1
|
Abedirad SM, Shamsipur M, Taherpour AA, Vaezi Z, Adhami F. Domino-like turn-on chemiluminescence amplification: Opening a gateway through proximal-imidazole species formation and metal-ligand complexation. Talanta 2025; 292:127902. [PMID: 40088767 DOI: 10.1016/j.talanta.2025.127902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Due to their extremely low background signal and high sensitivity, the chemiluminescence (CL) probes have received a great attention in various chemical and biological applications. However, the lack of selectivity is still a challenging task. As an innovative topic of research, in this work we developed a domino-like turn-on CL reaction through proximal-imidazole species for the first time. The oxidation reaction of N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide (1) by hydrogen peroxide found to promoted by a domino-like reaction between proximal imidazole species and the Co2+-1 complex formation which accompanied by a dramatically turn-on emission. In the way of explaining the possible mechanism, the application of density functional theory (DFT) studies revealed that there are three possible pathways for the reactions between precursor 1 and HOO- in the presence of imidazole to produce the oxidized isomers. The strongest interaction found to occur in pathway 3, in which the sulfur atom was oxidized, while there was some repulsion between HOO- and 1, due to the effects of two different charges in pathways 1 and 2. To confirm tits applicability, the CL system was successfully applied to highly selective quantification of vitamin B12 in some real samples. The linear dynamic range was achieved from 0.08 to 34 ng mL-1 and the detection limit was evaluated as 0.028 ng mL-1. This new method introduced fluorescence selectivity and CL sensitivity in single technique. It was finally anticipated that the CL amplification through proximal-imidazole species possesses a great potential on tuning various color-emissions based on different metal-ligand complex formations studied.
Collapse
Affiliation(s)
| | | | | | - Zahra Vaezi
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, PO Box: 14115-154, Tehran, Iran
| | - Forough Adhami
- Chemistry Department, Faculty of Science, Yadegar-e-Imam Khomeini (RAH) Shahre-Ray Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Xu Y, Hu R, Zhang X. Recent Advances in Reactive Oxygen Species -Mediated Near-Infrared Organic Long-Persistent Luminescence Imaging. Chem Asian J 2025; 20:e202401918. [PMID: 39945087 DOI: 10.1002/asia.202401918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/08/2025] [Indexed: 03/14/2025]
Abstract
Organic luminophores have found extensive applications in cellular and in vivo fluorescence imaging. However, their efficacy is often hindered by formidable challenges, including a low signal-to-noise ratio (SNR), susceptibility to false-positive signals, limited tissue penetration depth, and autofluorescence arising from non-negligible background interference. The emergence of near-infrared (NIR) afterglow imaging has addressed these problems. Organic afterglow imaging distinguishes by its unique capacity to emit light long after the cessation of external excitation, thereby exhibiting extraordinary persistence in luminescence. The integration of deep tissue penetration with prolonged luminescence in NIR organic long-persistent luminescent materials confers a distinct advantage for in vivo biological imaging, effectively minimizing the confounding effects of autofluorescence while enhancing spatial resolution for imaging in deep tissues, which is favorable for biosensing. In this review, we present a comprehensive summary of recent advancements in reactive oxygen species (ROS)-mediated NIR organic afterglow imaging, positioning this emerging technique as an exceptionally promising approach for in vivo biosensing, biological imaging, imaging-guided surgery, and therapeutic applications. Furthermore, we critically examine the challenges facing this field and propose future avenues for its continued evolution and refinement.
Collapse
Affiliation(s)
- Yan Xu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, P.R. China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, P.R. China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theronastics, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Huang J, Liu J, Wu J, Xu M, Lin Y, Pu K. Near-Infrared Chemiluminophore Switches Photodynamic Processes via Protein Complexation for Biomarker-Activatable Cancer Therapy. Angew Chem Int Ed Engl 2025; 64:e202421962. [PMID: 39587712 DOI: 10.1002/anie.202421962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Despite the potential in cancer therapy, phototheranostic agents often face two challenges: limited diagnostic sensitivity due to tissue autofluorescence and suboptimal therapeutic efficacy due to the Type-II photodynamic process with the heavy oxygen reliance. In contrast, chemiluminescent theranostic agents without the requirement of real-time light excitation can address the issue of tissue autofluorescence, which however have been rarely reported for photodynamic therapy (PDT), not to mention less oxygen-dependent Type-I PDT. In this work, we synthesize near-infrared (NIR) chemiluminophores with the specific binding towards human serum albumin (HSA) to form chemiluminophore-protein complex for cancer detection and photodynamic therapy. Interestingly, after the complexation with HSA, the chemiluminescence (CL) intensities of chemiluminophores are enhanced by over 10-fold; meanwhile, the photodynamic process switches from Type-II (singlet-oxygen-generation dominated) to Type-I (superoxide anion and hydroxyl radical dominated), while the previously reported activated chemiluminophore with non-specific HSA binding can't switch photodynamic process. Based on the optimal chemiluminophore, a nitroreductase-activatable CL probe-protein complex is synthesized, which specially turns on its CL and Type-I PDT in hypoxic tumors for precision therapy. Thus, this study provides a complexation strategy to improve phototheranostic performance of chemiluminophores.
Collapse
Affiliation(s)
- Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | | | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Youshi Lin
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Singapore, 636921, Singapore
| |
Collapse
|
4
|
Lin Y, Huang J, Pu K. Near-Infrared Chemiluminescent Theranostics. Angew Chem Int Ed Engl 2025:e202501681. [PMID: 40051035 DOI: 10.1002/anie.202501681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Molecular chemiluminescence probes with near-infrared (NIR) emission offer promising benefits in deciphering complex pathological processes in a living system, as NIR chemiluminescence minimizes autofluorescence, enhances deep-tissue penetration, and improves signal-to-noise ratio. Molecular engineering using single-luminophore design and dual-luminophore design with intramolecular energy transfer provides ways to develop conventional chemiluminophore scaffolds into NIR chemiluminescence probes with ideal chemiluminescence quantum yield and half-life. By virtue of the structural diversity, 1,2-dioxetane-based NIR chemiluminophores with biomarker activity have been developed. This review summarizes the molecular design strategies of NIR chemiluminescence theranostic probes (NCTPs), followed by introducing activatable NCTPs with their biomedical applications for disease theranostics. Lastly, future perspectives and potential challenges of NIR chemiluminescence imaging in preclinical research and clinical translational potential are discussed.
Collapse
Affiliation(s)
- Youshi Lin
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
5
|
Osman R, Haris U, Cabello MC, Mason RP, Lippert AR. A silicon rhodamine 1,2-dioxetane chemiluminophore for in vivo near-infrared imaging. Org Biomol Chem 2025; 23:1846-1850. [PMID: 39831780 PMCID: PMC11839319 DOI: 10.1039/d4ob02002b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Near-infrared (NIR) chemiluminescent probes have attracted increasing attention in recent years due to their attractive properties for in vivo imaging. Herein, we developed a NIR chemiluminophore silicon rhodamine (SiRCL-1) based on the intramolecular energy transfer process from excited state benzoate to a silicon rhodamine emitter under aqueous conditions. SiRCL-1 exhibited dual emission peaks at 540 nm and 680 nm with a high signal penetration through tissue at 680 nm (>30 mm) and long-lasting in vivo luminescence (>50 min), demonstrating its significance as a chemiluminescence scaffold for biological application.
