1
|
Li PP, Yang Z, Cai SQ, Liang W, Fang SC, Zhao JF, Pan B, Du F. Palladium-Catalyzed and Photoinduced Site-Selective Alkynylation and Oxidation of the Remote C(sp 3)-H. Org Lett 2025; 27:2602-2608. [PMID: 40063055 DOI: 10.1021/acs.orglett.5c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A general and efficient method for the direct alkynylation and oxidation of remote C(sp3)-H bonds under photoirradiation is described. In this reaction, the Pd catalyst acts as both a photocatalyst to generate the nitrogen radical and a cross-coupling catalyst with a terminal alkyne. Attractive features of this system include good functional group tolerance, scalability, convenient reagents, and an operating system. The utility of this protocol is highlighted by its application for derivatization of several valuable aza-heterocycles such as caspase-3 inhibitor and azepinone derivatives.
Collapse
Affiliation(s)
- Pan-Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacy of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhi Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shao-Qun Cai
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Wu Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shi-Cui Fang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jun-Fei Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Pan
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Fei Du
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
2
|
Baró EL, Catti F, Estarellas C, Ghashghaei O, Lavilla R. Drugs from drugs: New chemical insights into a mature concept. Drug Discov Today 2024; 29:104212. [PMID: 39442750 DOI: 10.1016/j.drudis.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Developing new drugs from marketed ones is a well-established and successful approach in drug discovery. We offer a unified view of this field, focusing on the new chemical aspects of the involved approaches: (a) chemical transformation of the original drugs (late-stage modifications, molecular editing), (b) prodrug strategies, and (c) repurposing as a tool to develop new hits/leads. Special focus is placed on the molecular structure of the drugs and their synthetic feasibility. The combination of experimental advances and new computational approaches, including artificial intelligence methods, paves the way for the evolution of the drugs from drugs concept.
Collapse
Affiliation(s)
- Eloy Lozano Baró
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona and Institute of Biomedicine UB (IBUB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Federica Catti
- Faculty of Science and Mathematics, Arkansas State University Campus Querétaro, Carretera Estatal 100, km 17.5. C.P. 76270, Municipio de Colón, Estado de Querétaro, Mexico
| | - Carolina Estarellas
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
| | - Ouldouz Ghashghaei
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona and Institute of Biomedicine UB (IBUB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| | - Rodolfo Lavilla
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona and Institute of Biomedicine UB (IBUB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
3
|
Gu X, Zhang YA, Zhang S, Wang L, Ye X, Occhialini G, Barbour J, Pentelute BL, Wendlandt AE. Synthesis of non-canonical amino acids through dehydrogenative tailoring. Nature 2024; 634:352-358. [PMID: 39208846 PMCID: PMC11904927 DOI: 10.1038/s41586-024-07988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Amino acids are essential building blocks in biology and chemistry. Whereas nature relies on a small number of amino acid structures, chemists desire access to a vast range of structurally diverse analogues1-3. The selective modification of amino acid side-chain residues represents an efficient strategy to access non-canonical derivatives of value in chemistry and biology. While semisynthetic methods leveraging the functional groups found in polar and aromatic amino acids have been extensively explored, highly selective and general approaches to transform unactivated C-H bonds in aliphatic amino acids remain less developed4,5. Here we disclose a stepwise dehydrogenative method to convert aliphatic amino acids into structurally diverse analogues. The key to the success of this approach lies in the development of a selective catalytic acceptorless dehydrogenation method driven by photochemical irradiation, which provides access to terminal alkene intermediates for downstream functionalization. Overall, this strategy enables the rapid synthesis of new amino acid building blocks and suggests possibilities for the late-stage modification of more complex oligopeptides.
Collapse
Affiliation(s)
- Xin Gu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yu-An Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shuo Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leon Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiyun Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gino Occhialini
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonah Barbour
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Reese PB. Remote functionalization reactions in steroids: discovery and application. Steroids 2024; 204:109362. [PMID: 38278283 DOI: 10.1016/j.steroids.2023.109362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024]
Abstract
Research published between 2001 and 2022 on the functionalization of remote positions of steroids, as well as the use of this technique in the generation of biologically active compounds has been reviewed. In the first section of the analysis established and novel methods for activation of sites deemed to be remote were reported. A series of manganese- (mainly), rhodium-, ruthenium- and osmium-centered porphyrins as catalysts in the presence of PIDA as oxidant have effected hydroxylation at C-1, -5, -6, -7, -11, -14, -15, -16, -17, -20, -24 and -25. Dioxiranes have been utilized in inserting hydroxyl groups at the 5, 12, 14, 15, 16, 17, 20, 24 and 25 positions (tertiary centers for the most part). Alcohols at C-12 and -16 were oxidized further to ketones. The Schönecker oxidation, discovered and developed during the period, has revolutionized the selective functionalization at C-12 of steroids possessing a 17-keto group. In the presence of iron-centered PDP- and MCP-based catalysts, hydrogen peroxide and acetic acid, substrates tended to be hydroxylated at C-6 and -12, with further oxidation to ketones often accompanying this reaction. The hypohalite reaction, utilizing the more modern Suarez conditions (irradiation in the presence of iodine and PIDA), was reported to facilitate the insertion of a hydroxyl moiety five atoms away from an existing alcohol oxygen. Steroidal-3β-diazoacetates tend to decompose on heating with di-rhodium-centered catalysts while activating carbons four or five atoms away. Chromium- and iron-based acetates were observed to functionalize C-5 and -25. Other reactions involving ring cleavage and halogenation, ketone irradiation and α-hydroxylation of ethers were also covered. The syntheses of compounds with marked biological activity from readily available steroids is described in the second section of the study. Cyclopamine, cephalostatin-1, ritterazine B and three polyhydroxypregnanaes (pergularin, utendin and tomentogenin) were generated in sequences in which a key step required hydroxylation at C-12 using the Schönecker reaction. A crucial stage in the preparation of cortistatin A, the saundersioside core, eurysterol A, 5,6-dihydroglaucogenin C, as well as clinostatins A and B involved the functionalization of C-18 or -19 utilizing hypohalite chemistry. The synthetic route to xestobergsterol A, pavonin-4-aglycone and ouagabagenin included a transformation where ketone irradiation played a part in either producing a Δ14 or a C-19 activated steroid. The radical relay reaction, where a 17α-chloro-steroid was formed, was central in the generation of pythocholic acid. The lead tetraacetate reaction was pivotal in the functionalization of C-19 during the synthesis of cyclocitrinol.
