIII 4 O4 cubane units were uniformly distributed on the PCN surface. The product exhibited greatly enhanced photocatalytic activities for water oxidation under visible-light irradiation. Further characterizations and spectroscopic analyses revealed that the grafted CoIII 4 O4 cubane units could effectively capture the photogenerated holes from excited PCN, lower the overpotential of oxygen evolution reaction (OER), and serve as efficient catalysts to promote the multi-electron water oxidation process. This work provides new insight into the future development of efficient photocatalysts by grafting molecular catalysts for artificial photosynthesis.
Collapse
Affiliation(s)
- Wenlong Zhen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Xu Yuan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Xiangyan Shi
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Can Xue
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| |
Collapse
|
37
|
Dai WT, cui LP, Yu K, Lv JH, Ma XY, Zhou BB. Two reduced phosphomolybdate hybrid assemblies modified by Cu-biz and/or Cu-bdz complexes for photocatalytic and bifunctional electrocatalytic activities. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Schilling M, Cunha RA, Luber S. Enhanced Ab Initio Molecular Dynamics Exploration Unveils the Complex Role of Different Intramolecular Bases on the Water Nucleophilic Attack Mechanism. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mauro Schilling
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Richard A. Cunha
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
39
|
Deville C, Folkjær M, Reinholdt P, Hvid MS, Lamagni P, Borup K, Sun Z, Lauritsen JV, McKee V, Jensen KMØ, Lock N. Cubes on a string: a series of linear coordination polymers with cubane-like nodes and dicarboxylate linkers. NANOSCALE 2020; 12:11601-11611. [PMID: 32432631 DOI: 10.1039/d0nr01503b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A series of semicrystalline and amorphous one-dimensional (1D) polymeric chains consisting of cubane-like CoII4L4 units (L = S-1,2-bis(benzimidazol-2-yl)ethanol) and dicarboxylates were synthesized and characterized by single crystal diffraction and X-ray total scattering. The polycationic chains are composed of [Co4L4(dicarboxylate)]2+ monomeric units, while one molecular dicarboxylate counterion is balancing the charge of each monomer. The linear compound series has five members, and the crystal structures were solved for [Co4L4(tph)](tph) and [Co4L4(ndc)](ndc), where tph = terephthalate and ndc = 2,6-naphthalenedicarboxylate. Partly crystalline compounds were produced by slow assembly at elevated temperature (over days), while the amorphous compounds were formed by fast precipitation (within minutes). Pair distribution function (PDF) analysis based on X-ray total scattering data reveals the presence of the cubane-like entity in both the amorphous and semicrystalline samples. While the powders are non-porous, precipitation is a fast and versatile method to produce compounds with cubane-like centres with moderate surface areas of 17-49 m2 g-1 allowing for surface chemical reactions. The powders have a high concentration of Lewis base sites as verified by their selective adsorption of CO2 over N2. The use of an amorphous cubane-like polymer for the electrocatalytic oxygen evolution reaction was demonstrated.
Collapse
Affiliation(s)
- Claire Deville
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Mads Folkjær
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Mathias S Hvid
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Paolo Lamagni
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Kasper Borup
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Zhaozong Sun
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Jeppe Vang Lauritsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Vickie McKee
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nanoscience Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Nina Lock
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and Dept. of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
40
|
Zhang H, Tian W, Duan X, Sun H, Liu S, Wang S. Catalysis of a Single Transition Metal Site for Water Oxidation: From Mononuclear Molecules to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904037. [PMID: 31793723 DOI: 10.1002/adma.201904037] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Low-cost, nonprecious transition metal (TM) catalysts toward efficient water oxidation are of critical importance to future sustainable energy technologies. The advances in structure engineering of water oxidation catalysts (WOCs) with single TM centers as active sites, for example, single metallic molecular complexes (SMMCs), supported SMMCs, and single-atom catalysts (SACs) in recent reports are examined. The efforts made on these configurations in terms of design principle, advanced characterization, performances and theoretical studies, are critically reviewed. A clear roadmap with the correlations between the single-TM-site-based structures (coordination and geometric structure, TM species, support), and the catalytic performances in water oxidation is provided. The insights bridging SMMCs with SACs are also given. Finally, the challenges and opportunities in the single-TM-site catalysis are proposed.
