1
|
Mockler N, Ramberg KO, Flood RJ, Crowley PB. N-Terminal Protein Binding and Disorder-to-Order Transition by a Synthetic Receptor. Biochemistry 2025; 64:1092-1098. [PMID: 39977527 PMCID: PMC11883740 DOI: 10.1021/acs.biochem.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
We describe the capture and structuring of disordered N-terminal regions by the macrocycle sulfonato-calix[4]arene (sclx4). Using the trimeric β-propeller Ralstonia solanacearum lectin (RSL) as a scaffold, we generated a series of mutants with extended and dynamic N-termini. Three of the mutants feature an N-terminal methionine-lysine motif. The fourth mutant contains the disordered 8-residue N-terminus of Histone 3, a component of the nucleosome. X-ray crystallography and NMR spectroscopy provide evidence for sclx4 binding to the flexible N-terminal regions. Three crystal structures reveal that the calixarene recognizes the N-terminal Met-Lys motif, capturing either residue. We provide crystallographic proof for sclx4 encapsulation of N-terminal methionine. Calixarene capture of intrinsically disordered regions may have applications in regulating protein secondary (and tertiary) structure.
Collapse
Affiliation(s)
- Niamh
M. Mockler
- School of Biological and
Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | | | - Ronan J. Flood
- School of Biological and
Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Peter B. Crowley
- School of Biological and
Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| |
Collapse
|
2
|
Tian Y, Li L, Wu L, Xu Q, Li Y, Pan H, Bing T, Bai X, Finko AV, Li Z, Bian J. Recent Developments in 14-3-3 Stabilizers for Regulating Protein-Protein Interactions: An Update. J Med Chem 2025; 68:2124-2146. [PMID: 39902774 DOI: 10.1021/acs.jmedchem.4c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
14-3-3 proteins play a crucial role in the regulation of protein-protein interactions, impacting various cellular processes and disease mechanisms. Recent advancements have led to the development of stabilizers that enhance the binding of 14-3-3 proteins to clients, presenting promising therapeutic potentials. This perspective provides an updated overview of the latest developments in the field of 14-3-3 stabilizers, with a focus on their design, synthesis, and biological evaluation. We discuss the structural basis for the interaction between 14-3-3 proteins and their ligands, highlighting key modifications that enhance binding affinity and selectivity. Additionally, we explore the therapeutic applications of 14-3-3 stabilizers across major therapeutic areas such as cancer, metabolic disorders, and neurodegenerative diseases. By summarizing recent research findings and technological advancements, this perspective aims to shed light on the current state of 14-3-3 stabilizer developments and outline future directions for optimizing these compounds as effective therapeutic agents.
Collapse
Affiliation(s)
- Yucheng Tian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Longjing Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liuyi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qianqian Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yaojie Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huawei Pan
- ICE Bioscience, Bldg 15, Yd 18, Kechuang 13th St, Etown, Tongzhou Dist, Beijing 100176, China
| | - Tiejun Bing
- ICE Bioscience, Bldg 15, Yd 18, Kechuang 13th St, Etown, Tongzhou Dist, Beijing 100176, China
| | - Xiumei Bai
- Department of Chemistry, Lomonosov Moscow State University (MSU), Moscow 119991, Russia
| | - Alexander V Finko
- Department of Chemistry, Lomonosov Moscow State University (MSU), Moscow 119991, Russia
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Porfetye AT, Stege P, Rebollido-Rios R, Hoffmann D, Schrader T, Vetter IR. How Do Molecular Tweezers Bind to Proteins? Lessons from X-ray Crystallography. Molecules 2024; 29:1764. [PMID: 38675584 PMCID: PMC11051928 DOI: 10.3390/molecules29081764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
To understand the biological relevance and mode of action of artificial protein ligands, crystal structures with their protein targets are essential. Here, we describe and investigate all known crystal structures that contain a so-called "molecular tweezer" or one of its derivatives with an attached natural ligand on the respective target protein. The aromatic ring system of these compounds is able to include lysine and arginine side chains, supported by one or two phosphate groups that are attached to the half-moon-shaped molecule. Due to their marked preference for basic amino acids and the fully reversible binding mode, molecular tweezers are able to counteract pathologic protein aggregation and are currently being developed as disease-modifying therapies against neurodegenerative diseases such as Alzheimer's and Parkinson's disease. We analyzed the corresponding crystal structures with 14-3-3 proteins in complex with mono- and diphosphate tweezers. Furthermore, we solved crystal structures of two different tweezer variants in complex with the enzyme Δ1-Pyrroline-5-carboxyl-dehydrogenase (P5CDH) and found that the tweezers are bound to a lysine and methionine side chain, respectively. The different binding modes and their implications for affinity and specificity are discussed, as well as the general problems in crystallizing protein complexes with artificial ligands.
Collapse
Affiliation(s)
- Arthur T. Porfetye
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Patricia Stege
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Rocio Rebollido-Rios
- Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Daniel Hoffmann
- Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117 Essen, Germany
| | - Ingrid R. Vetter
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| |
Collapse
|
4
|
Taha HB, Chawla E, Bitan G. IM-MS and ECD-MS/MS Provide Insight into Modulation of Amyloid Proteins Self-Assembly by Peptides and Small Molecules. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2066-2086. [PMID: 37607351 DOI: 10.1021/jasms.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neurodegenerative proteinopathies are characterized by formation and deposition of misfolded, aggregated proteins in the nervous system leading to neuronal dysfunction and death. It is widely believed that metastable oligomers of the offending proteins, preceding the fibrillar aggregates found in the tissue, are the proximal neurotoxins. There are currently almost no disease-modifying therapies for these diseases despite an active pipeline of preclinical development and clinical trials for over two decades, largely because studying the metastable oligomers and their interaction with potential therapeutics is notoriously difficult. Mass spectrometry (MS) is a powerful analytical tool for structural investigation of proteins, including protein-protein and protein-ligand interactions. Specific MS tools have been useful in determining the composition and conformation of abnormal protein oligomers involved in proteinopathies and the way they interact with drug candidates. Here, we analyze critically the utilization of ion-mobility spectroscopy-MS (IM-MS) and electron-capture dissociation (ECD) MS/MS for analyzing the oligomerization and conformation of multiple amyloidogenic proteins. We also discuss IM-MS investigation of their interaction with two classes of compounds developed by our group over the last two decades: C-terminal fragments derived from the 42-residue form of amyloid β-protein (Aβ42) and molecular tweezers. Finally, we review the utilization of ECD-MS/MS for elucidating the binding sites of the ligands on multiple proteins. These approaches are readily applicable to future studies addressing similar questions and hold promise for facilitating the development of successful disease-modifying drugs against neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Department of Integrative Biology & Physiology, University of California Los Angeles, California 90095, United States
| | - Esha Chawla
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, California 90095, United States
| | - Gal Bitan
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Brain Research Institute, University of California Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Visser EJ, Jaishankar P, Sijbesma E, Pennings MAM, Vandenboorn EMF, Guillory X, Neitz RJ, Morrow J, Dutta S, Renslo AR, Brunsveld L, Arkin MR, Ottmann C. From Tethered to Freestanding Stabilizers of 14-3-3 Protein-Protein Interactions through Fragment Linking. Angew Chem Int Ed Engl 2023; 62:e202308004. [PMID: 37455289 DOI: 10.1002/anie.202308004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Small-molecule stabilization of protein-protein interactions (PPIs) is a promising strategy in chemical biology and drug discovery. However, the systematic discovery of PPI stabilizers remains a largely unmet challenge. Herein we report a fragment-linking approach targeting the interface of 14-3-3 and a peptide derived from the estrogen receptor alpha (ERα) protein. Two classes of fragments-a covalent and a noncovalent fragment-were co-crystallized and subsequently linked, resulting in a noncovalent hybrid molecule in which the original fragment interactions were largely conserved. Supported by 20 crystal structures, this initial hybrid molecule was further optimized, resulting in selective, 25-fold stabilization of the 14-3-3/ERα interaction. The high-resolution structures of both the single fragments, their co-crystal structures and those of the linked fragments document a feasible strategy to develop orthosteric PPI stabilizers by linking to an initial tethered fragment.
Collapse
Affiliation(s)
- Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Marloes A M Pennings
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Edmee M F Vandenboorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Xavier Guillory
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - R Jeffrey Neitz
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - John Morrow
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Shubhankar Dutta
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| |
Collapse
|
6
|
Neblik J, Kirupakaran A, Beuck C, Mieres-Perez J, Niemeyer F, Le MH, Telgheder U, Schmuck JF, Dudziak A, Bayer P, Sanchez-Garcia E, Westermann S, Schrader T. Multivalent Molecular Tweezers Disrupt the Essential NDC80 Interaction with Microtubules. J Am Chem Soc 2023. [PMID: 37392180 DOI: 10.1021/jacs.3c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Binding of microtubule filaments by the conserved Ndc80 protein is required for kinetochore-microtubule attachments in cells and the successful distribution of the genetic material during cell division. The reversible inhibition of microtubule binding is an important aspect of the physiological error correction process. Small molecule inhibitors of protein-protein interactions involving Ndc80 are therefore highly desirable, both for mechanistic studies of chromosome segregation and also for their potential therapeutic value. Here, we report on a novel strategy to develop rationally designed inhibitors of the Ndc80 Calponin-homology domain using Supramolecular Chemistry. With a multiple-click approach, lysine-specific molecular tweezers were assembled to form covalently fused dimers to pentamers with a different overall size and preorganization/stiffness. We identified two dimers and a trimer as efficient Ndc80 CH-domain binders and have shown that they disrupt the interaction between Ndc80 and microtubules at low micromolar concentrations without affecting microtubule dynamics. NMR spectroscopy allowed us to identify the biologically important lysine residues 160 and 204 as preferred tweezer interaction sites. Enhanced sampling molecular dynamics simulations provided a rationale for the binding mode of multivalent tweezers and the role of pre-organization and secondary interactions in targeting multiple lysine residues across a protein surface.