Collapse
Affiliation(s)
- Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.
| | - Uroob Haris
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.
| | | | - Ralph P Mason
- Prognostic Imaging Research Laboratory, Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390-9058, USA
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.
| |
Collapse
|
6
|
Chen H, Cao W, Cui Y, Qian G, Liao Z. Intensive and Persistent Chemiluminescence from Orderly Arranged Ligands within Metal-Organic Frameworks for Inflammation Imaging. Inorg Chem 2025; 64:2529-2536. [PMID: 39873107 DOI: 10.1021/acs.inorgchem.4c05171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Chemiluminescence offers ultrasensitive imaging for the diagnosis of a variety of diseases by removing the interference from excitation light sources. Here, we prepared two chemiluminescent metal-organic frameworks (Mn-ADA and Zn-ADA) by using (2E,2'E)-3,3'-(anthracene-9,10-diyl)diacrylic acid (ADA) as a ligand. In Mn-ADA and Zn-ADA, the Mn atoms and Zn atoms are six-coordinated and eight-coordinated, respectively, and their frameworks are different in spatial structure. Due to the orderly arrangement of the fluorescence ligands and one-dimensional channel control of the diffusion of the reactant, Mn-ADA exhibits superstrong intensity and persistent chemiluminescence compared to ADA. The intensity of Mn-ADA is 43 times higher, and the lifetime is two times longer than that of ADA. Furthermore, different coordination also causes the chemiluminescence intensity of Mn-ADA to be stronger than that of Zn-ADA. It is established that Mn-ADA can detect H2O2 and image inflammation in mice without the excitation light. This methodology demonstrates the potential of metal-organic frameworks (MOFs) to enhance chemiluminescence and offers a new avenue for the development of MOF materials intended for biomedical application.
Collapse
Affiliation(s)
- Hongxu Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenqian Cao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengluan Liao
- School of Clinical Medical, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
7
|
David M, Gutkin S, Nithun RV, Jbara M, Shabat D. Unprecedented Photoinduced-Electron-Transfer Probe with a Turn-ON Chemiluminescence Mode-of-Action. Angew Chem Int Ed Engl 2025; 64:e202417924. [PMID: 39495559 PMCID: PMC11796323 DOI: 10.1002/anie.202417924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
PeT-based fluorescent probes were demonstrated to be powerful tools for detection and imaging, owing to their significant fluorescence enhancement in response to specific targets. While numerous examples of fluorescence-based PeT have been frequently reported, there is not even a single example of a PeT probe that operates via a chemiluminescence mode. Here we report the first PeT-based turn-on probe that acts via a chemiluminescent operation mode. We designed, synthesized, and evaluated a novel chemiluminescent probe, featuring a PeT-based turn-on mechanism. The probe consists of a phenoxy-1,2-dioxetane, linked to an azide unit that acts as a PeT quencher. Upon cycloaddition of a strained cycloalkyne with the azide, a triazole-dioxetane is formed, which undergoes relatively slow chemiexcitation, resulting in a measurement window with an exceptionally high signal-to-noise ratio (over 5000-fold). The PeT-dioxetane probe could effectively detect and image two model proteins labeled with strained cycloalkyne units (Myc-DBCO and Max-DBCO) through either NHS or maleimide conjugations. Comparative analysis shows that our PeT-based chemiluminescent probe significantly outperforms a commercially available fluorescent analog. We anticipate that the insights gained from this study will facilitate the development of additional chemiluminescent probes utilizing various PeT-quenching pathways.
Collapse
Affiliation(s)
- Maya David
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact SciencesTel-Aviv UniversityTel Aviv69978Israel
| | - Sara Gutkin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact SciencesTel-Aviv UniversityTel Aviv69978Israel
| | - Raj V. Nithun
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact SciencesTel-Aviv UniversityTel Aviv69978Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact SciencesTel-Aviv UniversityTel Aviv69978Israel
| | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact SciencesTel-Aviv UniversityTel Aviv69978Israel
| |
Collapse
|
8
|
Zhu J, Zhao L, An W, Miao Q. Recent advances and design strategies for organic afterglow agents to enhance autofluorescence-free imaging performance. Chem Soc Rev 2025; 54:1429-1452. [PMID: 39714452 DOI: 10.1039/d4cs01060d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Long-lasting afterglow luminescence imaging that detects photons slowly being released from chemical defects has emerged, eliminating the need for real-time photoexcitation and enabling autofluorescence-free in vivo imaging with high signal-to-background ratios (SBRs). Organic afterglow nano-systems are notable for their tunability and design versatility. However, challenges such as unsatisfactory afterglow intensity, short emission wavelengths, limited activatable strategies, and shallow tissue penetration depth hinder their widespread biomedical applications and clinical translation. Such contradiction between promising prospects and insufficient properties has spurred researchers' efforts to improve afterglow performance. In this review, we briefly outline the general composition and mechanisms of organic afterglow luminescence, with a focus on design strategies and an in-depth understanding of the structure-property relationship to advance afterglow luminescence imaging. Furthermore, pending issues and future perspectives are discussed.
Collapse
Affiliation(s)
- Jieli Zhu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Liangyou Zhao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Weihao An
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Qingqing Miao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Cao Y, Gu J, Chen Z, Gao J, Yang J, Wu W, Fang M, Li Q, Liu B, Li Z. HClO-Activated Near-Infrared Chemiluminescent Probes with a Malononitrile Group for In-Vivo Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408941. [PMID: 39713927 DOI: 10.1002/adma.202408941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/03/2024] [Indexed: 12/24/2024]
Abstract
Chemiluminescence (CL) imaging has emerged as a powerful approach to molecular imaging that allows exceptional sensitivity with virtually no background interference because of its unique capacity to emit photons without an external excitation source. Despite its high potential, the application of this nascent technique faces challenges because the current chemiluminescent agents have limited reactive sites, require complex synthesis, are insufficiently bright, and lack near-infrared emission. Herein, a series of HClO-activated chemiluminescent probes that exhibit robust near-infrared emission are studied. Specifically engineered to respond to HClO, a known biomarker of acute inflammation, these probes achieve high-contrast in vivo imaging by eliminating the need for constant external excitation. Comprehensive experimental and theoretical investigations demonstrate that the CL of the probes depends on the reactivity of the vinylene bonds, following a concerted decomposition of the oxidized chemiluminescent molecule. The application of these chemiluminescent nanoparticles in vivo facilitates high-contrast imaging of acute inflammation, providing real-time, high-contrast visualization of inflammatory conditions. This advancement signifies a leap forward for chemiluminescent nanoplatforms in biomedical imaging and expands the available methodologies in this field.
Collapse
Affiliation(s)
- Yalei Cao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Juqing Gu
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhijian Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jucai Gao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Wenbo Wu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Zhen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
10
|
Wu R, Tian G, Zhang S, Zhang P, Lei X. A Comprehensive Review: Versatile Imaging Probe Based on Chemical Materials for Biomedical Applications. Appl Biochem Biotechnol 2025; 197:1301-1328. [PMID: 39215904 DOI: 10.1007/s12010-024-05043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Imaging probe and contrast agents play significant role in combating cancer. Based on special chemical materials, imaging probe can convert cancer symptoms into information-rich images with high sensitivity and signal amplification, accompanying with detection, diagnosis, drug delivery and treatment. In the paper, some inorganic and organic chemical materials as imaging probe, including Ultrasound imaging (US), Optical imaging (OP), Photoacoustic imaging (PA), X-ray Computed Tomography (CT), Magnetic Resonance imaging (MRI), Radionuclide imaging (RNI) probe, as well as multi-modality imaging probe for diagnosis and therapy of tumour were introduced. The sophisticated and comprehensive chemical materials as imaging probe were highlighted in detail. Meanwhile, the advantages and disadvantages of the imaging probe were compared. In order to provide some reference and help researchers for construction imaging probe for tumour diagnosis and treatment, it attempts to exhaustively cover the whole field. Finally, the prospect and challenge for imaging probe were discussed.