Collapse
Affiliation(s)
- Paul B Reese
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica.
| |
Collapse
|
5
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
6
|
Chambers RK, Weaver JD, Kim J, Hoar JL, Krska SW, White MC. A preparative small-molecule mimic of liver CYP450 enzymes in the aliphatic C-H oxidation of carbocyclic N-heterocycles. Proc Natl Acad Sci U S A 2023; 120:e2300315120. [PMID: 37428920 PMCID: PMC10629554 DOI: 10.1073/pnas.2300315120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/15/2023] [Indexed: 07/12/2023] Open
Abstract
An emerging trend in small-molecule pharmaceuticals, generally composed of nitrogen heterocycles (N-heterocycles), is the incorporation of aliphatic fragments. Derivatization of the aliphatic fragments to improve drug properties or identify metabolites often requires lengthy de novo syntheses. Cytochrome P450 (CYP450) enzymes are capable of direct site- and chemo-selective oxidation of a broad range of substrates but are not preparative. A chemoinformatic analysis underscored limited structural diversity of N-heterocyclic substrates oxidized using chemical methods relative to pharmaceutical chemical space. Here, we describe a preparative chemical method for direct aliphatic oxidation that tolerates a wide range of nitrogen functionality (chemoselective) and matches the site of oxidation (site-selective) of liver CYP450 enzymes. Commercial small-molecule catalyst Mn(CF3-PDP) selectively effects direct methylene oxidation in compounds bearing 25 distinct heterocycles including 14 out of 27 of the most frequent N-heterocycles found in U.S. Food and Drug Administration (FDA)-approved drugs. Mn(CF3-PDP) oxidations of carbocyclic bioisostere drug candidates (for example, HCV NS5B and COX-2 inhibitors including valdecoxib and celecoxib derivatives) and precursors of antipsychotic drugs blonanserin, buspirone, and tiospirone and the fungicide penconazole are demonstrated to match the major site of aliphatic metabolism obtained with liver microsomes. Oxidations are demonstrated at low Mn(CF3-PDP) loadings (2.5 to 5 mol%) on gram scales of substrate to furnish preparative amounts of oxidized products. A chemoinformatic analysis supports that Mn(CF3-PDP) significantly expands the pharmaceutical chemical space accessible to small-molecule C-H oxidation catalysis.
Collapse
Affiliation(s)
- Rachel K. Chambers
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL61801
| | - Jacob D. Weaver
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL61801
| | - Jinho Kim
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL61801
| | - Jason L. Hoar
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ07065
| | - Shane W. Krska
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ07065
| | - M. Christina White
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL61801
| |
Collapse
|
7
|
Zheng CY, Yue JM. Allylic hydroxylation of enones useful for the functionalization of relevant drugs and natural products. Nat Commun 2023; 14:2399. [PMID: 37100800 PMCID: PMC10133259 DOI: 10.1038/s41467-023-38154-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Enones are privileged structural motifs in bioactive natural products and pharmaceuticals, but the γ-hydroxylation of enones is challenging. Here we show a mild and efficient method for the direct C(sp3)-H hydroxylation of enones via visible-light-induced hydrogen-atom transfer (HAT), which facilitates γ-hydroxylation of primary, secondary, and tertiary C-H bonds of different enones without involving metal and peroxide. The mechanism study shows that Na2-eosin Y serves as both the photocatalyst and the source of catalytic bromine radical species in the HAT-based catalytic cycle, and finally sacrifices itself completely by oxidative degradation to produce bromine radical and a major product phthalic anhydride in an environmentally friendly way. This scalable method was demonstrated by plenty of substrates (41 examples) including 10 clinical drugs and 15 natural products to be useful for the late-stage functionalization of enone-containing compounds, and, in particular, has potential application in industry for large-scale production.
Collapse
Affiliation(s)
- Cheng-Yu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai, 201203, China.
| |
Collapse
|
8
|
Lin X, Li N, Zhu C, Sun B. An Efficient Synthesis of Rivaroxaban. ChemistrySelect 2023. [DOI: 10.1002/slct.202204644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xiaoyu Lin
- School of Pharmaceutical Sciences Nanjing Tech University 30 South Puzhu Road Nanjing 210000 China
| | - Nanlian Li
- School of Pharmaceutical Sciences Nanjing Tech University 30 South Puzhu Road Nanjing 210000 China
| | - Chenlong Zhu
- School of Pharmaceutical Sciences Nanjing Tech University 30 South Puzhu Road Nanjing 210000 China
| | - Bingfeng Sun
- School of Pharmaceutical Sciences Nanjing Tech University 30 South Puzhu Road Nanjing 210000 China
| |
Collapse
|
9
|
Cui H, Shen Y, Wang R, Wei H, Lei X, Chen Y, Fu P, Wang H, Bi R, Zhang Y. Synthesis of Clionastatins A and B through Enhancement of Chlorination and Oxidation Levels of Testosterone. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hao Cui
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Yang Shen
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Ruifeng Wang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Haoxiang Wei
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Xin Lei
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Yanyu Chen
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Pengfei Fu
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Haoxiang Wang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Ruihao Bi
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Yandong Zhang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
10
|
Chen J, Yao J, Li XX, Wang Y, Song W, Cho KB, Lee YM, Nam W, Wang B. Bromoacetic Acid-Promoted Nonheme Manganese-Catalyzed Alkane Hydroxylation Inspired by α-Ketoglutarate-Dependent Oxygenases. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jie Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinping Yao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenxun Song
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
11
|
Kawazu R, Torigoe T, Kuninobu Y. Iridium-Catalyzed C(sp 3 )-H Borylation Using Silyl-Bipyridine Pincer Ligands. Angew Chem Int Ed Engl 2022; 61:e202202327. [PMID: 35262270 DOI: 10.1002/anie.202202327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/18/2022]
Abstract
New ligands for the iridium-catalyzed C(sp3 )-H borylation of aliphatic compounds were established. In sharp contrast to 6-methyl-2,2'-bipyridine and 6-isobutyl-2,2'-bipyridine, 2,2'-bipyridine and 1,10-phenanthroline derivatives bearing a hydrosilylmethyl group (which would give a thermally stable NNSi pincer complex) served as suitable ligands for the reaction. Among them, a phenanthroline-based NNSi pincer ligand was shown to be an excellent ligand, and various aliphatic compounds were efficiently converted to the corresponding borylated products using the Ir/NNSi pincer catalyst system. The NNSi pincer ligand showed unique selectivity and enabled the iridium-catalyzed C(sp3 )-H borylation using pinacolborane [H-B(pin)] instead of B2 (pin)2 . The formation of an iridium complex bearing a quinoline-based NNSi pincer ligand from [IrCl(cod)]2 was observed, and the catalytic activity of the complex was demonstrated.