Collapse
Affiliation(s)
- Jonas Neblik
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Abbna Kirupakaran
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Christine Beuck
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Joel Mieres-Perez
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
- Computational Bioengineering, Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, North Rhine-Westfalia 44227, Germany
| | - Felix Niemeyer
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - My-Hue Le
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Ursula Telgheder
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Jessica Felice Schmuck
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Alexander Dudziak
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Peter Bayer
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Elsa Sanchez-Garcia
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
- Computational Bioengineering, Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, North Rhine-Westfalia 44227, Germany
| | - Stefan Westermann
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| |
Collapse
|
7
|
Luo S, Wohl S, Zheng W, Yang S. Biophysical and Integrative Characterization of Protein Intrinsic Disorder as a Prime Target for Drug Discovery. Biomolecules 2023; 13:biom13030530. [PMID: 36979465 PMCID: PMC10046839 DOI: 10.3390/biom13030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Protein intrinsic disorder is increasingly recognized for its biological and disease-driven functions. However, it represents significant challenges for biophysical studies due to its high conformational flexibility. In addressing these challenges, we highlight the complementary and distinct capabilities of a range of experimental and computational methods and further describe integrative strategies available for combining these techniques. Integrative biophysics methods provide valuable insights into the sequence–structure–function relationship of disordered proteins, setting the stage for protein intrinsic disorder to become a promising target for drug discovery. Finally, we briefly summarize recent advances in the development of new small molecule inhibitors targeting the disordered N-terminal domains of three vital transcription factors.
Collapse
Affiliation(s)
- Shuqi Luo
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Samuel Wohl
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA
- Correspondence: (W.Z.); (S.Y.)
| | - Sichun Yang
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: (W.Z.); (S.Y.)
| |
Collapse
|
8
|
Rui H, Ashton KS, Min J, Wang C, Potts PR. Protein-protein interfaces in molecular glue-induced ternary complexes: classification, characterization, and prediction. RSC Chem Biol 2023; 4:192-215. [PMID: 36908699 PMCID: PMC9994104 DOI: 10.1039/d2cb00207h] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
Molecular glues are a class of small molecules that stabilize the interactions between proteins. Naturally occurring molecular glues are present in many areas of biology where they serve as central regulators of signaling pathways. Importantly, several clinical compounds act as molecular glue degraders that stabilize interactions between E3 ubiquitin ligases and target proteins, leading to their degradation. Molecular glues hold promise as a new generation of therapeutic agents, including those molecular glue degraders that can redirect the protein degradation machinery in a precise way. However, rational discovery of molecular glues is difficult in part due to the lack of understanding of the protein-protein interactions they stabilize. In this review, we summarize the structures of known molecular glue-induced ternary complexes and the interface properties. Detailed analysis shows different mechanisms of ternary structure formation. Additionally, we also review computational approaches for predicting protein-protein interfaces and highlight the promises and challenges. This information will ultimately help inform future approaches for rational molecular glue discovery.
Collapse
Affiliation(s)
- Huan Rui
- Center for Research Acceleration by Digital Innovation, Amgen Research Thousand Oaks CA 91320 USA
| | - Kate S Ashton
- Medicinal Chemistry, Amgen Research Thousand Oaks CA 91320 USA
| | - Jaeki Min
- Induced Proximity Platform, Amgen Research Thousand Oaks CA 91320 USA
| | - Connie Wang
- Digital, Technology & Innovation, Amgen Thousand Oaks CA 91320 USA
| | | |
Collapse
|
9
|
Shahpasand-Kroner H, Siddique I, Malik R, Linares GR, Ivanova MI, Ichida J, Weil T, Münch J, Sanchez-Garcia E, Klärner FG, Schrader T, Bitan G. Molecular Tweezers: Supramolecular Hosts with Broad-Spectrum Biological Applications. Pharmacol Rev 2023; 75:263-308. [PMID: 36549866 PMCID: PMC9976797 DOI: 10.1124/pharmrev.122.000654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.
Collapse
Affiliation(s)
- Hedieh Shahpasand-Kroner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ravinder Malik
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gabriel R Linares
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Magdalena I Ivanova
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Justin Ichida
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Tatjana Weil
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Jan Münch
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Elsa Sanchez-Garcia
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Frank-Gerrit Klärner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Thomas Schrader
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Ferruz N, Heinzinger M, Akdel M, Goncearenco A, Naef L, Dallago C. From sequence to function through structure: Deep learning for protein design. Comput Struct Biotechnol J 2022; 21:238-250. [PMID: 36544476 PMCID: PMC9755234 DOI: 10.1016/j.csbj.2022.11.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/20/2022] Open
Abstract
The process of designing biomolecules, in particular proteins, is witnessing a rapid change in available tooling and approaches, moving from design through physicochemical force fields, to producing plausible, complex sequences fast via end-to-end differentiable statistical models. To achieve conditional and controllable protein design, researchers at the interface of artificial intelligence and biology leverage advances in natural language processing (NLP) and computer vision techniques, coupled with advances in computing hardware to learn patterns from growing biological databases, curated annotations thereof, or both. Once learned, these patterns can be used to provide novel insights into mechanistic biology and the design of biomolecules. However, navigating and understanding the practical applications for the many recent protein design tools is complex. To facilitate this, we 1) document recent advances in deep learning (DL) assisted protein design from the last three years, 2) present a practical pipeline that allows to go from de novo-generated sequences to their predicted properties and web-powered visualization within minutes, and 3) leverage it to suggest a generated protein sequence which might be used to engineer a biosynthetic gene cluster to produce a molecular glue-like compound. Lastly, we discuss challenges and highlight opportunities for the protein design field.
Collapse
Key Words
- ADMM, Alternating Direction Method of Multipliers
- CNN, Convolutional Neural Network
- DL, Deep learning
- Deep learning
- Drug discovery
- FNN, fully-connected neural network
- GAN, Generative Adversarial Network
- GCN, Graph Convolutional Network
- GNN, Graph Neural Network
- GO, Gene Ontology
- GVP, Geometric Vector Perceptron
- LSTM, Long-Short Term Memory
- MLP, Multilayer Perceptron
- MSA, Multiple Sequence Alignment
- NLP, Natural Language Processing
- NSR, Natural Sequence Recovery
- Protein design
- Protein language models
- Protein prediction
- VAE, Variational Autoencoder
- pLM, protein Language Model
Collapse
Affiliation(s)
- Noelia Ferruz
- Institute of Informatics and Applications, University of Girona, Girona, Spain
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Michael Heinzinger
- Department of Informatics, Bioinformatics & Computational Biology, Technische Universität München, 85748 Garching, Germany
| | - Mehmet Akdel
- VantAI, 151 W 42nd Street, New York, NY 10036, United States
| | | | - Luca Naef
- VantAI, 151 W 42nd Street, New York, NY 10036, United States
| | - Christian Dallago
- Department of Informatics, Bioinformatics & Computational Biology, Technische Universität München, 85748 Garching, Germany
- VantAI, 151 W 42nd Street, New York, NY 10036, United States
- NVIDIA DE GmbH, Einsteinstraße 172, 81677 München, Germany
| |
Collapse
|
11
|
Hazegh Nikroo A, Lemmens LJM, Wezeman T, Ottmann C, Merkx M, Brunsveld L. Switchable Control of Scaffold Protein Activity via Engineered Phosphoregulated Autoinhibition. ACS Synth Biol 2022; 11:2464-2472. [PMID: 35765959 PMCID: PMC9295147 DOI: 10.1021/acssynbio.2c00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Scaffold proteins operate as organizing hubs to enable high-fidelity signaling, fulfilling crucial roles in the regulation of cellular processes. Bottom-up construction of controllable scaffolding platforms is attractive for the implementation of regulatory processes in synthetic biology. Here, we present a modular and switchable synthetic scaffolding system, integrating scaffold-mediated signaling with switchable kinase/phosphatase input control. Phosphorylation-responsive inhibitory peptide motifs were fused to 14-3-3 proteins to generate dimeric protein scaffolds with appended regulatory peptide motifs. The availability of the scaffold for intermolecular partner protein binding could be lowered up to 35-fold upon phosphorylation of the autoinhibition motifs, as demonstrated using three different kinases. In addition, a hetero-bivalent autoinhibitory platform design allowed for dual-kinase input regulation of scaffold activity. Reversibility of the regulatory platform was illustrated through phosphatase-controlled abrogation of autoinhibition, resulting in full recovery of 14-3-3 scaffold activity.