Collapse
Affiliation(s)
- Rui Wu
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
| | - Guanghui Tian
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Pengfei Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China
| | - Xiaoyun Lei
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| |
Collapse
|
11
|
Chen Z, Li Q, Wu Y, Liu J, Liu L, Su L, Wu R, Song J. Molecular Engineering of Direct Activated NIR-II Chemiluminescence Platform for In Vivo Chemiluminescence-fluorescence Duplex Imaging. Nat Commun 2025; 16:238. [PMID: 39747091 PMCID: PMC11695737 DOI: 10.1038/s41467-024-55503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Chemiluminescence (CL) is a self-illuminating phenomenon fueled by chemical energy instead of extra excited light, which features superiority in sensitivity, signal-to-background ratios, and imaging depth. Strategies to synthesize a CL emission unimolecular skeleton in the second near-infrared window (NIR-II) and a unimolecular probe with direct duplex NIR-II [CL/fluorescence (FL)] emission are lacking. Here, we employ modular synthesis routes to construct a series of directly activated NIR-II CL emission unimolecular probes with a maximum emission wavelength of up to 1060 nm, and use them for real-time and continuous detection of the superoxide anion generated in acetaminophen induced liver injury in a female mice model under both NIR-II CL and NIR-II FL imaging channels. Thus, this study establishes a directly activatable NIR-II CL emission unimolecular skeleton, validating the scalability of this duplex NIR-II CL/FL imaging platform in bioactive molecule detection and disease diagnosis.
Collapse
Affiliation(s)
- Zhongxiang Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, China
- Department School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qian Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Jianyong Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Luntao Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Rongrong Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
12
|
Shelef O, Krinsky A, Jospe-Kaufman M, Babjaková Z, Fridman M, Satchi-Fainaro R, Spitz U, Shabat D. Biocompatible Flash Chemiluminescent Assay Enabled by Sterically Hindered Spiro-Strained-Oxetanyl-1,2-Dioxetane. Chemistry 2024; 30:e202402981. [PMID: 39370910 DOI: 10.1002/chem.202402981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/08/2024]
Abstract
Chemiluminescence is the emission of light that occurs as a result of a chemical reaction. Depending on the rate of chemiexcitation, light emission can occur as a long-lasting, low-intensity, glow-type reaction or a rapid, highly intense flash-type reaction. Assays using a flash-type mode of action provide enhanced detection sensitivity compared to those using a glow-type mode. Recently, our group discovered that applying spiro-strain to 1,2-dioxetanes significantly increases their chemiexcitation rate, thereby transforming glow-type chemiluminescence into flash-type chemiluminescence. However, further examination of the structure-activity relationships revealed that the spiro-strain severely compromises the chemical stability of the 1,2-dioxetanes. We hypothesized that a combination of spiro-strain, steric hindrance, and an electron-withdrawing effect, will result in a chemically stable spiro-strained dioxetane with an accelerated chemiexcitation rate. Indeed, spiro-fused tetramethyl-oxetanyl exhibited a 128-fold faster chemiexcitation rate compared to adamantyl while maintaining similar chemical stability, with a half-life of over 400 hours in PBS 7.4 buffer at room temperature. Turn-on probes composed of tetramethyl-oxetanyl spiro-dioxetane exhibited significantly improved chemical stability in bacterial and mammalian cell media compared to previously developed dioxetane probes fused to a cyclobutyl unit. The superior chemical stability enables a tetramethyl-oxetanyl dioxetane probe to detect β-Galactosidase (β-gal) activity with enhanced sensitivity in Escherichia coli (E. coli) bacterial assays and leucine aminopeptidase activity in tumoral cell lines. Overall, the development of the tetramethyl-oxetanyl dioxetane luminophore enables us to enhance the detection sensitivity of chemiluminescent probes while maintaining high chemical stability. The results obtained in this study should assist in designing improved chemiluminescent probes and underscore the significance of strain-release techniques in enhancing the detection sensitivity of chemiluminescence assays.
Collapse
Affiliation(s)
- Omri Shelef
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Anne Krinsky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Moriah Jospe-Kaufman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Zuzana Babjaková
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Urs Spitz
- BIOSYNTH, Rietlistr. 4 Postfach, Staad, 125 9422, Switzerland
| | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
13
|
Sidhu JS, Kaur G, Chavan AR, Chahal MK, Taliyan R. Phenoxy-1,2-dioxetane-based activatable chemiluminescent probes: tuning of photophysical properties for tracing enzymatic activities in living cells. Analyst 2024; 149:5739-5761. [PMID: 39569538 DOI: 10.1039/d4an01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The use of chemiluminophores for tracing enzymatic activities in live-cell imaging has gained significant attention, making them valuable tools for diagnostic applications. Among various chemiluminophores, the phenoxy-1,2-dioxetane scaffold exhibits significant structural versatility and its activation is governed by the chemically initiated electron exchange luminescence (CIEEL) mechanism. This mechanism can be initiated by enzymatic activity, changes in pH, or other chemical stimuli. The photophysical properties of phenoxy-1,2-dioxetanes can be fine-tuned through the incorporation of different substituents on the phenolic ring and by anchoring them with specific triggers. This review discusses the variations in physicochemical properties, including emission maxima, quantum yield, aqueous solubility, and pKa, as influenced by structural modifications, thereby establishing a comprehensive structure-activity relationship. Furthermore, it categorises the probes based on different enzyme classes, such as hydrolase-sensitive probes, oxidoreductase-responsive probes, and transferase-activatable phenoxy-1,2-dioxetanes, offering a promising platform technology for the early diagnosis of diseases and disorders. The summary section highlights key opportunities and limitations associated with applying phenoxy-1,2-dioxetanes in achieving precise and effective enzyme assays.
Collapse
Affiliation(s)
- Jagpreet Singh Sidhu
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Gurjot Kaur
- Khalsa College Amritsar, Punjab, 143002, India
| | - Atharva Rajesh Chavan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Mandeep K Chahal
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
14
|
Yang Y, Shang J, Xia Y, Gui Y. Fluorescent probes for sensing peroxynitrite: biological applications. Redox Rep 2024; 29:2430157. [PMID: 39581574 PMCID: PMC11587728 DOI: 10.1080/13510002.2024.2430157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Peroxynitrite (ONOO-) is a quintessential reactive oxygen species (ROS) and reactive nitrogen species (RNS), renowned for its potent oxidizing and nitrifying capabilities. Under normal physiological conditions, a baseline level of ONOO- is present within the body. However, its production escalates significantly in response to oxidative stress. ONOO- is highly reactive with various biomolecules in vivo, particularly proteins, lipids, and nucleic acids, thereby playing a role in a spectrum of physiological and pathological processes, such as inflammation, cancer, neurodegenerative diseases, and cardiovascular diseases. Consequently, detecting ONOO- in vivo is of paramount importance for understanding the etiology of various diseases and facilitating early diagnosis. Fluorescent probes have become a staple in the identification of biomolecules due to their ease of use, convenience, and superior sensitivity and specificity. This review highlights the recent advancements in the development of fluorescent probes for the detection of ONOO- in diverse disease models and provides an in-depth examination of their design and application.
Collapse
Affiliation(s)
- Yan Yang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, Hubei, People’s Republic of China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, People’s Republic of China
| | - Jinting Shang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, Hubei, People’s Republic of China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, People’s Republic of China
| | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, Hubei, People’s Republic of China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, People’s Republic of China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei, People’s Republic of China
| | - Yuran Gui
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, Hubei, People’s Republic of China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
15
|
Qu R, Jiang X, Zhen X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem Soc Rev 2024; 53:10970-11003. [PMID: 39380344 DOI: 10.1039/d4cs00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Conventional optical imaging, particularly fluorescence imaging, often encounters significant background noise due to tissue autofluorescence under real-time light excitation. To address this issue, a novel optical imaging strategy that captures optical signals after light excitation has been developed. This approach relies on molecular probes designed to store photoenergy and release it gradually as photons, resulting in delayed photon emission that minimizes background noise during signal acquisition. These molecular probes undergo various photophysical processes to facilitate delayed photon emission, including (1) charge separation and recombination, (2) generation, stabilization, and conversion of the triplet excitons, and (3) generation and decomposition of chemical traps. Another challenge in optical imaging is the limited tissue penetration depth of light, which severely restricts the efficiency of energy delivery, leading to a reduced penetration depth for delayed photon emission. In contrast, X-ray and ultrasound serve as deep-tissue energy sources that facilitate the conversion of high-energy photons or mechanical waves into the potential energy of excitons or the chemical energy of intermediates. This review highlights recent advancements in organic molecular probes designed for delayed photon emission using various energy sources. We discuss distinct mechanisms, and molecular design strategies, and offer insights into the future development of organic molecular probes for enhanced delayed photon emission.