Collapse
Affiliation(s)
- Ryohei Kawazu
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Takeru Torigoe
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan.,Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan.,Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
12
|
Cui H, Shen Y, Chen Y, Wang R, Wei H, Fu P, Lei X, Wang H, Bi R, Zhang Y. Two-Stage Syntheses of Clionastatins A and B. J Am Chem Soc 2022; 144:8938-8944. [PMID: 35576325 DOI: 10.1021/jacs.2c03872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A concise and divergent synthesis of the polychlorinated marine steroids clionastatin A and B from inexpensive testosterone has been achieved through a unique two-stage chlorination-oxidation strategy. Key features of the two-stage synthesis include (1) conformationally controlled, highly stereoselective dichlorination at C1 and C2 and C4-OH-directed C19 oxygenation followed by a challenging neopentyl chlorination to install three chlorine atoms; (2) desaturation through one-pot photochemical dibromination-reductive debromination and anti-Markovnikov olefin oxidation by photoredox-metal dual catalysis to enhance the oxidation level of the backbone; and (3) Wharton transposition to furnish the D-ring enone. This synthesis proved that the introduction of the C19 chloride in the early stage of the synthesis secured the stability of the backbone against susceptibility to aromatization during the oxidation stage.
Collapse
Affiliation(s)
- Hao Cui
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yang Shen
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanyu Chen
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ruifeng Wang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Haoxiang Wei
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Pengfei Fu
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xin Lei
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Haoxiang Wang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ruihao Bi
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yandong Zhang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266000, China
| |
Collapse
|
13
|
Hahn PL, Lowe JM, Xu Y, Burns KL, Hilinski MK. Amine Organocatalysis of Remote, Chemoselective C(sp 3)-H Hydroxylation. ACS Catal 2022; 12:4302-4309. [PMID: 35529672 PMCID: PMC9075503 DOI: 10.1021/acscatal.2c00392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We introduce an organocatalytic approach for oxaziridinium-mediated C-H hydroxylation that employs secondary amines as catalysts. We also demonstrate the advantages of this operationally simple catalytic strategy for achieving high yielding and highly selective remote hydroxylation of compounds bearing oxidation-sensitive functional groups such as alcohols, ethers, carbamates, and amides. By employing hexafluoroisopropanol as the solvent in the absence of water, a proposed hydrogen bonding effect leads to, among other advantages, as high as ≥99:1 chemoselectivity for remote aliphatic hydroxylation of 2° alcohols, an otherwise unsolved synthetic challenge normally complicated by substantial amounts of alcohol oxidation. Initial studies of the reaction mechanism indicate the formation of an oxaziridinium salt as the active oxidant, and a C-H oxidation step that proceeds in a stereospecific manner via concerted insertion or hydrogen atom transfer/radical rebound. Furthermore, preliminary results indicate that site selectivity can be affected by amine catalyst structure. In the long term, we anticipate that this will enable new strategies for catalyst control of selectivity based on the abundance of catalytic scaffolds that have proliferated over the last twenty years as a result of Nobel Prize-winning discoveries.
Collapse
Affiliation(s)
- Philip L. Hahn
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Jared M. Lowe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Yubo Xu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Kevin L. Burns
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Michael K. Hilinski
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
14
|
Kawazu R, Torigoe T, Kuninobu Y. Iridium‐Catalyzed C(sp
3
)−H Borylation Using Silyl‐Bipyridine Pincer Ligands. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ryohei Kawazu
- Department of Molecular and Material Sciences Interdisciplinary Graduate School of Engineering Sciences Kyushu University 6-1 Kasugakoen Kasuga-shi Fukuoka 816-8580 Japan
| | - Takeru Torigoe
- Institute for Materials Chemistry and Engineering Kyushu University 6-1 Kasugakoen, Kasuga-shi Fukuoka 816-8580 Japan
- Department of Interdisciplinary Engineering Sciences Interdisciplinary Graduate School of Engineering Sciences Kyushu University 6-1 Kasugakoen Kasuga-shi Fukuoka 816-8580 Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering Kyushu University 6-1 Kasugakoen, Kasuga-shi Fukuoka 816-8580 Japan
- Department of Interdisciplinary Engineering Sciences Interdisciplinary Graduate School of Engineering Sciences Kyushu University 6-1 Kasugakoen Kasuga-shi Fukuoka 816-8580 Japan
| |
Collapse
|
15
|
Galeotti M, Salamone M, Bietti M. Electronic control over site-selectivity in hydrogen atom transfer (HAT) based C(sp 3)-H functionalization promoted by electrophilic reagents. Chem Soc Rev 2022; 51:2171-2223. [PMID: 35229835 DOI: 10.1039/d1cs00556a] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The direct functionalization of C(sp3)-H bonds represents one of the most investigated approaches to develop new synthetic methodology. Among the available strategies for intermolecular C-H bond functionalization, increasing attention has been devoted to hydrogen atom transfer (HAT) based procedures promoted by radical or radical-like reagents, that offer the opportunity to introduce a large variety of atoms and groups in place of hydrogen under mild conditions. Because of the large number of aliphatic C-H bonds displayed by organic molecules, in these processes control over site-selectivity represents a crucial issue, and the associated factors have been discussed. In this review article, attention will be devoted to the role of electronic effects on C(sp3)-H bond functionalization site-selectivity. Through an analysis of the recent literature, a detailed description of the HAT reagents employed in these processes, the associated mechanistic features and the selectivity patterns observed in the functionalization of substrates of increasing structural complexity will be provided.