Collapse
Affiliation(s)
- Arjan Hazegh Nikroo
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Lenne J. M. Lemmens
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Tim Wezeman
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| |
Collapse
|
12
|
Sluchanko NN. Recent advances in structural studies of 14-3-3 protein complexes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:289-324. [PMID: 35534110 DOI: 10.1016/bs.apcsb.2021.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Being phosphopeptide-binding hubs, 14-3-3 proteins coordinate multiple cellular processes in eukaryotes, including the regulation of apoptosis, cell cycle, ion channels trafficking, transcription, signal transduction, and hormone biosynthesis. Forming constitutive α-helical dimers, 14-3-3 proteins predominantly recognize specifically phosphorylated Ser/Thr sites within their partners; this generally stabilizes phosphotarget conformation and affects its activity, intracellular distribution, dephosphorylation, degradation and interactions with other proteins. Not surprisingly, 14-3-3 complexes are involved in the development of a range of diseases and are considered promising drug targets. The wide interactome of 14-3-3 proteins encompasses hundreds of different phosphoproteins, for many of which the interaction is well-documented in vitro and in vivo but lack the structural data that would help better understand underlying regulatory mechanisms and develop new drugs. Despite obtaining structural information on 14-3-3 complexes is still lagging behind the research of 14-3-3 interactions on a proteome-wide scale, recent works provided some advances, including methodological improvements and accumulation of new interesting structural data, that are discussed in this review.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russian Federation.
| |
Collapse
|
13
|
Zhou X, Shi M, Wang X, Xu D. Exploring the Binding Mechanism of a Supramolecular Tweezer CLR01 to 14-3-3σ Protein via Well-Tempered Metadynamics. Front Chem 2022; 10:921695. [PMID: 35646830 PMCID: PMC9133541 DOI: 10.3389/fchem.2022.921695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Using supramolecules for protein function regulation is an effective strategy in chemical biology and drug discovery. However, due to the presence of multiple binding sites on protein surfaces, protein function regulation via selective binding of supramolecules is challenging. Recently, the functions of 14-3-3 proteins, which play an important role in regulating intracellular signaling pathways via protein–protein interactions, have been modulated using a supramolecular tweezer, CLR01. However, the binding mechanisms of the tweezer molecule to 14-3-3 proteins are still unclear, which has hindered the development of novel supramolecules targeting the 14-3-3 proteins. Herein, the binding mechanisms of the tweezer to the lysine residues on 14-3-3σ (an isoform in 14-3-3 protein family) were explored by well-tempered metadynamics. The results indicated that the inclusion complex formed between the protein and supramolecule is affected by both kinetic and thermodynamic factors. In particular, simulations confirmed that K214 could form a strong binding complex with the tweezer; the binding free energy was calculated to be −10.5 kcal·mol−1 with an association barrier height of 3.7 kcal·mol−1. In addition, several other lysine residues on 14-3-3σ were identified as being well-recognized by the tweezer, which agrees with experimental results, although only K214/tweezer was co-crystallized. Additionally, the binding mechanisms of the tweezer to all lysine residues were analyzed by exploring the representative conformations during the formation of the inclusion complex. This could be helpful for the development of new inhibitors based on tweezers with more functions against 14-3-3 proteins via modifications of CLR01. We also believe that the proposed computational strategies can be extended to understand the binding mechanism of multi-binding sites proteins with supramolecules and will, thus, be useful toward drug design.
Collapse
Affiliation(s)
- Xin Zhou
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
- *Correspondence: Xin Wang, ; Dingguo Xu,
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, China
- *Correspondence: Xin Wang, ; Dingguo Xu,
| |
Collapse
|
14
|
Li Y, Xia Y, Yin S, Wan F, Hu J, Kou L, Sun Y, Wu J, Zhou Q, Huang J, Xiong N, Wang T. Targeting Microglial α-Synuclein/TLRs/NF-kappaB/NLRP3 Inflammasome Axis in Parkinson's Disease. Front Immunol 2021; 12:719807. [PMID: 34691027 PMCID: PMC8531525 DOI: 10.3389/fimmu.2021.719807] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023] Open
Abstract
According to emerging studies, the excessive activation of microglia and the subsequent release of pro-inflammatory cytokines play important roles in the pathogenesis and progression of Parkinson's disease (PD). However, the exact mechanisms governing chronic neuroinflammation remain elusive. Findings demonstrate an elevated level of NLRP3 inflammasome in activated microglia in the substantia nigra of PD patients. Activated NLRP3 inflammasome aggravates the pathology and accelerates the progression of neurodegenerative diseases. Abnormal protein aggregation of α-synuclein (α-syn), a pathologically relevant protein of PD, were reported to activate the NLRP3 inflammasome of microglia through interaction with toll-like receptors (TLRs). This eventually releases pro-inflammatory cytokines through the translocation of nuclear factor kappa-B (NF-κB) and causes an impairment of mitochondria, thus damaging the dopaminergic neurons. Currently, therapeutic drugs for PD are primarily aimed at providing relief from its clinical symptoms, and there are no well-established strategies to halt or reverse this disease. In this review, we aimed to update existing knowledge on the role of the α-syn/TLRs/NF-κB/NLRP3 inflammasome axis and microglial activation in PD. In addition, this review summarizes recent progress on the α-syn/TLRs/NF-κB/NLRP3 inflammasome axis of microglia as a potential target for PD treatment by inhibiting microglial activation.
Collapse
Affiliation(s)
- Yunna Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Cao W, Qin X, Liu T. When Supramolecular Chemistry Meets Chemical Biology: New Strategies to Target Proteins through Host-Guest Interactions. Chembiochem 2021; 22:2914-2917. [PMID: 34487417 DOI: 10.1002/cbic.202100357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Indexed: 11/11/2022]
Abstract
Supramolecular chemistry for targeting proteins is of great interest for the development of novel approaches to recognize, isolate and control proteins. Taking advantage of chemical biology approaches, such as genetic-code expansion and enzyme-mediated ligation, guest recognition elements can be built into proteins of interest, allowing supramolecular control of protein function and regulation. In this viewpoint article, we will discuss the methods, applications, limitations, and future perspectives of supramolecular chemistry for targeting proteins in a site-specific manner.
Collapse
Affiliation(s)
- Wenbing Cao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China.,College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China
| | - Xuewen Qin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| |
Collapse
|
16
|
Guillory X, Hadrović I, de Vink PJ, Sowislok A, Brunsveld L, Schrader T, Ottmann C. Supramolecular Enhancement of a Natural 14-3-3 Protein Ligand. J Am Chem Soc 2021; 143:13495-13500. [PMID: 34427424 DOI: 10.1021/jacs.1c07095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rational design of protein-protein interaction (PPI) inhibitors is challenging. Connecting a general supramolecular protein binder with a specific peptidic ligand provides a novel conceptual approach. Thus, lysine-specific molecular tweezers were conjugated to a peptide-based 14-3-3 ligand and produced a strong PPI inhibitor with 100-fold elevated protein affinity. X-ray crystal structure elucidation of this supramolecular directed assembly provides unique molecular insight into the binding mode and fully aligns with Molecular Dynamics (MD) simulations. This new supramolecular chemical biology concept opens the path to novel chemical tools for studying PPIs.
Collapse
Affiliation(s)
- Xavier Guillory
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular System, Eindhoven University of Technology, (TU/e) Den Dolech 2, 5612 AZ Eindhoven, The Netherlands.,Department of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Inesa Hadrović
- Department of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Pim J de Vink
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular System, Eindhoven University of Technology, (TU/e) Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Andrea Sowislok
- University Clinics Essen, Experimental Orthopedics and Trauma Surgery, 45147 Essen, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular System, Eindhoven University of Technology, (TU/e) Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Thomas Schrader
- Department of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular System, Eindhoven University of Technology, (TU/e) Den Dolech 2, 5612 AZ Eindhoven, The Netherlands.,Department of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| |
Collapse
|
17
|
Cao W, Qin X, Wang Y, Dai Z, Dai X, Wang H, Xuan W, Zhang Y, Liu Y, Liu T. A General Supramolecular Approach to Regulate Protein Functions by Cucurbit[7]uril and Unnatural Amino Acid Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wenbing Cao
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University 94 Weijin Road, Nankai District Tianjin 300071 P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xuewen Qin
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Yong Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Zhen Dai
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University 94 Weijin Road, Nankai District Tianjin 300071 P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xianyin Dai
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University 94 Weijin Road, Nankai District Tianjin 300071 P. R. China
| | - Haoyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Weimin Xuan
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University 94 Weijin Road, Nankai District Tianjin 300071 P. R. China
| | - Yingming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University 94 Weijin Road, Nankai District Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University 94 Weijin Road, Nankai District Tianjin 300071 P. R. China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| |
Collapse
|
18
|
Cao W, Qin X, Wang Y, Dai Z, Dai X, Wang H, Xuan W, Zhang Y, Liu Y, Liu T. A General Supramolecular Approach to Regulate Protein Functions by Cucurbit[7]uril and Unnatural Amino Acid Recognition. Angew Chem Int Ed Engl 2021; 60:11196-11200. [PMID: 33580548 DOI: 10.1002/anie.202100916] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Indexed: 01/24/2023]
Abstract
Regulation of specific protein function is of great importance for both research and therapeutic development. Many small or large molecules have been developed to control specific protein function, but there is a lack of a universal approach to regulate the function of any given protein. We report a general host-guest molecular recognition approach involving modification of the protein functional surfaces with genetically encoded unnatural amino acids bearing guest side chains that can be specifically recognized by cucurbit[7]uril. Using two enzymes and a cytokine as models, we showed that the activity of proteins bearing unnatural amino acid could be turned off by host molecule binding, which blocked its functional binding surface. Protein activity can be switched back by treatment with a competitive guest molecule. Our approach provides a general tool for reversibly regulating protein function through molecular recognition and can be expected to be valuable for studying protein functions.