Collapse
Affiliation(s)
- Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
16
|
David M, Leirikh T, Shelef O, Gutkin S, Kopp T, Zhou Q, Ma P, Fridman M, Houk KN, Shabat D. Chemiexcitation Acceleration of 1,2-Dioxetanes by Spiro-Fused Six-Member Rings with Electron-Withdrawing Motifs. Angew Chem Int Ed Engl 2024; 63:e202410057. [PMID: 39077893 DOI: 10.1002/anie.202410057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
The chemiluminescent light-emission pathway of phenoxy-1,2-dioxetane luminophores attracts growing interest within the scientific community. Dioxetane probes undergoing rapid flash-type chemiexcitation exhibit higher detection sensitivity than those with a slow glow-type chemiexcitation rate. We discovered that dioxetanes fused to non-strained six-member rings, with hetero atoms or inductive electron-withdrawing groups, present both accelerated chemiexcitation rates and elevated chemical stability compared to dioxetanes fused to four-member strained rings. DFT computational simulations supported the chemiexcitation acceleration observed by spiro-fused six-member rings with inductive electron-withdrawing groups of dioxetanes. Specifically, a spiro-dioxetane with a six-member sulfone ring exhibited a chemiexcitation rate 293-fold faster than that of spiro-adamantyl-dioxetane. A turn-ON dioxetane probe for the detection of the enzyme β-galactosidase, containing the six-member sulfone unit, exhibited a S/N value of 108 in LB cell growth medium. This probe demonstrated a substantial increase in detection sensitivity towards E. coli bacterial cells expressing β-galactosidase, with an LOD value that is 44-fold more sensitive than that obtained by the adamantyl counterpart. The accelerated chemiexcitation and the elevated chemical stability presented by dioxetane containing a spiro-fused six-member ring with a sulfone inductive electron-withdrawing group, make it an ideal candidate for designing efficient turn-on chemiluminescent probes with exceptionally high detection sensitivity.
Collapse
Affiliation(s)
- Maya David
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Thomas Leirikh
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Omri Shelef
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sara Gutkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tal Kopp
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Qingyang Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
| | - Pengchen Ma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
| | - Doron Shabat
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
17
|
Yang J, Zhu B, Zhang J, Liang SH, Shen S, Ran C. Half-Curcumin-Based Chemiluminescence Probes and Their Applications in Detecting Quasi-Stable Oxidized Proteins. Angew Chem Int Ed Engl 2024; 63:e202409896. [PMID: 38980957 PMCID: PMC11421953 DOI: 10.1002/anie.202409896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Numerous methods have been reported for detecting ROS/RNS in vitro and in vivo; however, detecting methods for the secondary products of the reactive oxygen species (ROS)/reactive nitrogen species (RNS) reactions, particularly quasi-stable oxidized products, have been much less explored. In this report, we observed that half-curcumins could generate chemiluminescence (CL). In contrast to other chemiluminescence scaffolds, the distinguishing feature of a half-curcumin is the formation of a carbanion intermediate of its acetylacetone moiety, opening unique avenues for applications. In this study, we designed a series of half-curcumins CRANAD-Xs and found that CRANAD-164 could be used to detect quasi-stable oxidized proteins (QSOP) in vivo and in patient serum samples. We illustrated that CRANAD-164 could be used to monitor the responses of taurine, an amino acid with newly reported anti-aging capacity, in an inflammatory mouse model. Remarkably, we further demonstrated that the QSOP levels were much higher in the disease serum samples, including Alzheimer's disease (AD), compared to the samples from healthy controls. Moreover, our results revealed that the sera chemiluminescence intensities were higher in aged healthy controls compared to young healthy subjects, suggesting that CRANAD-164 can be used to monitor the increase of QSOP during aging.
Collapse
Affiliation(s)
- Jun Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Jing Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, 30322, United States
| | - Shiqian Shen
- Massachusetts General Hospital Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| |
Collapse
|
18
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
19
|
Wang X, Liew SS, Huang J, Hu Y, Wei X, Pu K. Dual-Locked Enzyme-Activatable Bioorthogonal Fluorescence Turn-On Imaging of Senescent Cancer Cells. J Am Chem Soc 2024; 146:22689-22698. [PMID: 39101919 DOI: 10.1021/jacs.4c07286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Bioorthogonal pretargeting optical imaging shows the potential for enhanced diagnosis and prognosis. However, the bioorthogonal handles, known for being "always reactive", may engage in reactions at unintended sites with their counterparts, resulting in nonspecific fluorescence activation and diminishing detection specificity. Meanwhile, despite the importance of detecting senescent cancer cells in cancer therapy, current methods mainly rely on common single senescence-associated biomarkers, which lack specificity for differentiating between various types of senescent cells. Herein, we report a dual-locked enzyme-activatable bioorthogonal fluorescence (DEBOF) turn-on imaging approach for the specific detection of senescent cancer cells. A dual-locked bioorthogonal targeting agent (DBTA) and a bioorthogonally activatable fluorescent imaging probe (BAP) are synthesized as the biorthogonal pair. DBTA is a tetrazine derivative dually caged by two enzyme-cleavable moieties, respectively, associated with senescence and cancer, which ensures that its bioorthogonal reactivity ("clickability") is only triggered in the presence of senescent cancer cells. BAP is a fluorophore caged by trans-cyclooctane (TCO), whose fluorescence is only activated upon bioorthogonal reaction between its TCO and the decaged tetrazine of DBTA. As such, the DEBOF imaging approach differentiates senescent cancer cells from nonsenescent cancer cells or other senescent cells, allowing noninvasive tracking of the population fluctuation of senescent cancer cells in the tumor of living mice to guide cancer therapies. This study thus provides a general molecular strategy for biomarker-activatable in vivo bioorthogonal pretargeting imaging with the potential to be applied to other imaging modalities beyond optics.
Collapse
Affiliation(s)
- Xinzhu Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Si Si Liew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Yuxuan Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
20
|
Wang J, Liu M, Zhang X, Wang X, Xiong M, Luo D. Stimuli-responsive linkers and their application in molecular imaging. EXPLORATION (BEIJING, CHINA) 2024; 4:20230027. [PMID: 39175888 PMCID: PMC11335469 DOI: 10.1002/exp.20230027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 08/24/2024]
Abstract
Molecular imaging is a non-invasive imaging method that is widely used for visualization and detection of biological events at cellular or molecular levels. Stimuli-responsive linkers that can be selectively cleaved by specific biomarkers at desired sites to release or activate imaging agents are appealing tools to improve the specificity, sensitivity, and efficacy of molecular imaging. This review summarizes the recent advances of stimuli-responsive linkers and their application in molecular imaging, highlighting the potential of these linkers in the design of activatable molecular imaging probes. It is hoped that this review could inspire more research interests in the development of responsive linkers and associated imaging applications.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Meng Liu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinyue Zhang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinning Wang
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Menghua Xiong
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
- National Engineering Research Centre for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouP. R. China
| | - Dong Luo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| |
Collapse
|
21
|
Chen C, Zhang X, Gao Z, Feng G, Ding D. Preparation of AIEgen-based near-infrared afterglow luminescence nanoprobes for tumor imaging and image-guided tumor resection. Nat Protoc 2024; 19:2408-2434. [PMID: 38637702 DOI: 10.1038/s41596-024-00990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/21/2024] [Indexed: 04/20/2024]
Abstract
Fluorescence imaging represents a vital tool in modern biology, oncology and biomedical applications. Afterglow luminescence (AGL), which circumvents the light scattering and tissue autofluorescence interference associated with real-time excitation source, shows remarkably increased imaging sensitivity and depth. Here we present a protocol for the design and synthesis of AGL nanoprobes with an aggregation-induced emission (AIE) effect to simultaneously red shift and amplify the afterglow signal for tumor imaging and image-guided tumor resection. The nanoprobe (AGL AIE dot) is composed of an enol ether format of Schaap's agent and a near-infrared AIE fluorogen (AIEgen) (tetraphenylethylene-phenyl-dicyanomethylene-4H-chromene, TPE-Ph-DCM) to suppress the nonradiative dissipation pathway. Pre-irradiating AGL AIE dots with white light could generate singlet oxygen to convert Schaap's agent to its 1,2-dioxetane format, thus initializing the AGL process. With the aid of AIEgen, the AGL shows simultaneously red shifted emission maximum (from ~540 nm to ~625 nm) and enhanced intensity (by 3.2-fold), facilitating better signal-to-background ratio, imaging sensitivity and depth. Intriguingly, the activated AGL can last for over 10 days. Compared with conventional approaches, our method provides a new solution to concurrently red shift and amplify afterglow signals for better in vivo imaging outcomes. The preparation of AGL AIE dots takes ~2 days, the in vitro characterization takes ~10 days (less than 1 day if not involving afterglow kinetic profile study) and the tumor imaging and image-guided tumor resection takes ~7 days. These procedures can be easily reproduced and amended after standard laboratory training in chemical synthesis and animal handling.