Collapse
Affiliation(s)
- Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| |
Collapse
|
16
|
Beller M, Mao S, Budweg S, Spannenberg A, Wen X, Yang Y, Li YW, Junge K. Iron‐Catalyzed Epoxidation of Linear α‐Olefins with Hydrogen Peroxide. ChemCatChem 2021. [DOI: 10.1002/cctc.202101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthias Beller
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a 18059 Rostock GERMANY
| | - Shuxin Mao
- Leibniz-Institut für Katalyse eV: Leibniz-Institut fur Katalyse eV Angewandte Homogenkatalyse GERMANY
| | - Svenja Budweg
- Leibniz-Institut für Katalyse eV: Leibniz-Institut fur Katalyse eV Angewandte Homogenkatalyse GERMANY
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse eV: Leibniz-Institut fur Katalyse eV Analytik GERMANY
| | - Xiaodong Wen
- Chinese Academy of Sciences Institute of Coal Chemistry CHINA
| | - Yong Yang
- Chinese Academy of Sciences Katalyse CHINA
| | - Yong-Wang Li
- Chinese Academy of Sciences Institute of Coal Chemistry CHINA
| | - Kathrin Junge
- Leibniz-Institut für Katalyse eV: Leibniz-Institut fur Katalyse eV Angewandte Homogenkatalyse GERMANY
| |
Collapse
|
17
|
Gao L, Chen X, Sun D, Zhao H, Zhao Y, Nam W, Wang Y. Theoretical investigation on the elusive biomimetic iron(III)-iodosylarene chemistry: An unusual hydride transfer triggers the Ritter reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Junrong H, Min Y, Chuan D, Yajun Z, Huilong F, Lizhi Z, Feng Y, Zigang L. Novel Strategies in C-H Oxidations for Natural Product Diversification-A Remote Functionalization Application Summary. Front Chem 2021; 9:737530. [PMID: 34676198 PMCID: PMC8523942 DOI: 10.3389/fchem.2021.737530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Selectively activating the distal inactive C-H bond for functionalization is one of the on-going challenge in organic synthetic chemistry. In recent years, benefiting from the development of selective synthesis methods, novel methodologies not only make it possible to break non-traditional chemical bonds and attain more diversity in inactive sites, but also provide more possibilities for the diversification of complex natural products. Direct C-H bond functionalization approaches make it feasible to explore structure-activity relationship (SAR), generate metabolites and derivatives, and prepare biological probes. Among them, direct oxidation of inert C-H bonds is one of the most common methods for natural product diversification. In this review, we focus on the application of remote functionalization of inert C-H bonds for natural products derivatization, including the establishment of oxidation methods, the regulation of reaction sites, and the biological activities of derivatives. We highlight the challenges and opportunities of remote functionalization of inert C-H bonds for natural product diversification through selected and representative examples. We try to show that inert C-H bond oxidation, properly regulated and optimized, can be a powerful and efficient strategy in both synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Huang Junrong
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Pingshan Translational Medicine Center, Shenzhen, China
| | - Yang Min
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dai Chuan
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhou Yajun
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Huilong
- Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou, China
| | - Zhu Lizhi
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou, China
| | - Yin Feng
- Shenzhen Bay Laboratory, Pingshan Translational Medicine Center, Shenzhen, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Li Zigang
- Shenzhen Bay Laboratory, Pingshan Translational Medicine Center, Shenzhen, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
19
|
Jana R, Begam HM, Dinda E. The emergence of the C-H functionalization strategy in medicinal chemistry and drug discovery. Chem Commun (Camb) 2021; 57:10842-10866. [PMID: 34596175 DOI: 10.1039/d1cc04083a] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to the market competitiveness and urgent societal need, an optimum speed of drug discovery is an important criterion for successful implementation. Despite the rapid ascent of artificial intelligence and computational and bioanalytical techniques to accelerate drug discovery in big pharma, organic synthesis of privileged scaffolds predicted in silico for in vitro and in vivo studies is still considered as the rate-limiting step. C-H activation is the latest technology added into an organic chemist's toolbox for the rapid construction and late-stage modification of functional molecules to achieve the desired chemical and physical properties. Particularly, elimination of prefunctionalization steps, exceptional functional group tolerance, complexity-to-diversity oriented synthesis, and late-stage functionalization of privileged medicinal scaffolds expand the chemical space. It has immense potential for the rapid synthesis of a library of molecules, structural modification to achieve the required pharmacological properties such as absorption, distribution, metabolism, excretion, toxicology (ADMET) and attachment of chemical reporters for proteome profiling, metabolite synthesis, etc. for preclinical studies. Although heterocycle synthesis, late-stage drug modification, 18F labelling, methylation, etc. via C-H functionalization have been reviewed from the synthetic standpoint, a general overview of these protocols from medicinal and drug discovery aspects has not been reviewed. In this feature article, we will discuss the recent trends of C-H activation methodologies such as synthesis of medicinal scaffolds through C-H activation/annulation cascade; C-H arylation for sp2-sp2 and sp2-sp3 cross-coupling; C-H borylation/silylation to introduce a functional linchpin for further manipulation; C-H amination for N-heterocycles and hydrogen bond acceptors; C-H fluorination/fluoroalkylation to tune polarity and lipophilicity; C-H methylation: methyl magic in drug discovery; peptide modification and macrocyclization for therapeutics and biologics; fluorescent labelling and radiolabelling for bioimaging; bioconjugation for chemical biology studies; drug-metabolite synthesis for biodistribution and excretion studies; late-stage diversification of drug-molecules to increase efficacy and safety; cutting-edge DNA encoded library synthesis and improved synthesis of drug molecules via C-H activation in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Enakshi Dinda
- Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata-700107, India
| |
Collapse
|
20
|
He YG, Huang YK, Fan QQ, Zheng B, Luo YQ, Zhu XL, Shi XX. Copper(ii)-catalyzed and acid-promoted highly regioselective oxidation of tautomerizable C(sp 3)-H bonds adjacent to 3,4-dihydroisoquinolines using air (O 2) as a clean oxidant. RSC Adv 2021; 11:29702-29710. [PMID: 35479555 PMCID: PMC9040818 DOI: 10.1039/d1ra05671a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
A mild, efficient and eco-friendly method for the oxidation of 1-Bn-DHIQs to 1-Bz-DHIQs without concomitant excessive oxidation of 1-Bz-DHIQs to 1-Bz-IQs is very important for the syntheses of 1-Bz-DHIQ alkaloids and analogues. In this article, we developed a novel Cu(ii)-catalyzed and acid-promoted highly regioselective oxidation of tautomerizable C(sp3)-H bonds adjacent to the C-1 positions of various 1-Bn-DHIQs. It was observed that when 0.2 equiv. of Cu(OAc)2·2H2O was used as the catalyst, 3.0 equiv. of AcOH was used as the additive and air (O2) was used as a clean oxidant, various 1-Bn-DHIQs could be efficiently oxidized to corresponding 1-Bz-DHIQs at 25 °C in DMSO. Especially, almost no concomitant excessive oxidation of 1-Bz-DHIQs to 1-Bz-IQs was observed during the above reaction. In addition, this method was successfully applied in the first total synthesis of the alkaloid canelillinoxine.
Collapse
Affiliation(s)
- Yun-Gang He
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Yong-Kang Huang
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Qi-Qi Fan
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Bo Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Yong-Qiang Luo
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Xing-Liang Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Xiao-Xin Shi
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| |
Collapse
|
21
|
Dutta S, Li B, Rickertsen DRL, Valles DA, Seidel D. C-H Bond Functionalization of Amines: A Graphical Overview of Diverse Methods. SYNOPEN 2021; 5:173-228. [PMID: 34825124 PMCID: PMC8612105 DOI: 10.1055/s-0040-1706051] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This Graphical Review provides a concise overview of the manifold and mechanistically diverse methods that enable the functionalization of sp3 C-H bonds in amines and their derivatives.