Collapse
Affiliation(s)
- Wenbing Cao
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xuewen Qin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Zhen Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China
| | - Haoyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Weimin Xuan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China
| | - Yingming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
19
|
Meiners A, Bäcker S, Hadrović I, Heid C, Beuck C, Ruiz-Blanco YB, Mieres-Perez J, Pörschke M, Grad JN, Vallet C, Hoffmann D, Bayer P, Sánchez-García E, Schrader T, Knauer SK. Specific inhibition of the Survivin-CRM1 interaction by peptide-modified molecular tweezers. Nat Commun 2021; 12:1505. [PMID: 33686072 PMCID: PMC7940618 DOI: 10.1038/s41467-021-21753-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Survivin's dual function as apoptosis inhibitor and regulator of cell proliferation is mediated via its interaction with the export receptor CRM1. This protein-protein interaction represents an attractive target in cancer research and therapy. Here, we report a sophisticated strategy addressing Survivin's nuclear export signal (NES), the binding site of CRM1, with advanced supramolecular tweezers for lysine and arginine. These were covalently connected to small peptides resembling the natural, self-complementary dimer interface which largely overlaps with the NES. Several biochemical methods demonstrated sequence-selective NES recognition and interference with the critical receptor interaction. These data were strongly supported by molecular dynamics simulations and multiscale computational studies. Rational design of lysine tweezers equipped with a peptidic recognition element thus allowed to address a previously unapproachable protein surface area. As an experimental proof-of-principle for specific transport signal interference, this concept should be transferable to any protein epitope with a flanking well-accessible lysine.
Collapse
Affiliation(s)
- Annika Meiners
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Sandra Bäcker
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Inesa Hadrović
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Christian Heid
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biology, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Yasser B Ruiz-Blanco
- Department of Computational Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Joel Mieres-Perez
- Department of Computational Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Marius Pörschke
- Department of Structural and Medicinal Biology, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Jean-Noël Grad
- Department of Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Cecilia Vallet
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Department of Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biology, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Elsa Sánchez-García
- Department of Computational Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany.
| | - Thomas Schrader
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Shirley K Knauer
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
20
|
Ruks T, Loza K, Heggen M, Ottmann C, Bayer P, Beuck C, Epple M. Targeting the Surface of the Protein 14-3-3 by Ultrasmall (1.5 nm) Gold Nanoparticles Carrying the Specific Peptide CRaf. Chembiochem 2021; 22:1456-1463. [PMID: 33275809 PMCID: PMC8248332 DOI: 10.1002/cbic.202000761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Indexed: 12/11/2022]
Abstract
The surface of ultrasmall gold nanoparticles with an average diameter of 1.55 nm was conjugated with a 14-3-3 protein-binding peptide derived from CRaf. Each particle carries 18 CRaf peptides, leading to an overall stoichiometry of Au(115)Craf(18). The binding to the protein 14-3-3 was probed by isothermal titration calorimetry (ITC) and fluorescence polarization spectroscopy (FP). The dissociation constant (KD ) was measured as 5.0 μM by ITC and 0.9 μM by FP, which was close to the affinity of dissolved CRaf to 14-3-3σ. In contrast to dissolved CRaf, which alone did not enter HeLa cells, CRAF-conjugated gold nanoparticles were well taken up by HeLa cells, opening the opportunity to target the protein inside a cell.
Collapse
Affiliation(s)
- Tatjana Ruks
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117, Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany
| |
Collapse
|
21
|
Holtum T, Kumar V, Sebena D, Voskuhl J, Schlücker S. UV resonance Raman spectroscopy of the supramolecular ligand guanidiniocarbonyl indole (GCI) with 244 nm laser excitation. Beilstein J Org Chem 2020; 16:2911-2919. [PMID: 33299489 PMCID: PMC7705883 DOI: 10.3762/bjoc.16.240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/06/2020] [Indexed: 01/07/2023] Open
Abstract
Ultraviolet resonance Raman (UVRR) spectroscopy is a powerful vibrational spectroscopic technique for the label-free monitoring of molecular recognition of peptides or proteins with supramolecular ligands such as guanidiniocarbonyl pyrroles (GCPs). The use of UV laser excitation enables Raman binding studies of this class of supramolecular ligands at submillimolar concentrations in aqueous solution and provides a selective signal enhancement of the carboxylate binding site (CBS). A current limitation for the extension of this promising UVRR approach from peptides to proteins as binding partners for GCPs is the UV-excited autofluorescence from aromatic amino acids observed for laser excitation wavelengths >260 nm. These excitation wavelengths are in the electronic resonance with the GCP for achieving both a signal enhancement and the selectivity for monitoring the CBS, but the resulting UVRR spectrum overlaps with the UV-excited autofluorescence from the aromatic binding partners. This necessitates the use of a laser excitation <260 nm for spectrally separating the UVRR spectrum of the supramolecular ligand from the UV-excited autofluorescence of the peptide or protein. Here, we demonstrate the use of UVRR spectroscopy with 244 nm laser excitation for the characterization of GCP as well as guanidiniocarbonyl indole (GCI), a next generation supramolecular ligand for the recognition of carboxylates. For demonstrating the feasibility of the UVRR binding studies without an interference from the disturbing UV-excited autofluorescence, benzoic acid (BA) was chosen as an aromatic binding partner for GCI. We also present the UVRR results from the binding of GCI to the ubiquitous RGD sequence (arginylglycylaspartic acid) as a biologically relevant peptide. In the case of RGD, the more pronounced differences between the UVRR spectra of the free and complexed GCI (1:1 mixture) clearly indicate a stronger binding of GCI to RGD compared with BA. A tentative assignment of the experimentally observed changes upon molecular recognition is based on the results from density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Tim Holtum
- Physical Chemistry, Department of Chemistry and CENIDE, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Vikas Kumar
- Physical Chemistry, Department of Chemistry and CENIDE, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Daniel Sebena
- Organic Chemistry, Department of Chemistry and CENIDE, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Jens Voskuhl
- Organic Chemistry, Department of Chemistry and CENIDE, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Sebastian Schlücker
- Physical Chemistry, Department of Chemistry and CENIDE, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
22
|
Ballone A, Picarazzi F, Prosser C, Davis J, Ottmann C, Mori M. Experimental and Computational Druggability Exploration of the 14-3-3ζ/SOS1pS 1161 PPI Interface. J Chem Inf Model 2020; 60:6555-6565. [PMID: 33138374 DOI: 10.1021/acs.jcim.0c00722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The exploration of the druggability of certain protein-protein interactions (PPIs) still remains a challenging task in drug discovery. Here, we present a case study using the 14-3-3-PPI, showing how small molecules can be located that are able to modulate this key oncogenic pathway. A workflow embracing biophysical techniques and MD simulations was developed to evaluate the potential of a 14-3-3ζ PPI system to bind new tool compounds. The significance of the use of computational approaches to compensate for the limitations of experimental techniques is demonstrated.
Collapse
Affiliation(s)
- Alice Ballone
- Department of Biochemical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, University of Technology Eindhoven, 5600 MB, Eindhoven, The Netherlands.,Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.,Department of Chemistry, UCB Pharma SPRL, 216 Bath Rd., Slough SL1 3WE, United Kingdom
| | - Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Christine Prosser
- Department of Chemistry, UCB Pharma SPRL, 216 Bath Rd., Slough SL1 3WE, United Kingdom
| | - Jeremy Davis
- Department of Chemistry, UCB Pharma SPRL, 216 Bath Rd., Slough SL1 3WE, United Kingdom
| | - Christian Ottmann
- Department of Biochemical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, University of Technology Eindhoven, 5600 MB, Eindhoven, The Netherlands
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
23
|
Bayer P, Matena A, Beuck C. NMR Spectroscopy of supramolecular chemistry on protein surfaces. Beilstein J Org Chem 2020; 16:2505-2522. [PMID: 33093929 PMCID: PMC7554676 DOI: 10.3762/bjoc.16.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 01/17/2023] Open
Abstract
As one of the few analytical methods that offer atomic resolution, NMR spectroscopy is a valuable tool to study the interaction of proteins with their interaction partners, both biomolecules and synthetic ligands. In recent years, the focus in chemistry has kept expanding from targeting small binding pockets in proteins to recognizing patches on protein surfaces, mostly via supramolecular chemistry, with the goal to modulate protein-protein interactions. Here we present NMR methods that have been applied to characterize these molecular interactions and discuss the challenges of this endeavor.
Collapse
Affiliation(s)
- Peter Bayer
- Structural and Medicinal Biochemistry, University of Duisburg-Essen, Universitätsstr. 1-5, 45141 Essen, Germany
| | - Anja Matena
- Structural and Medicinal Biochemistry, University of Duisburg-Essen, Universitätsstr. 1-5, 45141 Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, University of Duisburg-Essen, Universitätsstr. 1-5, 45141 Essen, Germany
| |
Collapse
|
24
|
Li H, Guan Q, Jia Z, Wang X. Theoretical study of switching characteristics of molecular tweezers based on bis(Zn-salphen). J Mol Model 2020; 26:265. [DOI: 10.1007/s00894-020-04527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
|
25
|
Ballone A, Lau RA, Zweipfenning FPA, Ottmann C. A new soaking procedure for X-ray crystallographic structural determination of protein-peptide complexes. Acta Crystallogr F Struct Biol Commun 2020; 76:501-507. [PMID: 33006579 PMCID: PMC7531243 DOI: 10.1107/s2053230x2001122x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/16/2020] [Indexed: 11/29/2022] Open
Abstract
Interactions between a protein and a peptide motif of its protein partner are prevalent in nature. Often, a protein also has multiple interaction partners. X-ray protein crystallography is commonly used to examine these interactions in terms of bond distances and angles as well as to describe hotspots within protein complexes. However, the crystallization process presents a significant bottleneck in structure determination since it often requires notably time-consuming screening procedures, which involve testing a broad range of crystallization conditions via a trial-and-error approach. This difficulty is also increased as each protein-peptide complex does not necessarily crystallize under the same conditions. Here, a new co-crystallization/peptide-soaking method is presented which circumvents the need to return to the initial lengthy crystal screening and optimization processes for each consequent new complex. The 14-3-3σ protein, which has multiple interacting partners with specific peptidic motifs, was used as a case study. It was found that co-crystals of 14-3-3σ and a low-affinity peptide from one of its partners, c-Jun, could easily be soaked with another interacting peptide to quickly and easily generate new structures at high resolution. Not only does this significantly reduce the production time, but new 14-3-3-peptide structures that were previously not accessible with the 14-3-3σ isoform, despite screening hundreds of other different conditions, were now also able to be resolved. The findings achieved in this study may be considered as a supporting and practical guide to potentially enable the acceleration of the crystallization process of any protein-peptide system.