Collapse
Affiliation(s)
- Chao Chen
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyan Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, P. R. China.
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
22
|
Wei X, Xu C, Cheng P, Hu Y, Liu J, Xu M, Huang J, Zhang Y, Pu K. Leveraging Long-Distance Singlet-Oxygen Transfer for Bienzyme-Locked Afterglow Imaging of Intratumoral Granule Enzymes. J Am Chem Soc 2024; 146:17393-17403. [PMID: 38860693 DOI: 10.1021/jacs.4c05012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Dual-locked activatable optical probes, leveraging the orthogonal effects of two biomarkers, hold great promise for the specific imaging of biological processes. However, their design approaches are limited to a short-distance energy or charge transfer mechanism, while the signal readout relies on fluorescence, which inevitably suffers from tissue autofluorescence. Herein, we report a long-distance singlet oxygen transfer approach to develop a bienzyme-locked activatable afterglow probe (BAAP) that emits long-lasting self-luminescence without real-time light excitation for the dynamic imaging of an intratumoral granule enzyme. Composed of an immuno-biomarker-activatable singlet oxygen (1O2) donor and a cancer-biomarker-activatable 1O2 acceptor, BAAP is initially nonafterglow. Only in the presence of both immune and cancer biomarkers can 1O2 be generated by the activated donor and subsequently diffuse toward the activated acceptor, resulting in bright near-infrared afterglow with a high signal-to-background ratio and specificity toward an intratumoral granule enzyme. Thus, BAAP allows for real-time tracking of tumor-infiltrating cytotoxic T lymphocytes, enabling the evaluation of cancer immunotherapy and the differentiation of tumor from local inflammation with superb sensitivity and specificity, which are unachievable by single-locked probes. Thus, this study not only presents the first dual-locked afterglow probe but also proposes a new design way toward dual-locked probes via reactive oxygen species transfer processes.
Collapse
Affiliation(s)
- Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Yuxuan Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
23
|
Huang J, Xu M, Cheng P, Yu J, Wu J, Pu K. A Tandem-Locked Chemiluminescent Probe for Imaging of Tumor-Associated Macrophage Polarization. Angew Chem Int Ed Engl 2024; 63:e202319780. [PMID: 38523406 DOI: 10.1002/anie.202319780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Tumor-associated macrophages (TAMs) play a role in both pro- and anti-tumor functions; and the targeted polarization from M2 to M1 TAMs has become an effective therapy option. Although detection of M1 TAMs is imperative to assess cancer immunotherapeutic efficacy, existing optical probes suffer from shallow tissue penetration depth and poor specificity toward M1 TAMs. Herein, we report a tandem-locked NIR chemiluminescent (CL) probe for specific detection of M1 TAMs. Through a combined molecular engineering approach via both atomic alternation and introduction of electron-withdrawing groups, near-infrared (NIR) chemiluminophores are screened out to possess record-long emission (over 800 nm), record-high CL quantum yield (2.7 % einstein/mol), and prolonged half-life (7.7 h). Based on an ideal chemiluminophore, the tandem-locked probe (DPDGN) is developed to only activate CL signal in the presence of both tumour (γ-glutamyl transpeptidase) and M1 macrophage biomarkers (nitric oxide). Such a tandem-lock design ensures its high specificity towards M1 macrophages in the tumor microenvironment over those in normal tissues or peripheral blood. Thus, DPDGN permits noninvasive imaging and tracking of M1 TAM in the tumor of living mice during R837 treatment, showing a good correlation with ex vivo methods. This study not only reports a new molecular approach towards highly efficient chemiluminophores but also reveals the first tandem-locked CL probes for enhanced imaging specificity.
Collapse
Affiliation(s)
- Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jie Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Singapore, 636921, Singapore
| |
Collapse
|
24
|
Ren X, Tian Z, Gao X, Ai Y, Li M, Zhang B, Zou G. Finely-Tuning Chemiluminescent Color of CdTe Nanocrystals and Its Application for Near-Infrared Semi-Automatic Immunoassay. Anal Chem 2024; 96:7643-7650. [PMID: 38708712 DOI: 10.1021/acs.analchem.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Chemiluminescence (CL), especially commercialized CL immunoassay (CLIA), is normally performed within the eye-visible region of the spectrum by exploiting the electronic-transition-related emission of the molecule luminophore. Herein, dual-stabilizers-capped CdTe nanocrystals (NCs) is employed as a model of nanoparticulated luminophore to finely tune the CL color with superior color purity. Initialized by oxidizing the CdTe NCs with potassium periodate (KIO4), intermediates of the reactive oxygen species (ROS) tend to charge CdTe NCs in both series-connection and parallel-connection routes and dominate the charge-transfer CL of CdTe NCs. The CdTe NCs/KIO4 system can exhibit color-tunable CL with the maximum emission wavelength shifted from 694 nm to 801 nm, and the red-shift span is over 100 nm. Both PL and CL of each of the CdTe NCs are bandgap-engineered; the change in the NCs surface state via CL reaction enables CL of each of the CdTe NCs to be red-shifted for ∼20 nm to PL, while the change in the NCs surface state via labeling CdTe NCs to secondary-antibody (Ab2) enables CL of the CdTe NCs-Ab2 conjugates to be red-shifted for another ∼20 nm to bare CdTe NCs. The CL of CdTe753-Ab2/KIO4 is ∼791 nm, which can perform near-infrared CL immunoassay and semi-automatically determined procalcitonin (PCT) on commercialized in vitro diagnosis (IVD) instruments.