Collapse
Affiliation(s)
- Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| |
Collapse
|
41
|
Han R, Luber S. Complete active space analysis of a reaction pathway: Investigation of the oxygen–oxygen bond formation. J Comput Chem 2020; 41:1586-1597. [DOI: 10.1002/jcc.26201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/21/2020] [Accepted: 03/21/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ruocheng Han
- Institut für Chemie, Universität Zürich Zürich Switzerland
| | - Sandra Luber
- Institut für Chemie, Universität Zürich Zürich Switzerland
| |
Collapse
|
42
|
Schilling M, Cunha RA, Luber S. Zooming in on the O–O Bond Formation—An Ab Initio Molecular Dynamics Study Applying Enhanced Sampling Techniques. J Chem Theory Comput 2020; 16:2436-2449. [DOI: 10.1021/acs.jctc.9b01207] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mauro Schilling
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Richard A. Cunha
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
43
|
Chen R, Yan Z, Kong X. Recent Advances in First‐Row Transition Metal Clusters for Photocatalytic Water Splitting. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Zhi‐Hao Yan
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Xiang‐Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| |
Collapse
|
44
|
Hyun SM, Upadhyay A, Das A, Burns CP, Sung S, Beaty JD, Bhuvanesh N, Nippe M, Powers DC. Kinetic versus thermodynamic metalation enables synthesis of isostructural homo- and heterometallic trinuclear clusters. Chem Commun (Camb) 2020; 56:5893-5896. [DOI: 10.1039/d0cc02346a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Temperature-dependent metalation of a new hexadentate enables the selective synthesis of both mononuclear (i.e. kinetic product) and trinuclear (i.e. thermodynamic product) complexes.
Collapse
Affiliation(s)
- Sung-Min Hyun
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Anuvab Das
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Corey P. Burns
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Siyoung Sung
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Jeremy D. Beaty
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Michael Nippe
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - David C. Powers
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| |
Collapse
|
45
|
Fagiolari L, Zaccaria F, Costantino F, Vivani R, Mavrokefalos CK, Patzke GR, Macchioni A. Ir- and Ru-doped layered double hydroxides as affordable heterogeneous catalysts for electrochemical water oxidation. Dalton Trans 2020; 49:2468-2476. [DOI: 10.1039/c9dt04306c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Doping low-cost LDHs with noble metal atoms represents a promising approach to develop effective heterogeneous Water Oxidation Catalysts.
Collapse
Affiliation(s)
- Lucia Fagiolari
- Department of Chemistry
- Biology and Biotechnology
- Università di Perugia and CIRCC-Via Elce di Sotto 8
- I-06123 Perugia
- Italy
| | - Francesco Zaccaria
- Department of Chemistry
- Biology and Biotechnology
- Università di Perugia and CIRCC-Via Elce di Sotto 8
- I-06123 Perugia
- Italy
| | - Ferdinando Costantino
- Department of Chemistry
- Biology and Biotechnology
- Università di Perugia and CIRCC-Via Elce di Sotto 8
- I-06123 Perugia
- Italy
| | - Riccardo Vivani
- Department of Pharmaceutical Sciences
- Università di Perugia - Via del Liceo 1
- I-06123 Perugia
- Italy
| | | | - Greta R. Patzke
- Department of Chemistry
- University of Zurich - Winterthurerstrasse 190
- CH-8057 Zurich
- Switzerland
| | - Alceo Macchioni
- Department of Chemistry
- Biology and Biotechnology
- Università di Perugia and CIRCC-Via Elce di Sotto 8
- I-06123 Perugia
- Italy
| |
Collapse
|
46
|
Liang X, Cao X, Sun W, Ding Y. Recent Progress in Visible Light Driven Water Oxidation Using Semiconductors Coupled with Molecular Catalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201901510] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xiangming Liang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical EngineeringLanzhou University Tianshui South Road 222 Lanzhou 730000 P. R. China
| | - Xiaohu Cao
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical EngineeringLanzhou University Tianshui South Road 222 Lanzhou 730000 P. R. China
| | - Wanjun Sun
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical EngineeringLanzhou University Tianshui South Road 222 Lanzhou 730000 P. R. China
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical EngineeringLanzhou University Tianshui South Road 222 Lanzhou 730000 P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Middle Tianshui Road 18 Lanzhou 730000 P. R. China
| |
Collapse
|
47
|
Wu Y, Tian J, Liu S, Li B, Zhao J, Ma L, Li D, Lan Y, Bu X. Bi‐Microporous Metal–Organic Frameworks with Cubane [M
4
(OH)
4