Collapse
Affiliation(s)
- Alice Ballone
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Roxanne A. Lau
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Fabian P. A. Zweipfenning
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
- Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117 Essen, Germany
| |
Collapse
|
26
|
Di Costanzo L, Geremia S. Atomic Details of Carbon-Based Nanomolecules Interacting with Proteins. Molecules 2020; 25:E3555. [PMID: 32759758 PMCID: PMC7435792 DOI: 10.3390/molecules25153555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of fullerene, carbon-based nanomolecules sparked a wealth of research across biological, medical and material sciences. Understanding the interactions of these materials with biological samples at the atomic level is crucial for improving the applications of nanomolecules and address safety aspects concerning their use in medicine. Protein crystallography provides the interface view between proteins and carbon-based nanomolecules. We review forefront structural studies of nanomolecules interacting with proteins and the mechanism underlying these interactions. We provide a systematic analysis of approaches used to select proteins interacting with carbon-based nanomolecules explored from the worldwide Protein Data Bank (wwPDB) and scientific literature. The analysis of van der Waals interactions from available data provides important aspects of interactions between proteins and nanomolecules with implications on functional consequences. Carbon-based nanomolecules modulate protein surface electrostatic and, by forming ordered clusters, could modify protein quaternary structures. Lessons learned from structural studies are exemplary and will guide new projects for bioimaging tools, tuning of intrinsically disordered proteins, and design assembly of precise hybrid materials.
Collapse
Affiliation(s)
- Luigi Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico II, 100, 80055 Portici, Italy
| | - Silvano Geremia
- Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
27
|
Guillory X, Wolter M, Leysen S, Neves JF, Kuusk A, Genet S, Somsen B, Morrow JK, Rivers E, van Beek L, Patel J, Goodnow R, Schoenherr H, Fuller N, Cao Q, Doveston RG, Brunsveld L, Arkin MR, Castaldi P, Boyd H, Landrieu I, Chen H, Ottmann C. Fragment-based Differential Targeting of PPI Stabilizer Interfaces. J Med Chem 2020; 63:6694-6707. [PMID: 32501690 PMCID: PMC7356319 DOI: 10.1021/acs.jmedchem.9b01942] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stabilization of protein-protein interactions (PPIs) holds great potential for therapeutic agents, as illustrated by the successful drugs rapamycin and lenalidomide. However, how such interface-binding molecules can be created in a rational, bottom-up manner is a largely unanswered question. We report here how a fragment-based approach can be used to identify chemical starting points for the development of small-molecule stabilizers that differentiate between two different PPI interfaces of the adapter protein 14-3-3. The fragments discriminately bind to the interface of 14-3-3 with the recognition motif of either the tumor suppressor protein p53 or the oncogenic transcription factor TAZ. This X-ray crystallography driven study shows that the rim of the interface of individual 14-3-3 complexes can be targeted in a differential manner with fragments that represent promising starting points for the development of specific 14-3-3 PPI stabilizers.
Collapse
Affiliation(s)
- Xavier Guillory
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Madita Wolter
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - João Filipe Neves
- CNRS ERL9002 Integrative Structural Biology F-59000 Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Ave Kuusk
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands.,Hit Discovery, Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, Gothenburg, 431 50 Mölndal, Sweden
| | - Sylvia Genet
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Bente Somsen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - John Kenneth Morrow
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Emma Rivers
- Hit Discovery, Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, Gothenburg, 431 50 Mölndal, Sweden
| | - Lotte van Beek
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Joe Patel
- Oncology and Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gatehouse Park, Waltham, Massachusetts 02451, United States
| | - Robert Goodnow
- Oncology and Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gatehouse Park, Waltham, Massachusetts 02451, United States
| | - Heike Schoenherr
- Oncology and Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gatehouse Park, Waltham, Massachusetts 02451, United States
| | - Nathan Fuller
- Oncology and Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gatehouse Park, Waltham, Massachusetts 02451, United States
| | - Qing Cao
- Oncology and Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gatehouse Park, Waltham, Massachusetts 02451, United States
| | - Richard G Doveston
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Paola Castaldi
- Oncology and Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gatehouse Park, Waltham, Massachusetts 02451, United States
| | - Helen Boyd
- Hit Discovery, Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, Gothenburg, 431 50 Mölndal, Sweden
| | - Isabelle Landrieu
- CNRS ERL9002 Integrative Structural Biology F-59000 Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Hongming Chen
- Hit Discovery, Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, Gothenburg, 431 50 Mölndal, Sweden
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands.,Department of Organic Chemistry, University of Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
28
|
Bhattarai A, Emerson IA. Computational investigations on the dynamic binding effect of molecular tweezer CLR01 toward intrinsically disordered HIV-1 Nef. Biotechnol Appl Biochem 2020; 68:513-530. [PMID: 32447788 DOI: 10.1002/bab.1957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
Abstract
Intrinsically disordered proteins (IDPs) are highly flexible molecules that undergo disorder to order transition through their interaction with other molecules. IDPs play a vital role in several biological processes ranging from molecular recognition to several human diseases through the protein-protein interaction. The dynamic flexibility of IDPs and their implications in several human diseases enable these molecules to serve as novel therapeutic targets. However, the challenging task is to develop novel drugs against IDPs because of their lack of stable structures and the nature of high conformational flexibility. In this study, we have calculated the dynamic binding effect of the supramolecular tweezer CLR01 against the intrinsically disordered HIV-1 Nef by employing molecular docking and dynamics simulation approaches. From docking results, we predicted the strong binding affinity of the tweezer with the target residues of Nef. The docking results were further validated from the molecular dynamics simulation studies confirming the conformational stability of Nef upon tweezer binding. These findings provide useful insights into the development of potent inhibitors for targeting Nef protein functions.
Collapse
Affiliation(s)
- Anil Bhattarai
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Isaac Arnold Emerson
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
29
|
Dai L, Feng WX, Zheng SP, Jiang JJ, Wang D, van der Lee A, Dumitrescu D, Barboiu M. Progressive Folding and Adaptive Multivalent Recognition of Alkyl Amines and Amino Acids in p-Sulfonatocalix[4]arene Hosts: Solid-State and Solution Studies. Chempluschem 2020; 85:1623-1631. [PMID: 32286737 DOI: 10.1002/cplu.202000232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 01/15/2023]
Abstract
Calix[4]arenes have the ability to encapsulate biomimetic guests, offering interesting opportunities to explore their molecular recognition, very close to biological scenarios. In this study, p-sulfonatocalix[4]arene (C4 A) anions and hydrated alkali cations have been used for the in situ recognition of cationic 1,ω-diammonium-alkanes and 1,ω-amino-acids of variable lengths. NMR spectroscopy illustrates that these systems are stable in aqueous solution and the interaction process involves several binding states or stabilized conformations within the C4 A anion, depending of the nature of the guest. DOSY experiments showed that monomeric 1 : 1 host-guest species are present, while the cation does not influence their self-assembly in solution. The folded conformations observed in the solid-state X-ray single-crystal structures shed light on the constitutional adaptivity of flexible chains to environmental factors. Futhermore, a comprehensive screening of 30 single crystal structures helped to understand the in situ conformational fixation and accurate determination of the folded structures of the confined guest molecules, with a compression up to 40 % compared with their linear conformations.
Collapse
Affiliation(s)
- Liya Dai
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Wei-Xu Feng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi, 710129, P. R. China
| | - Shao-Ping Zheng
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ji-Jun Jiang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Dawei Wang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Arie van der Lee
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| | - Dan Dumitrescu
- XRD2 beamline, Elettra - Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Mihail Barboiu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| |
Collapse
|
30
|
Gigante A, Sijbesma E, Sánchez‐Murcia PA, Hu X, Bier D, Bäcker S, Knauer S, Gago F, Ottmann C, Schmuck C. A Supramolecular Stabilizer of the 14-3-3ζ/ERα Protein-Protein Interaction with a Synergistic Mode of Action. Angew Chem Int Ed Engl 2020; 59:5284-5287. [PMID: 31814236 PMCID: PMC7155037 DOI: 10.1002/anie.201914517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/27/2022]
Abstract
We report on a stabilizer of the interaction between 14-3-3ζ and the Estrogen Receptor alpha (ERα). ERα is a driver in the majority of breast cancers and 14-3-3 proteins are negative regulators of this nuclear receptor, making the stabilization of this protein-protein interaction (PPI) an interesting strategy. The stabilizer (1) consists of three symmetric peptidic arms containing an arginine mimetic, previously described as the GCP motif. 1 stabilizes the 14-3-3ζ/ERα interaction synergistically with the natural product Fusicoccin-A and was thus hypothesized to bind to a different site. This is supported by computational analysis of 1 binding to the binary complex of 14-3-3 and an ERα-derived phosphopeptide. Furthermore, 1 shows selectivity towards 14-3-3ζ/ERα interaction over other 14-3-3 client-derived phosphomotifs. These data provide a solid support of a new binding mode for a supramolecular 14-3-3ζ/ERα PPI stabilizer.