Collapse
Affiliation(s)
- Xiaoxuan Ren
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhijian Tian
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yaojia Ai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Mengwei Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
25
|
Liu J, Huang J, Wei X, Cheng P, Pu K. Near-Infrared Chemiluminescence Imaging of Chemotherapy-Induced Peripheral Neuropathy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310605. [PMID: 38040414 DOI: 10.1002/adma.202310605] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) has a high prevalence but is poorly managed for cancer patients due to the lack of reliable and sensitive diagnostic techniques. Molecular optical imaging can provide a noninvasive way for real-time monitoring of CIPN; However, this is not reported, likely due to the absence of optical probes capable of imaging deep into the spinal canal and possessing sufficient sensitivity for minimal dosage through local injection into the dorsal root ganglia. Herein, a near-infrared (NIR) chemiluminophore (MPBD) with a chemiluminescence quantum yield higher than other reported probes is synthesized and a NIR activatable chemiluminescent probe (CalCL) is developed for in vivo imaging of CIPN. CalCL is constructed by caging MPBD with calpain-cleavable peptide moiety while conjugating polyethylene glycol chain to endow water solubility. Due to the deep-tissue penetration of chemiluminescence and specific turn-on response of CalCL toward calpain (a hallmark of CIPN), it allows for sensitive detection of paclitaxel-mediated CIPN in living mice, which is unattainable by fluorescence imaging. This study thus not only develops a highly efficient chemiluminescent probe, but also presents the first optical imaging approach toward high-throughput screening of neurotoxic drugs.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
26
|
Li H, Wang J, Kim H, Peng X, Yoon J. Activatable Near-Infrared Versatile Fluorescent and Chemiluminescent Dyes Based on the Dicyanomethylene-4H-pyran Scaffold: From Design to Imaging and Theranostics. Angew Chem Int Ed Engl 2024; 63:e202311764. [PMID: 37855139 DOI: 10.1002/anie.202311764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Activatable fluorescent and chemiluminescent dyes with near-infrared emission have indispensable roles in the fields of bioimaging, molecular prodrugs, and phototheranostic agents. As one of the most popular fluorophore scaffolds, the dicyanomethylene-4H-pyran scaffold has been applied to fabricate a large number of versatile activatable optical dyes for analytes detection and diseases diagnosis and treatment by virtue of its high photostability, large Stokes shift, considerable two-photon absorption cross-section, and structural modifiability. This review discusses the molecular design strategies, recognition mechanisms, and both in vitro and in vivo bio-applications (especially for diagnosis and therapy of tumors) of activatable dicyanomethylene-4H-pyran dyes. The final section describes the current shortcomings and future development prospects of this topic.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
27
|
Tannous R, Shelef O, Gutkin S, David M, Leirikh T, Ge L, Jaber Q, Zhou Q, Ma P, Fridman M, Spitz U, Houk KN, Shabat D. Spirostrain-Accelerated Chemiexcitation of Dioxetanes Yields Unprecedented Detection Sensitivity in Chemiluminescence Bioassays. ACS CENTRAL SCIENCE 2024; 10:28-42. [PMID: 38292606 PMCID: PMC10823517 DOI: 10.1021/acscentsci.3c01141] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 02/01/2024]
Abstract
Chemiluminescence is a fascinating phenomenon that involves the generation of light through chemical reactions. The light emission from adamantyl-phenoxy-1,2-dioxetanes can glow from minutes to hours depending on the specific substituent present on the dioxetane molecule. In order to improve the light emission properties produced by these chemiluminescent luminophores, it is necessary to induce the chemiexcitation rate to a flash mode, wherein the bulk of light is emitted instantly rather than slowly over time. We report the realization of this goal through the incorporation of spirostrain release into the decomposition of 1,2-dioxetane luminophores. DFT computational simulations provided support for the hypothesis that the spiro-cyclobutyl substituent accelerates chemiexcitation as compared to the unstrained adamantyl substituent. Spiro-linking of cyclobutane and oxetane units led to greater than 100-fold and 1000-fold emission enhancement, respectively. This accelerated chemiexcitation rate increases the detection sensitivity for known chemiluminescent probes to the highest signal-to-noise ratio documented to date. A turn-ON probe, containing a spiro-cyclobutyl unit, for detecting the enzyme β-galactosidase exhibited a limit of detection value that is 125-fold more sensitive than that for the previously described adamantyl analogue. This probe was also able to instantly detect and image β-gal activity with enhanced sensitivity in E. coli bacterial assays.
Collapse
Affiliation(s)
- Rozan Tannous
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Omri Shelef
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Sara Gutkin
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Maya David
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Thomas Leirikh
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Liang Ge
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Qais Jaber
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Qingyang Zhou
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Pengchen Ma
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
- Department
of Chemistry, School of Chemistry, Xi’an Key Laboratory of
Sustainable Energy Material Chemistry and Engineering Research Center
of Energy Storage Materials and Devices, Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Micha Fridman
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Urs Spitz
- BIOSYNTH, Rietlistr. 4 Postfach 125 9422 Staad, Switzerland
| | - Kendall N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Doron Shabat
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
28
|
Li L, Jia F, Li Y, Peng Y. Design strategies and biological applications of β-galactosidase fluorescent sensor in ovarian cancer research and beyond. RSC Adv 2024; 14:3010-3023. [PMID: 38239445 PMCID: PMC10795002 DOI: 10.1039/d3ra07968f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Beta-galactosidase (β-galactosidase), a lysosomal hydrolytic enzyme, plays a critical role in the catalytic hydrolysis of glycosidic bonds, leading to the conversion of lactose into galactose. This hydrolytic enzyme is used as a biomarker in various applications, including enzyme-linked immunosorbent assays (ELISAs), gene expression studies, tuberculosis classification, and in situ hybridization. β-Galactosidase abnormalities are linked to various diseases, such as ganglioside deposition, primary ovarian cancer, and cell senescence. Thus, effective detection of β-galactosidase activity may aid disease diagnoses and treatment. Activatable optical probes with high sensitivity, specificity, and spatiotemporal resolution imaging capabilities have become powerful tools for visualization and real time tracking in vivo in the past decade. This manuscript reviews the sensing mechanism, molecular design strategies, and advances of fluorescence probes in the biological application of β-galactosidase, particularly in the field of ovarian cancer research. Current challenges in tracking β-galactosidase and future directions are also discussed.
Collapse
Affiliation(s)
- Liangliang Li
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| | - Feifei Jia
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| | - Yunxiu Li
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| | - Yan Peng
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| |
Collapse
|
29
|
Tian S, Peng C, Xing H, Xue Y, Li J, Wang E. Boosting Photon Emission from the Chemiluminescence of Luminol Based on Host-Guest Recognition for the Determination of Dopamine. Anal Chem 2024; 96:514-521. [PMID: 38145394 DOI: 10.1021/acs.analchem.3c04645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Modulating the photon emission of the luminophore for boosting chemiluminescence (CL) response is very crucial for the construction of highly sensitive sensors via the introduction of functionalized materials. Herein, the integration of the emitter and coreactant accelerator into one entity is realized by simply assembling cucurbit[7]uril (CB[7]) on the surface of gold nanoparticles (AuNPs) through simple assembly via a Au-O bond. The loaded CB[7] on the AuNPs improves their catalytic capacity for the generation of hydroxyl radicals(•OH). Moreover, the host-guest recognition interaction between luminol and CB[7] enables the capture of luminol on AuNPs efficiently. Also, the intramolecular electron-transfer reaction between the luminol and •OH enables the CL response more effectively in the entity, which greatly boosts photon emission ca 100 folds compared with the individual luminol/H2O2. The host-guest recognition between luminol and CB[7] is revealed by Fourier transform infrared spectroscopy, electrochemical, and thermogravimetric characterization. Moreover, the proposed CL system is successfully used for the sensitive and selective determination of dopamine (DA) based on a synergistic quenching mechanism including the competition quenching and radical-scavenging effect from DA. The present amplified strategy by integrating recognized and amplified elements within one entity simplifies the sensing process and holds great potential for sensitive analysis based on the self-enhanced strategies.
Collapse
Affiliation(s)
- Sipeng Tian
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Chao Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Huanhuan Xing
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, Jiangsu 215011, China
| | - Yuan Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Erkang Wang
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
30
|
Feng Q, Zhou X, He C. NIR light-facilitated bone tissue engineering. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1925. [PMID: 37632228 DOI: 10.1002/wnan.1925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
In the last decades, near-infrared (NIR) light has attracted considerable attention due to its unique properties and numerous potential applications in bioimaging and disease treatment. Bone tissue engineering for bone regeneration with the help of biomaterials is currently an effective means of treating bone defects. As a controlled light source with deeper tissue penetration, NIR light can provide real-time feedback of key information on bone regeneration in vivo utilizing fluorescence imaging and be used for bone disease treatment. This review provides a comprehensive overview of NIR light-facilitated bone tissue engineering, from the introduction of NIR probes as well as NIR light-responsive materials, and the visualization of bone regeneration to the treatment of bone-related diseases. Furthermore, the existing challenges and future development directions of NIR light-based bone tissue engineering are also discussed. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qian Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| |
Collapse
|
31
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
32
|
Deen MC, Gilormini PA, Vocadlo DJ. Strategies for quantifying the enzymatic activities of glycoside hydrolases within cells and in vivo. Curr Opin Chem Biol 2023; 77:102403. [PMID: 37856901 DOI: 10.1016/j.cbpa.2023.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Within their native milieu of the cell, the activities of enzymes are controlled by a range of factors including protein interactions and post-translational modifications. The involvement of these factors in fundamental cell biology and the etiology of diseases is stimulating interest in monitoring enzyme activities within tissues. The creation of synthetic substrates, and their use with different imaging modalities, to detect and quantify enzyme activities has great potential to propel these areas of research. Here we describe the latest developments relating to the creation of substrates for imaging and quantifying the activities of glycoside hydrolases, focusing on mammalian systems. The limitations of current tools and the difficulties within the field are summarised, as are prospects for overcoming these challenges.