Collapse
Affiliation(s)
- Subhradeep Dutta
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Bowen Li
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Dillon R L Rickertsen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Daniel A Valles
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
22
|
Griffin JD, Vogt DB, Du Bois J, Sigman MS. Mechanistic Guidance Leads to Enhanced Site-Selectivity in C–H Oxidation Reactions Catalyzed by Ruthenium bis(Bipyridine) Complexes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jeremy D. Griffin
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - David B. Vogt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - J. Du Bois
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
23
|
Uchida T, Doiuchi D. Recent Strategies in Non-Heme-Type Metal Complex-Catalyzed Site-, Chemo-, and Enantioselective C–H Oxygenations. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1525-4335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractC–H bonds are ubiquitous and abundant in organic molecules. If such C–H bonds can be converted into the desired functional groups in a site-, chemo-, diastereo-, and enantio-selective manner, the functionalization of C–H bonds would be an efficient tool for step-, atom- and redox-economic organic synthesis. C–H oxidation, as a typical C–H functionalization, affords hydroxy and carbonyl groups, which are key functional groups in organic synthesis and biological chemistry, directly. Recently, significant developments have been made using non-heme-type transition-metal catalysts. Oxygen functional groups can be introduced to not only simple hydrocarbons but also complex natural products. In this paper, recent developments over the last fourteen years in non-heme-type complex-catalyzed C–H oxidations are reviewed.1 Introduction2 Regio- and Chemo-Selective C–H Oxidations2.1 Tertiary Site-Selective C–H Oxidations2.2 Secondary Site-Selective C–H Oxidations2.3 C–H Oxidations of N-Containing Molecules2.4 C–H Oxidations of Carboxylic Acids2.5 Chemo- and Site-Selective Methylenic C–H Hydroxylations3 Enantioselective C–H Oxidations3.1 Desymmetrizations through C–H Oxidations3.2 Enantiotopic Methylenic C–H Oxygenations4 Conclusion
Collapse
|
24
|
Zhao R, Chen XY, Wang ZX. Insight into the Selective Methylene Oxidation Catalyzed by Mn(CF 3-PDP)(SbF 6) 2/H 2O 2/CH 2ClCO 2H) System: A DFT Mechanistic Study. Org Lett 2021; 23:1535-1540. [PMID: 33587643 DOI: 10.1021/acs.orglett.0c04102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DFT study was employed to gain insight into methylene oxidation catalyzed by Mn(CF3-PDP)(NCMe)2 (SbF6)2/H2O2/HOAcCl(OACCl ═OC(O)CH2Cl). The active catalyst was characterized to be [Mn](O)OAcCl ([Mn]═Mn(CF3-PDP)2+) which is generated via a sequence from [Mn] to [Mn]OH to [Mn]OAcCl to [Mn]OOH. With the active catalyst, the methylene group is sequentially oxidized to an alcohol and then to a carbonyl group via rebound mechanism. The mechanism explains the observed site selectivity.
Collapse
Affiliation(s)
- Ruihua Zhao
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Dalton T, Faber T, Glorius F. C-H Activation: Toward Sustainability and Applications. ACS CENTRAL SCIENCE 2021; 7:245-261. [PMID: 33655064 PMCID: PMC7908034 DOI: 10.1021/acscentsci.0c01413] [Citation(s) in RCA: 347] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Indexed: 05/14/2023]
Abstract
Since the definition of the "12 Principles of Green Chemistry" more than 20 years ago, chemists have become increasingly mindful of the need to conserve natural resources and protect the environment through the judicious choice of synthetic routes and materials. The direct activation and functionalization of C-H bonds, bypassing intermediate functional group installation is, in abstracto, step and atom economic, but numerous factors still hinder the sustainability of large-scale applications. In this Outlook, we highlight the research areas seeking to overcome the sustainability challenges of C-H activation: the pursuit of abundant metal catalysts, the avoidance of static directing groups, the replacement of metal oxidants, and the introduction of bioderived solvents. We close by examining the progress made in the subfield of aryl C-H borylation from its origins, through highly efficient but precious Ir-based systems, to emerging 3d metal catalysts. The future growth of this field will depend on industrial uptake, and thus we urge researchers to strive toward sustainable C-H activation.
Collapse
Affiliation(s)
- Toryn Dalton
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 4048149 Münster, Germany
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 4048149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 4048149 Münster, Germany
| |
Collapse
|
26
|
Chaheine CM, Song CJ, Gladen PT, Romo D. Enantioselective Michael-Proton Transfer-Lactamization for Pyroglutamic Acid Derivatives: Synthesis of Dimethyl-( S,E)-5-oxo-3-styryl-1-tosylpyrrolidine-2,2-dicarboxylate. ORGANIC SYNTHESES; AN ANNUAL PUBLICATION OF SATISFACTORY METHODS FOR THE PREPARATION OF ORGANIC CHEMICALS 2021; 98:194-226. [PMID: 36090506 PMCID: PMC9463714 DOI: 10.15227/orgsyn.098.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
| | - Conner J Song
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76710
| | - Paul T Gladen
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76710
| | - Daniel Romo
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76710
| |
Collapse
|
27
|
Bhargava Reddy M, Neerathilingam N, Anandhan R. Photoredox-catalyzed chemoselective aerobic Cα–H oxidation of propargylamines: synthesis of substituted 2-ynamide and oxazolo[2,3-a]isoquinolinone derivatives. Org Chem Front 2021. [DOI: 10.1039/d0qo01220c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Visible light-initiated chemoselective aerobic Cα–H oxidation of propargylamines.
Collapse
Affiliation(s)
| | | | - Ramasamy Anandhan
- Department of Organic Chemistry
- University of Madras
- Chennai-600 025
- India
| |
Collapse
|
28
|
Wang Y, Li P, Wang J, Liu Z, Wang Y, Lu Y, Liu Y, Duan L, Li W, Sarina S, Zhu H, Liu J. Visible-light photocatalytic selective oxidation of C(sp 3)–H bonds by anion–cation dual-metal-site nanoscale localized carbon nitride. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00328c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anion–cation dual-metal-site nanoscale localized carbon nitride exhibits a significantly enhanced photocatalytic activity for the oxidation of alkanes and alcohols with a high activity and a wide functional group tolerance.