Collapse
Affiliation(s)
- Alba Gigante
- Department of Organic ChemistryUniversity of Duisburg EssenUniversitätstr. 745141EssenGermany
| | - Eline Sijbesma
- Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Pedro A. Sánchez‐Murcia
- Departamento de Ciencias BiomédicasUniversidad de Alcalá28805Alcalá de HenaresSpain
- Present address: Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
| | - Xiaoyu Hu
- Department of Organic ChemistryUniversity of Duisburg EssenUniversitätstr. 745141EssenGermany
| | - David Bier
- Department of Organic ChemistryUniversity of Duisburg EssenUniversitätstr. 745141EssenGermany
- Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Sandra Bäcker
- Centre for Medical BiotechnologyUniversity of Duisburg EssenUniversitätstr. 745141EssenGermany
| | - Shirley Knauer
- Centre for Medical BiotechnologyUniversity of Duisburg EssenUniversitätstr. 745141EssenGermany
| | - Federico Gago
- Departamento de Ciencias BiomédicasUniversidad de Alcalá28805Alcalá de HenaresSpain
| | - Christian Ottmann
- Department of Organic ChemistryUniversity of Duisburg EssenUniversitätstr. 745141EssenGermany
- Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Carsten Schmuck
- Department of Organic ChemistryUniversity of Duisburg EssenUniversitätstr. 745141EssenGermany
| |
Collapse
|
31
|
Gigante A, Sijbesma E, Sánchez‐Murcia PA, Hu X, Bier D, Bäcker S, Knauer S, Gago F, Ottmann C, Schmuck C. A Supramolecular Stabilizer of the 14‐3‐3ζ/ERα Protein‐Protein Interaction with a Synergistic Mode of Action. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alba Gigante
- Department of Organic ChemistryUniversity of Duisburg Essen Universitätstr. 7 45141 Essen Germany
| | - Eline Sijbesma
- Department of Biomedical EngineeringEindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Pedro A. Sánchez‐Murcia
- Departamento de Ciencias BiomédicasUniversidad de Alcalá 28805 Alcalá de Henares Spain
- Present address: Institute of Theoretical ChemistryFaculty of ChemistryUniversity of Vienna Währinger Str. 17 1090 Vienna Austria
| | - Xiaoyu Hu
- Department of Organic ChemistryUniversity of Duisburg Essen Universitätstr. 7 45141 Essen Germany
| | - David Bier
- Department of Organic ChemistryUniversity of Duisburg Essen Universitätstr. 7 45141 Essen Germany
- Department of Biomedical EngineeringEindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Sandra Bäcker
- Centre for Medical BiotechnologyUniversity of Duisburg Essen Universitätstr. 7 45141 Essen Germany
| | - Shirley Knauer
- Centre for Medical BiotechnologyUniversity of Duisburg Essen Universitätstr. 7 45141 Essen Germany
| | - Federico Gago
- Departamento de Ciencias BiomédicasUniversidad de Alcalá 28805 Alcalá de Henares Spain
| | - Christian Ottmann
- Department of Organic ChemistryUniversity of Duisburg Essen Universitätstr. 7 45141 Essen Germany
- Department of Biomedical EngineeringEindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Carsten Schmuck
- Department of Organic ChemistryUniversity of Duisburg Essen Universitätstr. 7 45141 Essen Germany
| |
Collapse
|
32
|
Chen X, Chen HY, Chen ZD, Gong JN, Chen CYC. A novel artificial intelligence protocol for finding potential inhibitors of acute myeloid leukemia. J Mater Chem B 2020; 8:2063-2081. [PMID: 32068215 DOI: 10.1039/d0tb00061b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is currently no effective treatment for acute myeloid leukemia, and surgery is also ineffective as an important treatment for most tumors. Rapidly developing artificial intelligence technology can be applied to different aspects of drug development, and it plays a key role in drug discovery. Based on network pharmacology and virtual screening, candidates were selected from the molecular database. Nine artificial intelligence algorithm models were used to further verify the candidates' potential. The 350 training results of the deep learning model showed higher credibility, and the R-square of the training set and test set of the optimal model reached 0.89 and 0.84, respectively. The random forest model has an R-square of 0.91 and a mean square error of only 0.003. The R-square of the Adaptive Boosting model and the Bagging model reached 0.92 and 0.88, respectively. Molecular dynamics simulation evaluated the stability of the ligand-protein complex and achieved good results. Artificial intelligence models had unearthed the promising candidates for STAT3 inhibitors, and the good performance of most models showed that they still had practical value on small data sets.
Collapse
Affiliation(s)
- Xu Chen
- Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 510275, China. and School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, 510275, China
| | - Hsin-Yi Chen
- Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 510275, China.
| | - Zhi-Dong Chen
- Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 510275, China. and School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, 510275, China
| | - Jia-Ning Gong
- Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 510275, China. and School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, 510275, China
| | - Calvin Yu-Chian Chen
- Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 510275, China. and Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan and Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
33
|
Dynamic conformational flexibility and molecular interactions of intrinsically disordered proteins. J Biosci 2020. [DOI: 10.1007/s12038-020-0010-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Quantum mechanics/molecular mechanics multiscale modeling of biomolecules. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2020. [DOI: 10.1016/bs.apoc.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Bhattarai A, Emerson IA. Dynamic conformational flexibility and molecular interactions of intrinsically disordered proteins. J Biosci 2020; 45:29. [PMID: 32020911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intrinsically disordered proteins (IDPs) are highly flexible and undergo disorder to order transition upon binding. They are highly abundant in human proteomes and play critical roles in cell signaling and regulatory processes. This review mainly focuses on the dynamics of disordered proteins including their conformational heterogeneity, protein-protein interactions, and the phase transition of biomolecular condensates that are central to various biological functions. Besides, the role of RNA-mediated chaperones in protein folding and stability of IDPs were also discussed. Finally, we explored the dynamic binding interface of IDPs as novel therapeutic targets and the effect of small molecules on their interactions.
Collapse
Affiliation(s)
- Anil Bhattarai
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | | |
Collapse
|
36
|
Study of the self-association of molecular tweezers bearing two different arms: influence of the stereoelectronic effects of the arm substituents. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Valenti D, Neves JF, Cantrelle FX, Hristeva S, Lentini Santo D, Obšil T, Hanoulle X, Levy LM, Tzalis D, Landrieu I, Ottmann C. Set-up and screening of a fragment library targeting the 14-3-3 protein interface. MEDCHEMCOMM 2019; 10:1796-1802. [PMID: 31814953 PMCID: PMC6839876 DOI: 10.1039/c9md00215d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/20/2019] [Indexed: 12/16/2022]
Abstract
Protein-protein interactions (PPIs) are at the core of regulation mechanisms in biological systems and consequently became an attractive target for therapeutic intervention. PPIs involving the adapter protein 14-3-3 are representative examples given the broad range of partner proteins forming a complex with one of its seven human isoforms. Given the challenges represented by the nature of these interactions, fragment-based approaches offer a valid alternative for the development of PPI modulators. After having assembled a fragment set tailored on PPIs' modulation, we started a screening campaign on the sigma isoform of 14-3-3 adapter proteins. Through the use of both mono- and bi-dimensional nuclear magnetic resonance spectroscopy measurements, coupled with differential scanning fluorimetry, three fragment hits were identified. These molecules bind the protein at two different regions distant from the usual binding groove highlighting new possibilities for selective modulation of 14-3-3 complexes.
Collapse
Affiliation(s)
- Dario Valenti
- Medicinal Chemistry , Taros Chemicals GmbH & Co. KG , Emil-Figge-Straße 76a , 44227 , Dortmund , Germany .
- Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands .
| | | | | | - Stanimira Hristeva
- Medicinal Chemistry , Taros Chemicals GmbH & Co. KG , Emil-Figge-Straße 76a , 44227 , Dortmund , Germany .
| | - Domenico Lentini Santo
- Department of Physical and Macromolecular Chemistry , Faculty of Science , Charles University , 12843 Prague , Czech Republic
| | - Tomáš Obšil
- Department of Physical and Macromolecular Chemistry , Faculty of Science , Charles University , 12843 Prague , Czech Republic
- Department of Structural Biology of Signaling Proteins , Division BIOCEV , Institute of Physiology of the Czech Academy of Sciences , Prumyslova 595, 252 50 Vestec , Czech Republic
| | - Xavier Hanoulle
- Univ. Lille , CNRS , UMR 8576 - UGSF , F-59000 Lille , France .
| | - Laura M Levy
- Medicinal Chemistry , Taros Chemicals GmbH & Co. KG , Emil-Figge-Straße 76a , 44227 , Dortmund , Germany .
| | - Dimitrios Tzalis
- Medicinal Chemistry , Taros Chemicals GmbH & Co. KG , Emil-Figge-Straße 76a , 44227 , Dortmund , Germany .
| | | | - Christian Ottmann
- Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands .
- Department of Chemistry , University of Duisburg-Essen , Universitätsstraße 7 , 45117 , Essen , Germany
| |
Collapse
|
38
|
Bartsch L, Bartel M, Gigante A, Iglesias-Fernández J, Ruiz-Blanco YB, Beuck C, Briels J, Toetsch N, Bayer P, Sanchez-Garcia E, Ottmann C, Schmuck C. Multivalent Ligands with Tailor-Made Anion Binding Motif as Stabilizers of Protein-Protein Interactions. Chembiochem 2019; 20:2921-2926. [PMID: 31168888 DOI: 10.1002/cbic.201900288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 12/23/2022]
Abstract
Modulation of protein-protein interactions (PPIs) is essential for understanding and tuning biologically relevant processes. Although inhibitors for PPIs are widely used, the field still lacks the targeted design of stabilizers. Here, we report unnatural stabilizers based on the combination of multivalency effects and the artificial building block guanidiniocarbonylpyrrol (GCP), an arginine mimetic. Unlike other GCP-based ligands that modulate PPIs in different protein targets, only a tetrameric design shows potent activity as stabilizer of the 14-3-3ζ/C-Raf and 14-3-3ζ/Tau complexes in the low-micromolar range. This evidences the role of multivalency for achieving higher specificity in the modulation of PPIs.