Collapse
Affiliation(s)
- Matthew C Deen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Pierre-André Gilormini
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
33
|
Cui X, Li X, Peng C, Qiu Y, Shi Y, Liu Y, Fei JF. Beyond External Light: On-Spot Light Generation or Light Delivery for Highly Penetrated Photodynamic Therapy. ACS NANO 2023; 17:20776-20803. [PMID: 37874930 DOI: 10.1021/acsnano.3c05619] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
External light sources, such as lasers, light emitting diodes (LEDs) and lamps, are widely applied in photodynamic therapy (PDT); however, their use is severely limited by the nature of shallow tissue penetration depth. The recent exploration of light delivery or local generation on tumor sites has attracted much attention, owing to the fact that these systems are significantly endowed with high tissue penetration. In this review, we briefly introduced the principle of "on-spot light generation or delivery systems" in PDT. These systems are divided into different categories: (1) implantable luminescence, (2) mechanoluminescence, (3) electrochemiluminescence, (4) Cerenkov luminescence, (5) chemiluminescence, and (6) bioluminescence. Finally, their applications, advantages, and disadvantages in PDT will be appropriately summarized and further discussed in detail. We believe that this review will provide general guidance for the further design of light generation or delivery systems and clinical studies for PDT-mediated cancer treatments with unparalleled merits.
Collapse
Affiliation(s)
- Xiao Cui
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Xiang Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Cheng Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yuanhui Qiu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Ji-Feng Fei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
34
|
Gunduz H, Almammadov T, Dirak M, Acari A, Bozkurt B, Kolemen S. A mitochondria-targeted chemiluminescent probe for detection of hydrogen sulfide in cancer cells, human serum and in vivo. RSC Chem Biol 2023; 4:675-684. [PMID: 37654504 PMCID: PMC10467614 DOI: 10.1039/d3cb00070b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
Hydrogen sulfide (H2S) as a critical messenger molecule plays vital roles in regular cell function. However, abnormal levels of H2S, especially mitochondrial H2S, are directly correlated with the formation of pathological states including neurodegenerative diseases, cardiovascular disorders, and cancer. Thus, monitoring fluxes of mitochondrial H2S concentrations both in vitro and in vivo with high selectivity and sensitivity is crucial. In this direction, herein we developed the first ever example of a mitochondria-targeted and H2S-responsive new generation 1,2-dioxetane-based chemiluminescent probe (MCH). Chemiluminescent probes offer unique advantages compared to conventional fluorophores as they do not require external light irradiation to emit light. MCH exhibited a dramatic turn-on response in its luminescence signal upon reacting with H2S with high selectivity. It was used to detect H2S activity in different biological systems ranging from cancerous cells to human serum and tumor-bearing mice. We anticipate that MCH will pave the way for development of new organelle-targeted chemiluminescence agents towards imaging of different analytes in various biological models.
Collapse
Affiliation(s)
- Hande Gunduz
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research, Koç University Istanbul 34450 Turkey
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Toghrul Almammadov
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Musa Dirak
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Alperen Acari
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
| | - Berkan Bozkurt
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
- Graduate School of Health Sciences, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Safacan Kolemen
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
- Koç University Surface Science and Technology Center (KUYTAM) Istanbul 34450 Turkey
| |
Collapse
|
35
|
Wu H, Fang Y, Tian L, Liu X, Zhou X, Chen X, Gao H, Qin H, Liu Y. AIE Nanozyme-Based Long Persistent Chemiluminescence and Fluorescence for POCT of Pathogenic Bacteria. ACS Sens 2023; 8:3205-3214. [PMID: 37552936 DOI: 10.1021/acssensors.3c00918] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Pathogenic bacteria are widely distributed in diverse environments and significantly threaten human health. Point-of-care testing (POCT) is a valuable way for early warnings of bacteria threat. Herein, a chemiluminescence (CL)-based ratiometric sensing platform was constructed for sensitive POCT of bacteria according to a newly designed aggregation-induced emission (AIE) molecule. The new AIE molecule presents oxidase-like properties (named as AIEzyme) and can trigger long persistent CL of luminol (LUM) with strong intensity in the absence of H2O2. The CL emission can be monitored with the naked eye for over 2 h. The emission mechanism is explored and may be attributed to the persistent reactive oxygen species generation of the AIEzyme according to the cyclic energy transfer between the AIEzyme and luminol, which catalyzes CL of luminol. Based on the CL resonance energy transfer mechanism, an afterglow luminescence system is further developed, which is used to construct a ratiometric biosensor for detection of pathogenic bacteria. With a homemade holder as a detection room and a smartphone as an analyzer, the portable biosensing platform is used for quantitative POCT of bacteria in real samples with good recovery. The detection is free of H2O2 and an external excitation source, which not only simplifies the operation but reduces interference. Specifically, the long persistent luminescence and the ratiometric strategy can significantly improve accuracy, providing an instructive way for point-of-need analysis, for example, SARS-CoV-2 detection and bioimaging analysis.
Collapse
Affiliation(s)
- Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Tian
- China Resources Biopharmaceutical Co., Ltd., Beijing 100120, China
| | - Xin Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiao Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiying Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Heqi Gao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Haijuan Qin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
36
|
Wu R, Yao Z, Chen Z, Ge X, Su L, Wang S, Wu Y, Song J. Ultrasound-Activated NIR Chemiluminescence for Deep Tissue and Tumor Foci Imaging. Anal Chem 2023; 95:11219-11226. [PMID: 37471506 DOI: 10.1021/acs.analchem.3c00643] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Fluorescence imaging requires real-time external light excitation; however, it has the drawbacks of autofluorescence and shallower penetration depth, limiting its application in deep tissue imaging. At the same time, ultrasound (US) has high spatiotemporal resolution, deep penetrability, noninvasiveness, and precise localization of lesions; thus, it can be a promising alternative to light. However, US-activated luminescence has been rarely reported. Herein, an US-activated near-infrared (NIR) chemiluminescence (CL) molecule, namely, PNCL, is designed by protoporphyrin IX as a sonosensitizer moiety and a phenoxy-dioxetane precursor containing a dicyanomethyl chromone acceptor scaffold (NCL) as the US-responsive moiety. After therapeutic US radiation (1 MHz), the singlet oxygen (1O2), as an "intermediary", oxidizes the enol-ether bond of the NCL moiety and then emits NIR light via spontaneous decomposition. Combining the deep penetrability of US with a high signal-to-background ratio of NIR CL, the designed probe PNCL successfully realizes US-activated deep tissue imaging (∼20 mm) and selectively turns on signals in specific tumor foci. Bridging US chemistry with luminescence using an "intermediary" will provide new imaging methods for accurate cancer diagnosis.
Collapse
Affiliation(s)
- Rongrong Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhicun Yao
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhongxiang Chen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiaoguang Ge
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Lichao Su
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Shuhan Wang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| |
Collapse
|
37
|
Köckenberger J, Thurston R, Sauer C, Oppl J, Heinrich MR. Connecting Ruthenium Photocatalysis to 1,2-Dioxetane-Mediated Chemiluminescence: a Versatile Combination for Optical Detection and Read-Out. Angew Chem Int Ed Engl 2023; 62:e202304474. [PMID: 37184155 DOI: 10.1002/anie.202304474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
Optical storage and photon quantification systems based on sensitive photoreactions have numerous applications. Herein, we report a highly efficient photocatalytic reaction, in which ruthenium photoredox catalysis is combined with a 1,2-dioxetane from which chemiluminescence can be triggered. In this system, blue light irradiation as optical input enables a defined inverse correlation with base-triggered, blue light emission as optical output. Comparison of readout by 1 H NMR and chemiluminescence, relative to previous optical input, underlines the reliability and usefulness of the ruthenium-dioxetane system for optical storage, sensing and ruthenium detection.