Collapse
|
29
|
Kweon J, Chang S. Highly Robust Iron Catalyst System for Intramolecular C(sp
3
)−H Amidation Leading to γ‐Lactams. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jeonguk Kweon
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
30
|
Kweon J, Chang S. Highly Robust Iron Catalyst System for Intramolecular C(sp
3
)−H Amidation Leading to γ‐Lactams. Angew Chem Int Ed Engl 2020; 60:2909-2914. [DOI: 10.1002/anie.202013499] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Jeonguk Kweon
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
31
|
Chen J, Jiang Z, Fukuzumi S, Nam W, Wang B. Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213443] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Reyes RL, Sato M, Iwai T, Suzuki K, Maeda S, Sawamura M. RETRACTED: Asymmetric remote C-H borylation of aliphatic amides and esters with a modular iridium catalyst. Science 2020; 369:970-974. [PMID: 32820123 DOI: 10.1126/science.abc8320] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/29/2020] [Indexed: 01/14/2023]
Abstract
Site selectivity and stereocontrol remain major challenges in C-H bond functionalization chemistry, especially in linear aliphatic saturated hydrocarbon scaffolds. We report the highly enantioselective and site-selective catalytic borylation of remote C(sp3)-H bonds γ to the carbonyl group in aliphatic secondary and tertiary amides and esters. A chiral C-H activation catalyst was modularly assembled from an iridium center, a chiral monophosphite ligand, an achiral urea-pyridine receptor ligand, and pinacolatoboryl groups. Quantum chemical calculations support an enzyme-like structural cavity formed by the catalyst components, which bind the substrate through multiple noncovalent interactions. Versatile synthetic utility of the enantioenriched γ-borylcarboxylic acid derivatives was demonstrated.
Collapse
Affiliation(s)
- Ronald L Reyes
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Miyu Sato
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomohiro Iwai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kimichi Suzuki
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan. .,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
33
|
Sheehy KJ, Bateman LM, Flosbach NT, Breugst M, Byrne PA. Competition between N and O: use of diazine N-oxides as a test case for the Marcus theory rationale for ambident reactivity. Chem Sci 2020; 11:9630-9647. [PMID: 34094230 PMCID: PMC8162281 DOI: 10.1039/d0sc02834g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/23/2020] [Indexed: 11/21/2022] Open
Abstract
The preferred site of alkylation of diazine N-oxides by representative hard and soft alkylating agents was established conclusively using the 1H-15N HMBC NMR technique in combination with other NMR spectroscopic methods. Alkylation of pyrazine N-oxides (1 and 2) occurs preferentially on nitrogen regardless of the alkylating agent employed, while O-methylation of pyrimidine N-oxide (3) is favoured in its reaction with MeOTf. As these outcomes cannot be explained in the context of the hard/soft acid/base (HSAB) principle, we have instead turned to Marcus theory to rationalise these results. Marcus intrinsic barriers (ΔG ‡ 0) and Δr G° values were calculated at the DLPNO-CCSD(T)/def2-TZVPPD/SMD//M06-2X-D3/6-311+G(d,p)/SMD level of theory for methylation reactions of 1 and 3 by MeI and MeOTf, and used to derive Gibbs energies of activation (ΔG ‡) for the processes of N- and O-methylation, respectively. These values, as well as those derived directly from the DFT calculations, closely reproduce the observed experimental N- vs. O-alkylation selectivities for methylation reactions of 1 and 3, indicating that Marcus theory can be used in a semi-quantitative manner to understand how the activation barriers for these reactions are constructed. It was found that N-alkylation of 1 is favoured due to the dominant contribution of Δr G° to the activation barrier in this case, while O-alkylation of 3 is favoured due to the dominant contribution of the intrinsic barrier (ΔG ‡ 0) for this process. These results are of profound significance in understanding the outcomes of reactions of ambident reactants in general.
Collapse
Affiliation(s)
- Kevin J Sheehy
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork College Road Cork Ireland
| | - Lorraine M Bateman
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork College Road Cork Ireland
- School of Pharmacy, University College Cork College Road Ireland
- SSPC (Synthesis and Solid State Pharmaceutical Centre) Cork Ireland
| | - Niko T Flosbach
- Department für Chemie, Universität zu Köln Greinstraße 4 50939 Köln Germany
| | - Martin Breugst
- Department für Chemie, Universität zu Köln Greinstraße 4 50939 Köln Germany
| | - Peter A Byrne
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork College Road Cork Ireland
- SSPC (Synthesis and Solid State Pharmaceutical Centre) Cork Ireland
| |
Collapse
|
34
|
Vicens L, Olivo G, Costas M. Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02073] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laia Vicens
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Giorgio Olivo
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Miquel Costas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| |
Collapse
|
35
|
McManus JB, Griffin JD, White AR, Nicewicz DA. Homobenzylic Oxygenation Enabled by Dual Organic Photoredox and Cobalt Catalysis. J Am Chem Soc 2020; 142:10325-10330. [PMID: 32459471 PMCID: PMC7476681 DOI: 10.1021/jacs.0c04422] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activation of aliphatic C(sp3)-H bonds in the presence of more activated benzylic C(sp3)-H bonds is often a nontrivial, if not impossible task. Herein we show that leveraging the reactivity of benzylic C(sp3)-H bonds to achieve reactivity at the homobenzylic position can be accomplished using dual organic photoredox/cobalt catalysis. Through a two-part catalytic system, alkyl arenes undergo dehydrogenation followed by an anti-Markovnikov Wacker-type oxidation to grant benzyl ketone products. This formal homobenzylic oxidation is accomplished with high atom economy without the use of directing groups, achieving valuable reactivity that traditionally would require multiple chemical transformations.