Collapse
Affiliation(s)
- Lina Bartsch
- Department of Organic Chemistry, University of Duisburg-Essen, Universitätstrasse 7, 45141, Essen, Germany
| | - Maria Bartel
- Department of Biomedical Engineering, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Alba Gigante
- Department of Organic Chemistry, University of Duisburg-Essen, Universitätstrasse 7, 45141, Essen, Germany
| | | | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University Duisburg-Essen, Universitätsstrasse 2, 45117, Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, University of Duisburg-Essen, Universitätstrasse 1-5, 45141, Essen, Germany
| | - Jeroen Briels
- Department of Biomedical Engineering, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Niklas Toetsch
- Computational Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University Duisburg-Essen, Universitätsstrasse 2, 45117, Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, University of Duisburg-Essen, Universitätstrasse 1-5, 45141, Essen, Germany
| | - Elsa Sanchez-Garcia
- Department of Theory, Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der Ruhr, Germany.,Computational Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University Duisburg-Essen, Universitätsstrasse 2, 45117, Essen, Germany
| | - Christian Ottmann
- Department of Organic Chemistry, University of Duisburg-Essen, Universitätstrasse 7, 45141, Essen, Germany.,Department of Biomedical Engineering, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Carsten Schmuck
- Department of Organic Chemistry, University of Duisburg-Essen, Universitätstrasse 7, 45141, Essen, Germany
| |
Collapse
|
39
|
Valeur E, Narjes F, Ottmann C, Plowright AT. Emerging modes-of-action in drug discovery. MEDCHEMCOMM 2019; 10:1550-1568. [PMID: 31673315 PMCID: PMC6786009 DOI: 10.1039/c9md00263d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
An increasing focus on complex biology to cure diseases rather than merely treat symptoms has transformed how drug discovery can be approached. Instead of activating or blocking protein function, a growing repertoire of drug modalities can be leveraged or engineered to hijack cellular processes, such as translational regulation or degradation mechanisms. Drug hunters can therefore access a wider arsenal of modes-of-action to modulate biological processes and this review summarises these emerging strategies by highlighting the most representative examples of these approaches.
Collapse
Affiliation(s)
- Eric Valeur
- Medicinal Chemistry , Research and Early Development, Cardiovascular, Renal & Metabolism , BioPharmaceuticals R&D , AstraZeneca, Gothenburg , 43183 Mölndal , Sweden .
| | - Frank Narjes
- Medicinal Chemistry , Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA) , BioPharmaceuticals R&D , AstraZeneca, Gothenburg , 43183 Mölndal , Sweden
| | - Christian Ottmann
- Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 , AZ , Eindhoven , the Netherlands
- Department of Chemistry , University of Duisburg-Essen , Universitätsstraße 7 , 45117 , Essen , Germany
| | - Alleyn T Plowright
- Integrated Drug Discovery , Sanofi-Aventis Deutschland GmbH , Industriepark Höchst , D-65926 Frankfurt am Main , Germany
| |
Collapse
|
40
|
Reddy PS, Langlois d'Estaintot B, Granier T, Mackereth CD, Fischer L, Huc I. Structure Elucidation of Helical Aromatic Foldamer-Protein Complexes with Large Contact Surface Areas. Chemistry 2019; 25:11042-11047. [PMID: 31257622 DOI: 10.1002/chem.201902942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 01/12/2023]
Abstract
The development of large synthetic ligands could be useful to target the sizeable surface areas involved in protein-protein interactions. Herein, we present long helical aromatic oligoamide foldamers bearing proteinogenic side chains that cover up to 450 Å2 of the human carbonic anhydrase II (HCA) surface. The foldamers are composed of aminoquinolinecarboxylic acids bearing proteinogenic side chains and of more flexible aminomethyl-pyridinecarboxylic acids that enhance helix handedness dynamics. Crystal structures of HCA-foldamer complexes were obtained with a 9- and a 14-mer both showing extensive protein-foldamer hydrophobic contacts. In addition, foldamer-foldamer interactions seem to be prevalent in the crystal packing, leading to the peculiar formation of an HCA superhelix wound around a rod of stacked foldamers. Solution studies confirm the positioning of the foldamer at the protein surface as well as a dimerization of the complexes.
Collapse
Affiliation(s)
- Post Sai Reddy
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Béatrice Langlois d'Estaintot
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Thierry Granier
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Cameron D Mackereth
- ARNA (U1212), Univ. Bordeaux-INSERM-CNRS, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Lucile Fischer
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Ivan Huc
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France.,Department Pharmazie and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
41
|
Li L, Erwin N, Möbitz S, Niemeyer F, Schrader T, Winter RHA. Dissociation of the Signaling Protein K‐Ras4B from Lipid Membranes Induced by a Molecular Tweezer. Chemistry 2019; 25:9827-9833. [DOI: 10.1002/chem.201901861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Lei Li
- Faculty of Chemistry and Chemical Biology, Physical Chemistry ITechnical University of Dortmund Otto-Hahn-Str. 4a 44227 Dortmund Germany
- International Max Planck Research School (IMPRS) in Chemical, and Molecular Biology. Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Nelli Erwin
- Faculty of Chemistry and Chemical Biology, Physical Chemistry ITechnical University of Dortmund Otto-Hahn-Str. 4a 44227 Dortmund Germany
- International Max Planck Research School (IMPRS) in Chemical, and Molecular Biology. Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Simone Möbitz
- Faculty of Chemistry and Chemical Biology, Physical Chemistry ITechnical University of Dortmund Otto-Hahn-Str. 4a 44227 Dortmund Germany
| | - Felix Niemeyer
- Faculty of Chemistry, Organic ChemistryUniversity of Duisburg-Essen Universitätsstrasse 2-5 45144 Essen Germany
| | - Thomas Schrader
- Faculty of Chemistry, Organic ChemistryUniversity of Duisburg-Essen Universitätsstrasse 2-5 45144 Essen Germany
| | - Roland Hermann Alfons Winter
- Faculty of Chemistry and Chemical Biology, Physical Chemistry ITechnical University of Dortmund Otto-Hahn-Str. 4a 44227 Dortmund Germany
| |
Collapse
|
42
|
Mbarek A, Moussa G, Chain JL. Pharmaceutical Applications of Molecular Tweezers, Clefts and Clips. Molecules 2019; 24:molecules24091803. [PMID: 31075983 PMCID: PMC6539068 DOI: 10.3390/molecules24091803] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022] Open
Abstract
Synthetic acyclic receptors, composed of two arms connected with a spacer enabling molecular recognition, have been intensively explored in host-guest chemistry in the past decades. They fall into the categories of molecular tweezers, clefts and clips, depending on the geometry allowing the recognition of various guests. The advances in synthesis and mechanistic studies have pushed them forward to pharmaceutical applications, such as neurodegenerative disorders, infectious diseases, cancer, cardiovascular disease, diabetes, etc. In this review, we provide a summary of the synthetic molecular tweezers, clefts and clips that have been reported for pharmaceutical applications. Their structures, mechanism of action as well as in vitro and in vivo results are described. Such receptors were found to selectively bind biological guests, namely, nucleic acids, sugars, amino acids and proteins enabling their use as biosensors or therapeutics. Particularly interesting are dynamic molecular tweezers which are capable of controlled motion in response to an external stimulus. They proved their utility as imaging agents or in the design of controlled release systems. Despite some issues, such as stability, cytotoxicity or biocompatibility that still need to be addressed, it is obvious that molecular tweezers, clefts and clips are promising candidates for several incurable diseases as therapeutic agents, diagnostic or delivery tools.
Collapse
Affiliation(s)
- Amira Mbarek
- Gene Delivery Laboratory, Faculty of pharmacy, Université de Montréal, H3C 3J7, Montréal, Québec, Canada.
| | - Ghina Moussa
- Gene Delivery Laboratory, Faculty of pharmacy, Université de Montréal, H3C 3J7, Montréal, Québec, Canada.
| | - Jeanne Leblond Chain
- Gene Delivery Laboratory, Faculty of pharmacy, Université de Montréal, H3C 3J7, Montréal, Québec, Canada.
- Univ. Bordeaux, ARNA Laboratory, F-33016 Bordeaux, France.