] (M=Ni, Co) Clusters and Pore‐Space Partition for Electrocatalytic Methanol Oxidation Reaction. Angew Chem Int Ed Engl 2019; 58:12185-12189. [DOI: 10.1002/anie.201907136] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ya‐Pan Wu
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Jun‐Wu Tian
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Shan Liu
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Bo Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Jun Zhao
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Lu‐Fang Ma
- College of Chemistry and Chemical EngineeringLuoyang Normal University Luoyang 471934 China
| | - Dong‐Sheng Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Ya‐Qian Lan
- School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Xianhui Bu
- Department of Chemistry and BiochemistryCalifornia State University, Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| |
Collapse
|
48
|
Li J, Wan W, Triana CA, Novotny Z, Osterwalder J, Erni R, Patzke GR. Dynamic Role of Cluster Cocatalysts on Molecular Photoanodes for Water Oxidation. J Am Chem Soc 2019; 141:12839-12848. [PMID: 31373808 DOI: 10.1021/jacs.9b06100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While loading of cocatalysts is one of the most widely investigated strategies to promote the efficiency of photoelectrodes, the understanding of their functionality remains controversial. We established new hybrid molecular photoanodes with cobalt-based molecular cubane cocatalysts on hematite as a model system. Photoelectrochemical and rate law analyses revealed an interesting functionality transition of the {Co(II)4O4}-type cocatalysts. Their role changed from predominant hole reservoirs to catalytic centers upon modulation of the applied bias. Kinetic analysis of the photoelectrochemical processes indicated that this observed transition arises from the dynamic equilibria of photogenerated surface charge carriers. Most importantly, we confirmed this functional transition of the cocatalysts and the related kinetic properties for several cobalt-based molecular and heterogeneous catalysts, indicating wide applicability of the derived trends. Additionally, complementary analytical characterizations show that a transformation of the applied molecular species occurs at higher applied bias, pointing to a dynamic interplay connecting molecular and heterogeneous catalysis. Our insights promote the essential understanding of efficient (molecular) cocatalyzed photoelectrode systems to design tailor-made hybrid devices for a wide range of catalytic applications.
Collapse
Affiliation(s)
- Jingguo Li
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Wenchao Wan
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - C A Triana
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Zbynek Novotny
- Department of Physics , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Jürg Osterwalder
- Department of Physics , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Rolf Erni
- Electron Microscopy Center , Empa, Swiss Federal Laboratories for Materials Science and Technology , CH-8600 Dübendorf , Switzerland
| | - Greta R Patzke
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| |
Collapse
|
49
|
Wu Y, Tian J, Liu S, Li B, Zhao J, Ma L, Li D, Lan Y, Bu X. Bi‐Microporous Metal–Organic Frameworks with Cubane [M
4
(OH)
4
] (M=Ni, Co) Clusters and Pore‐Space Partition for Electrocatalytic Methanol Oxidation Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907136] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ya‐Pan Wu
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Jun‐Wu Tian
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Shan Liu
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Bo Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Jun Zhao
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Lu‐Fang Ma
- College of Chemistry and Chemical EngineeringLuoyang Normal University Luoyang 471934 China
| | - Dong‐Sheng Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Ya‐Qian Lan
- School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Xianhui Bu
- Department of Chemistry and BiochemistryCalifornia State University, Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| |
Collapse
|
50
|
Ertl M, Ma Z, Thersleff T, Lyu P, Huettner S, Nachtigall P, Breu J, Slabon A. Mössbauerite as Iron-Only Layered Oxyhydroxide Catalyst for WO3 Photoanodes. Inorg Chem 2019; 58:9655-9662. [DOI: 10.1021/acs.inorgchem.9b00327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Zili Ma
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen D-52056, Germany
| | - Thomas Thersleff
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm 10691, Sweden
| | - Pengbo Lyu
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, Prague 212843, Czech Republic
| | | | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, Prague 212843, Czech Republic
| | | | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm 10691, Sweden
| |
Collapse
|