Collapse
Affiliation(s)
- Joshua B McManus
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jeremy D Griffin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Alexander R White
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
36
|
Doiuchi D, Nakamura T, Hayashi H, Uchida T. Non‐Heme‐Type Ruthenium Catalyzed Chemo‐ and Site‐Selective C−H Oxidation. Chem Asian J 2020; 15:762-765. [DOI: 10.1002/asia.202000134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Daiki Doiuchi
- Department of Chemistry Graduate School of ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Tatsuya Nakamura
- Department of Chemistry Graduate School of ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hiroki Hayashi
- Faculty of Arts and ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Tatsuya Uchida
- Faculty of Arts and ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI−I2CNER)Kyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
37
|
Chu X, Wu Y, Lu H, Yang B, Ma C. Copper-Catalyzed Direct Carbamoylation of Quinoxalin-2(1H
)-ones with Hydrazinecarboxamides Under Mild Conditions. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xianglong Chu
- school of Chemistry and Chemical Engineering; Shandong University; 250100 Jinan P.R. China
| | - Yujuan Wu
- school of Chemistry and Chemical Engineering; Shandong University; 250100 Jinan P.R. China
| | - Haigen Lu
- school of Chemistry and Chemical Engineering; Shandong University; 250100 Jinan P.R. China
| | - Bingchuan Yang
- School of Chemistry and Chemical Engineering; Liaocheng University; 252059 Liaocheng P.R. China
| | - Chen Ma
- school of Chemistry and Chemical Engineering; Shandong University; 250100 Jinan P.R. China
| |
Collapse
|
38
|
Liu Y, You T, Wang HX, Tang Z, Zhou CY, Che CM. Iron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesis. Chem Soc Rev 2020; 49:5310-5358. [DOI: 10.1039/d0cs00340a] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the developments in iron and cobalt catalyzed C(sp3)–H bond functionalization reactions with emphasis on their applications in organic synthesis, i.e. natural products and pharmaceuticals synthesis and/or modification.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Tingjie You
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hai-Xu Wang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Zhou Tang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Cong-Ying Zhou
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Chi-Ming Che
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
- Department of Chemistry
| |
Collapse
|
39
|
Betori RC, May CM, Scheidt KA. Combined Photoredox/Enzymatic C-H Benzylic Hydroxylations. Angew Chem Int Ed Engl 2019; 58:16490-16494. [PMID: 31465617 PMCID: PMC6829040 DOI: 10.1002/anie.201909426] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 12/31/2022]
Abstract
Chemical transformations that install heteroatoms into C-H bonds are of significant interest because they streamline the construction of value-added small molecules. Direct C-H oxyfunctionalization, or the one step conversion of a C-H bond to a C-O bond, could be a highly enabling transformation due to the prevalence of the resulting enantioenriched alcohols in pharmaceuticals and natural products,. Here we report a single-flask photoredox/enzymatic process for direct C-H hydroxylation that proceeds with broad reactivity, chemoselectivity and enantioselectivity. This unified strategy advances general photoredox and enzymatic catalysis synergy and enables chemoenzymatic processes for powerful and selective oxidative transformations.
Collapse
Affiliation(s)
- Rick C Betori
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Catherine M May
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Karl A Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
40
|
Betori RC, May CM, Scheidt KA. Combined Photoredox/Enzymatic C−H Benzylic Hydroxylations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Rick C. Betori
- Department of ChemistryCenter for Molecular Innovation and Drug DiscoveryNorthwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Catherine M. May
- Department of ChemistryCenter for Molecular Innovation and Drug DiscoveryNorthwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Karl A. Scheidt
- Department of ChemistryCenter for Molecular Innovation and Drug DiscoveryNorthwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
41
|
Moir M, Danon JJ, Reekie TA, Kassiou M. An overview of late-stage functionalization in today’s drug discovery. Expert Opin Drug Discov 2019; 14:1137-1149. [DOI: 10.1080/17460441.2019.1653850] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Moir
- School of Chemistry, The University of Sydney, Sydney, Australia
| | | | - Tristan A. Reekie
- Research School of Chemistry, The Australian National University, Canberra, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, Australia
| |
Collapse
|
42
|
Nakhi A, McDermott CM, Stoltz KL, John K, Hawkinson JE, Ambrose EA, Khoruts A, Sadowsky MJ, Dosa PI. 7-Methylation of Chenodeoxycholic Acid Derivatives Yields a Substantial Increase in TGR5 Receptor Potency. J Med Chem 2019; 62:6824-6830. [PMID: 31268316 DOI: 10.1021/acs.jmedchem.9b00770] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TGR5 agonists are potential therapeutics for a variety of conditions including type 2 diabetes, obesity, and inflammatory bowel disease. After screening a library of chenodeoxycholic acid (CDCA) derivatives, it was determined that a range of modifications could be made to the acid moiety of CDCA which significantly increased TGR5 agonist potency. Surprisingly, methylation of the 7-hydroxyl of CDCA led to a further dramatic increase in potency, allowing the identification of 5.6 nM TGR5 agonist 17.
Collapse
Affiliation(s)
- Ali Nakhi
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota 55414 , United States
| | - Connor M McDermott
- Department of Medicinal Chemistry , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota 55414 , United States
| | - Kristen L Stoltz
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota 55414 , United States
| | - Kristen John
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota 55414 , United States
| | - Jon E Hawkinson
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota 55414 , United States
| | - Elizabeth A Ambrose
- Department of Medicinal Chemistry , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota 55414 , United States
| | - Alexander Khoruts
- Center for Immunology, Department of Medicine, Division of Gastroenterology , University of Minnesota , Minneapolis , Minnesota 55414 , United States.,BioTechnology Institute, Department of Soil, Water & Climate, and Department of Plant and Microbial Biology , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Michael J Sadowsky
- BioTechnology Institute, Department of Soil, Water & Climate, and Department of Plant and Microbial Biology , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Peter I Dosa
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota 55414 , United States
| |
Collapse
|
43
|
Hu P, Tan M, Cheng L, Zhao H, Feng R, Gu WJ, Han W. Bio-inspired iron-catalyzed oxidation of alkylarenes enables late-stage oxidation of complex methylarenes to arylaldehydes. Nat Commun 2019; 10:2425. [PMID: 31160563 PMCID: PMC6546739 DOI: 10.1038/s41467-019-10414-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 05/13/2019] [Indexed: 11/30/2022] Open
Abstract
It is a long-standing challenge to achieve efficient and highly selective aerobic oxidation of methylarenes to benzaldehydes, owing to overoxidation problem stemming from the oxidizability of benzaldehyde far higher than the toluene under usual aerobic conditions. Herein we report a bio-inspired iron-catalyzed polymethylhydrosiloxane-promoted aerobic oxidation of methylarenes to benzaldehydes with high yields and selectivities. Notably, this method can tolerate oxidation-labile and reactive boronic acid group, which is normally required to be transformed immediately after its introduction, and represents a significant advance in the area of the chemistry of organoboronic acids, including the ability to incorporate both aldehyde and ketone functionalities into unprotected arylboronic acids, a class that can be difficult to access by current means. The robustness of this protocol is demonstrated on the late-stage oxidation of complex bioactive molecules, including dehydroabietic acid, Gemfibrozil, Tocopherol nicotinate, a complex polyol structure, and structurally complex arylboronic acids. Oxidation of toluenes to benzaldehydes is usually accompanied by overoxidation products. Here, the authors report an iron-catalysed aerobic oxidation of methylarenes to benzaldehydes with high yields and selectivities, even in presence of boronic acid groups and in complex natural products and drugs.