- INSERM U1212, CNRS UMR 5320, ARNA Laboratory, F-33016 Bordeaux, France.
| |
Collapse
|
43
|
Sluchanko NN, Bustos DM. Intrinsic disorder associated with 14-3-3 proteins and their partners. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:19-61. [PMID: 31521232 DOI: 10.1016/bs.pmbts.2019.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein-protein interactions (PPIs) mediate a variety of cellular processes and form complex networks, where connectivity is achieved owing to the "hub" proteins whose interaction with multiple protein partners is facilitated by the intrinsically disordered protein regions (IDPRs) and posttranslational modifications (PTMs). Universal regulatory proteins of the eukaryotic 14-3-3 family nicely exemplify these concepts and are the focus of this chapter. The extremely wide interactome of 14-3-3 proteins is characterized by high levels of intrinsic disorder (ID) enabling protein phosphorylation and consequent specific binding to the well-structured 14-3-3 dimers, one of the first phosphoserine/phosphothreonine binding modules discovered. However, high ID enrichment also challenges structural studies, thereby limiting the progress in the development of small molecule modulators of the key 14-3-3 PPIs of increased medical importance. Besides the well-known structural flexibility of their variable C-terminal tails, recent studies revealed the strong and conserved ID propensity hidden in the N-terminal segment of 14-3-3 proteins (~40 residues), normally forming the α-helical dimerization region, that may have a potential role for the dimer/monomer dynamics and recently reported moonlighting chaperone-like activity of these proteins. We review the role of ID in the 14-3-3 structure, their interactome, and also in selected 14-3-3 complexes. In addition, we discuss approaches that, in the future, may help minimize the disproportion between the large amount of known 14-3-3 partners and the small number of 14-3-3 complexes characterized with atomic precision, to unleash the whole potential of 14-3-3 PPIs as drug targets.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Diego M Bustos
- Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
44
|
de Vink PJ, Andrei SA, Higuchi Y, Ottmann C, Milroy LG, Brunsveld L. Cooperativity basis for small-molecule stabilization of protein-protein interactions. Chem Sci 2019; 10:2869-2874. [PMID: 30996864 PMCID: PMC6429609 DOI: 10.1039/c8sc05242e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
A cooperativity framework to describe and interpret small-molecule stabilization of protein–protein interactions (PPI) is presented, which allows elucidating structure–activity relationships regarding cooperativity and intrinsic affinity.
A cooperativity framework to describe and interpret small-molecule stabilization of protein–protein interactions (PPI) is presented. The stabilization of PPIs is a versatile and emerging therapeutic strategy to target specific combinations of protein partners within the protein interactome. Currently, the potency of PPI stabilizers is typically expressed by their apparent affinity or EC50. Here, we propose that the effect of a PPI stabilizer be best described involving the cooperativity factor, α, between the stabilizer and binding partners in addition to the intrinsic affinity, KDII, of the stabilizer for one of the apo-proteins. By way of illustration, we combine fluorescence polarization measurements with thermodynamic modeling to determine the α and KDII for the PPI stabilization of 14-3-3 and TASK3 by fusicoccin-A (FC-A) and validate our approach by studying other PPI-partners of 14-3-3 proteins. Finally, we characterize a library of different stabilizer compounds, and perform structure–activity relationship studies in which molecular changes could be attributed to either changes in cooperativity or intrinsic affinity. Such insights should aid in the development of more effective protein–protein stabilizer drugs.
Collapse
Affiliation(s)
- Pim J de Vink
- Laboratory of Chemical Biology , Department of Biomedical Engineering and Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600MB , Eindhoven , The Netherlands .
| | - Sebastian A Andrei
- Laboratory of Chemical Biology , Department of Biomedical Engineering and Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600MB , Eindhoven , The Netherlands .
| | - Yusuke Higuchi
- The Institute of Scientific and Industrial Research , Osaka University , Ibaraki , Japan
| | - Christian Ottmann
- Laboratory of Chemical Biology , Department of Biomedical Engineering and Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600MB , Eindhoven , The Netherlands . .,Department of Organic Chemistry , University of Duisburg-Essen , Germany
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology , Department of Biomedical Engineering and Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600MB , Eindhoven , The Netherlands .
| | - Luc Brunsveld
- Laboratory of Chemical Biology , Department of Biomedical Engineering and Institute for Complex Molecular Systems , Eindhoven University of Technology , P. O. Box 513 , 5600MB , Eindhoven , The Netherlands .
| |
Collapse
|
45
|
Lu Y, Farrow MR, Fayon P, Logsdail AJ, Sokol AA, Catlow CRA, Sherwood P, Keal TW. Open-Source, Python-Based Redevelopment of the ChemShell Multiscale QM/MM Environment. J Chem Theory Comput 2019; 15:1317-1328. [PMID: 30511845 DOI: 10.1021/acs.jctc.8b01036] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ChemShell is a scriptable computational chemistry environment with an emphasis on multiscale simulation of complex systems using combined quantum mechanical and molecular mechanical (QM/MM) methods. Motivated by a scientific need to efficiently and accurately model chemical reactions on surfaces and within microporous solids on massively parallel computing systems, we present a major redevelopment of the ChemShell code, which provides a modern platform for advanced QM/MM embedding models. The new version of ChemShell has been re-engineered from the ground up with a new QM/MM driver module, an improved parallelization framework, new interfaces to high performance QM and MM programs, and a user interface written in the Python programming language. The redeveloped package is capable of performing QM/MM calculations on systems of significantly increased size, which we illustrate with benchmarks on zirconium dioxide nanoparticles of over 160000 atoms.
Collapse
Affiliation(s)
- You Lu
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| | - Matthew R Farrow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom
| | - Pierre Fayon
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| | - Andrew J Logsdail
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.,Cardiff Catalysis Institute, School of Chemistry , Cardiff University , Cardiff CF10 3AT , United Kingdom
| | - Alexey A Sokol
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom
| | - C Richard A Catlow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.,Cardiff Catalysis Institute, School of Chemistry , Cardiff University , Cardiff CF10 3AT , United Kingdom.,UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory , Harwell Science and Innovation Campus , Oxon OX11 0QX , United Kingdom
| | - Paul Sherwood
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| | - Thomas W Keal
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| |
Collapse
|
46
|
|
47
|
Alex JM, Corvaglia V, Hu X, Engilberge S, Huc I, Crowley PB. Crystal structure of a protein–aromatic foldamer composite: macromolecular chiral resolution. Chem Commun (Camb) 2019; 55:11087-11090. [DOI: 10.1039/c9cc05330a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A protein–foldamer crystal structure illustrates protein assembly by a sulfonated aromatic oligoamide, and chiral resolution of the foldamer helix handedness.
Collapse
Affiliation(s)
- Jimi M. Alex
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
| | - Valentina Corvaglia
- Universite de Bordeaux
- CNRS
- Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
- Institut Europeen de Chimie et Biologie
- Pessac 33600
| | - Xiaobo Hu
- Universite de Bordeaux
- CNRS
- Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
- Institut Europeen de Chimie et Biologie
- Pessac 33600
| | | | - Ivan Huc
- Universite de Bordeaux
- CNRS
- Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
- Institut Europeen de Chimie et Biologie
- Pessac 33600
| | | |
Collapse
|
48
|
Yilmaz E, Bier D, Guillory X, Briels J, Ruiz-Blanco YB, Sanchez-Garcia E, Ottmann C, Kaiser M. Mono- and Bivalent 14-3-3 Inhibitors for Characterizing Supramolecular "Lysine Wrapping" of Oligoethylene Glycol (OEG) Moieties in Proteins. Chemistry 2018; 24:13807-13814. [PMID: 29924885 DOI: 10.1002/chem.201801074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/15/2018] [Indexed: 12/26/2022]
Abstract
Previous studies have indicated the presence of defined interactions between oligo or poly(ethylene glycol) (OEG or PEG) and lysine residues. In these interactions, the OEG or PEG residues "wrap around" the lysine amino group, thereby enabling complexation of the amino group by the ether oxygen residues. The resulting biochemical binding affinity and thus biological relevance of this supramolecular interaction however remains unclear so far. Here, we report that OEG-containing phosphophenol ether inhibitors of 14-3-3 proteins also display such a "lysine-wrapping" binding mode. For better investigating the biochemical relevance of this binding mode, we made use of the dimeric nature of 14-3-3 proteins and designed as well as synthesized a set of bivalent 14-3-3 inhibitors for biochemical and X-ray crystallography-based structural studies. We found that all synthesized derivatives adapted the "lysine-wrapping" binding mode in the crystal structures; in solution, a different binding mode is however observed, most probably as the "lysine-wrapping" binding mode turned out to be a rather weak interaction. Accordingly, our studies demonstrate that structural studies of OEG-lysine interactions are difficult to interpret and their presence in structural studies may not automatically be correlated with a relevant interaction also in solution but requires further biochemical studies.
Collapse
Affiliation(s)
- Elvan Yilmaz
- Chemical Biology, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - David Bier
- Department of Chemistry, University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany.,Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Xavier Guillory
- Department of Chemistry, University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany.,Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Jeroen Briels
- Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Christian Ottmann
- Department of Chemistry, University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany.,Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Markus Kaiser
- Chemical Biology, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| |
Collapse
|
49
|
Ballone A, Centorrino F, Ottmann C. 14-3-3: A Case Study in PPI Modulation. Molecules 2018; 23:molecules23061386. [PMID: 29890630 PMCID: PMC6099619 DOI: 10.3390/molecules23061386] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023] Open
Abstract
In recent years, targeting the complex network of protein–protein interactions (PPIs) has been identified as a promising drug-discovery approach to develop new therapeutic strategies. 14-3-3 is a family of eukaryotic conserved regulatory proteins which are of high interest as potential targets for pharmacological intervention in human diseases, such as cancer and neurodegenerative and metabolic disorders. This viewpoint is built on the “hub” nature of the 14-3-3 proteins, binding to several hundred identified partners, consequently implicating them in a multitude of different cellular mechanisms. In this review, we provide an overview of the structural and biological features of 14-3-3 and the modulation of 14-3-3 PPIs for discovering small molecular inhibitors and stabilizers of 14-3-3 PPIs.
Collapse
Affiliation(s)
- Alice Ballone
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands.
| | - Federica Centorrino
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands.
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands.
- Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117 Essen, Germany.
| |
Collapse
|
50
|
Ballone A, Centorrino F, Wolter M, Ottmann C. Structural characterization of 14-3-3ζ in complex with the human Son of sevenless homolog 1 (SOS1). J Struct Biol 2018; 202:210-215. [DOI: 10.1016/j.jsb.2018.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
|