Collapse
Affiliation(s)
- Penghui Hu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China.,School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Mingxi Tan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China.,School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Lu Cheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China.,School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Hongyuan Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China.,School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Rui Feng
- School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Wei-Jin Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Wei Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China. .,School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China.
| |
Collapse
|
44
|
Maiti S, Kim J, Park JH, Nam D, Lee JB, Kim YJ, Kee JM, Seo JK, Myung K, Rohde JU, Choe W, Kwon OH, Hong SY. Chemoselective Trifluoroethylation Reactions of Quinazolinones and Identification of Photostability. J Org Chem 2019; 84:6737-6751. [DOI: 10.1021/acs.joc.9b00470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saikat Maiti
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jaeshin Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jae-Heon Park
- Center for Soft and Living Matter, IBS, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | | | - Jae Bin Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Ye-Jin Kim
- Center for Soft and Living Matter, IBS, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | | | | | - Kyungjae Myung
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | | | | | - Oh-Hoon Kwon
- Center for Soft and Living Matter, IBS, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Sung You Hong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
45
|
Lyakin OY, Bryliakov KP, Talsi EP. Non-heme oxoiron(V) intermediates in chemo-, regio- and stereoselective oxidation of organic substrates. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Chen C, Liu W, Liu B, Zhou P, Tan H. Acylation of Arylamines with Triethylamine Derivatives in Combination with
tert
‐Butyl Hydroperoxide. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Cui Chen
- College of ChemistryGuangdong University of Petrochemical Technology 2 Guandu Road Maoming 525000 P. R. China
| | - Weibing. Liu
- College of ChemistryGuangdong University of Petrochemical Technology 2 Guandu Road Maoming 525000 P. R. China
| | - Bifu. Liu
- School of Chemistry and Material EngineeringHuizhou University Huizhou 516007 China
| | - Peng Zhou
- College of ChemistryGuangdong University of Petrochemical Technology 2 Guandu Road Maoming 525000 P. R. China
| | - Hua Tan
- College of ChemistryGuangdong University of Petrochemical Technology 2 Guandu Road Maoming 525000 P. R. China
| |
Collapse
|
47
|
Mack JBC, Walker KL, Robinson SG, Zare RN, Sigman MS, Waymouth RM, Du Bois J. Mechanistic Study of Ruthenium-Catalyzed C-H Hydroxylation Reveals an Unexpected Pathway for Catalyst Arrest. J Am Chem Soc 2019; 141:972-980. [PMID: 30601662 DOI: 10.1021/jacs.8b10950] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have recently disclosed [(dtbpy)2RuCl2] as an effective precatalyst for chemoselective C-H hydroxylation of C(sp3)-H bonds and have noted a marked disparity in reaction performance between 4,4'-di- tert-butyl-2,2'-bipyridine (dtbpy)- and 2,2'-bipyridine (bpy)-derived complexes. A desire to understand the origin of this difference and to further advance this catalytic method has motivated the comprehensive mechanistic investigation described herein. Details of this reaction have been unveiled through evaluation of ligand structure-activity relationships, electrochemical and kinetic studies, and pressurized sample infusion high-resolution mass spectrometry (PSI-MS). Salient findings from this investigation include the identification of more than one active oxidant and three disparate mechanisms for catalyst decomposition/arrest. Catalyst efficiency, as measured by turnover number, has a strong inverse correlation with the rate and extent of ligand dissociation, which is dependent on the identity of bipyridyl 4,4'-substituent groups. Dissociated bipyridyl ligand is oxidized to mono- and bis- N-oxide species under the reaction conditions, the former of which is found to act as a potent catalyst poison, yielding a catalytically inactive tris-ligated [Ru(dtbpy)2(dtbpy N-oxide)]2+ complex. Insights gained through this work highlight the power of PSI-MS for studies of complex reaction processes and are guiding ongoing efforts to develop high-performance, next-generation catalyst systems for C-H hydroxylation.
Collapse
Affiliation(s)
- James B C Mack
- Department of Chemistry , Stanford University , 337 Campus Drive , Stanford , California 94305 , United States
| | - Katherine L Walker
- Department of Chemistry , Stanford University , 337 Campus Drive , Stanford , California 94305 , United States
| | - Sophia G Robinson
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Richard N Zare
- Department of Chemistry , Stanford University , 337 Campus Drive , Stanford , California 94305 , United States
| | - Matthew S Sigman
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Robert M Waymouth
- Department of Chemistry , Stanford University , 337 Campus Drive , Stanford , California 94305 , United States
| | - J Du Bois
- Department of Chemistry , Stanford University , 337 Campus Drive , Stanford , California 94305 , United States
| |
Collapse
|
48
|
Yu H, Zhao Q, Wei Z, Wu Z, Li Q, Han S, Wei Y. Iron-catalyzed oxidative functionalization of C(sp3)–H bonds under bromide-synergized mild conditions. Chem Commun (Camb) 2019; 55:7840-7843. [DOI: 10.1039/c9cc03939b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bromide-synergized iron catalysis which can effectively catalyze the oxidative functionalization of various C–H bonds with high yield and good selectivity.
Collapse
Affiliation(s)
- Han Yu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education
| | - Qixin Zhao
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Zheyu Wei
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Zhikang Wu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Qi Li
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Sheng Han
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
49
|
Abstract
Despite significant progress in the development of site-selective aliphatic C-H oxidations over the past decade, the ability to oxidize strong methylene C-H bonds in the presence of more oxidatively labile aromatic functionalities remains a major unsolved problem. Such chemoselective reactivity is highly desirable for enabling late-stage oxidative derivatizations of pharmaceuticals and medicinally important natural products that often contain such functionality. Here, we report a simple manganese small-molecule catalyst Mn(CF3-PDP) system that achieves such chemoselectivity via an unexpected synergy of catalyst design and acid additive. Preparative remote methylene oxidation is obtained in 50 aromatic compounds housing medicinally relevant halogen, oxygen, heterocyclic and biaryl moieties. Late-stage methylene oxidation is demonstrated on four drug scaffolds, including the ethinylestradiol scaffold where other non-directed C-H oxidants that tolerate aromatic groups effect oxidation at only activated tertiary benzylic sites. Rapid generation of a known metabolite (piragliatin) from an advanced intermediate is demonstrated.
Collapse
|
50
|
Bietti M. Anwendung von Mediumeffekten in Aktivierungs‐ und Deaktivierungsstrategien zur selektiven Funktionalisierung aliphatischer C‐H‐Bindungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Massimo Bietti
- Dipartimento di Scienze e Tecnologie ChimicheUniversità “Tor Vergata” Via della Ricerca Scientifica, 1 I-00133 Rome Italien
| |
Collapse
|