Collapse
Affiliation(s)
- Johannes Köckenberger
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Ryan Thurston
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Caroline Sauer
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Janina Oppl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
38
|
Gutkin S, Tannous R, Jaber Q, Fridman M, Shabat D. Chemiluminescent duplex analysis using phenoxy-1,2-dioxetane luminophores with color modulation. Chem Sci 2023; 14:6953-6962. [PMID: 37389255 PMCID: PMC10306105 DOI: 10.1039/d3sc02386a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Multiplex technology is an important emerging field, in diagnostic sciences, that enables the simultaneous detection of several analytes in a single sample. The light-emission spectrum of a chemiluminescent phenoxy-dioxetane luminophore can be accurately predicted by determining the fluorescence-emission spectrum of its corresponding benzoate species, which is generated during the chemiexcitation process. Based on this observation, we designed a library of chemiluminescent dioxetane luminophores with multicolor emission wavelengths. Two dioxetane luminophores that have different emission spectra, but similar quantum yield properties, were selected from the synthesized library for a duplex analysis. The selected dioxetane luminophores were equipped with two different enzymatic substrates to generate turn-ON chemiluminescent probes. This pair of probes exhibited a promising ability to act as a chemiluminescent duplex system for the simultaneous detection of two different enzymatic activities in a physiological solution. In addition, the pair of probes were also able to simultaneously detect the activities of the two enzymes in a bacterial assay, using a blue filter slit for one enzyme and a red filter slit for the other enzyme. As far as we know, this is the first successful demonstration of a chemiluminescent duplex system composed of two-color phenoxy-1,2-dioxetane luminophores. We believe that the library of dioxetanes presented here will be beneficial for developing chemiluminescence luminophores for multiplex analysis of enzymes and bioanalytes.
Collapse
Affiliation(s)
- Sara Gutkin
- Department of Organic Chemistry, School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University Tel Aviv 69978 Israel +972 3 640 8340
| | - Rozan Tannous
- Department of Organic Chemistry, School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University Tel Aviv 69978 Israel +972 3 640 8340
| | - Qais Jaber
- Department of Organic Chemistry, School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University Tel Aviv 69978 Israel +972 3 640 8340
| | - Micha Fridman
- Department of Organic Chemistry, School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University Tel Aviv 69978 Israel +972 3 640 8340
| | - Doron Shabat
- Department of Organic Chemistry, School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University Tel Aviv 69978 Israel +972 3 640 8340
| |
Collapse
|
39
|
Huang C, Zhou W, Wu R, Guan W, Ye N. Recent Advances in Nanomaterial-Based Chemiluminescence Probes for Biosensing and Imaging of Reactive Oxygen Species. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111726. [PMID: 37299629 DOI: 10.3390/nano13111726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROS) play important roles in organisms and are closely related to various physiological and pathological processes. Due to the short lifetime and easy transformation of ROS, the determination of ROS content in biosystem has always been a challenging task. Chemiluminescence (CL) analysis has been widely used in the detection of ROS due to its advantages of high sensitivity, good selectivity and no background signal, among which nanomaterial-related CL probes are rapidly developing. In this review, the roles of nanomaterials in CL systems are summarized, mainly including their roles as catalysts, emitters, and carriers. The nanomaterial-based CL probes for biosensing and bioimaging of ROS developed in the past five years are reviewed. We expect that this review will provide guidance for the design and development of nanomaterial-based CL probes and facilitate the wider application of CL analysis in ROS sensing and imaging in biological systems.
Collapse
Affiliation(s)
- Chuanlin Huang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Riliga Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
40
|
Dai Y, Zhang K, Yuan X, Xie X, Zhan Z, Lv Y. Novel Near-Infrared Iridium(III) Complex for Chemiluminescence Imaging of Hypochlorous Acid. Anal Chem 2023; 95:8310-8317. [PMID: 37200201 DOI: 10.1021/acs.analchem.3c00738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chemiluminescence (CL) probes that possess near-infrared (NIR) emission are highly desirable for in vivo imaging due to their deeper tissue penetration ability and intrinsically high sensitivity. Herein, a novel iridium-based CL probe (NIRIr-CL-1) with direct NIR emission was reported as the result of hypochlorous acid (HClO)-initiated oxidative deoximation. To improve its biocompatibility and extend the CL time for in vivo imaging applications, this NIRIr-CL-1 was prepared as a CL nanoparticle probe (NIRIr-CL-1 dots) through encapsulation by an amphiphilic polymer Pluronic F127 (F127). All results demonstrate that the NIRIr-CL-1 dots have good selectivity and sensitivity for visualization of HClO even at the depth of 1.2 cm. Owing to these advantages, the CL imaging of exogenous and endogenous HClO in mice was achieved. This study could provide new insights into the construction of new NIR emission CL probes and expand their applications in biomedical imaging.
Collapse
Affiliation(s)
- Yongcheng Dai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kexin Zhang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiaohan Yuan
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Zixuan Zhan
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
41
|
Silla A, Fogacci F, Punzo A, Hrelia S, Simoni P, Caliceti C, Cicero AFG. Treatment with PCSK9 Inhibitor Evolocumab Improves Vascular Oxidative Stress and Arterial Stiffness in Hypercholesterolemic Patients with High Cardiovascular Risk. Antioxidants (Basel) 2023; 12:antiox12030578. [PMID: 36978827 PMCID: PMC10045769 DOI: 10.3390/antiox12030578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Atherosclerosis and atherosclerotic-related cardiovascular diseases (ASCVD) are characterized by high serum levels of low-density lipoprotein cholesterol (LDL-C) that can promote the generation of reactive oxygen species (ROS). To answer the need for better LDL-C control in individuals at high and very high risk for CVD, a new injectable innovative family of lipid-lowering (LL) monoclonal antibodies against the protein convertase subtilisin/kexin type 9 (PCSK9) has been approved. However, the effect of these drugs on vascular function, such as ROS generation and arterial stiffness, has not already been extensively described. In this report, we present data from 18 males with high to very high CV risk undergoing LL treatment (LLT) with either statin and ezetimibe or ezetimibe monotherapy, who experienced, after a 2-month treatment with Evolocumab, a significant improvement in blood pressure (BP)-adjusted carotid–femoral pulse wave velocity (cfPWV) (p-value = 0.0005 in the whole cohort, p-value = 0.0046 in the sub-cohort undergoing background LLT with statin and ezetimibe, p-value = 0.015 in the sub-cohort undergoing background LLT with ezetimibe monotherapy), which was significantly associated with a decrease in freshly isolated leukocytes (PBMCS)-derived H2O2 production (p-value = 0.004, p-value = 0.02 and p-value = 0.05, respectively, in the whole cohort, in the statin + ezetimibe sub-cohort, and the ezetimibe sub-cohort). Our observations support the role of systemic oxidative stress in atherosclerosis and give a further rationale for using Evolocumab also for its effect in vascular disorders linked to oxidative processes.
Collapse
Affiliation(s)
- Alessia Silla
- Department for Life Quality Studies, University of Bologna, 40126 Bologna, Italy
| | - Federica Fogacci
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- IRCCS Policlinico S. Orsola-Malpighi di Bologna, 40138 Bologna, Italy
| | - Angela Punzo
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, 40126 Bologna, Italy
| | - Patrizia Simoni
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- IRCCS Policlinico S. Orsola-Malpighi di Bologna, 40138 Bologna, Italy
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences—DIBINEM, University of Bologna, 40126 Bologna, Italy
- Istituto Nazionale Biosistemi e Biostrutture (INBB), 00136 Rome, Italy
- Interdepartmental Center of Industrial Research (CIRI)—Energy and Environment, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| | - Arrigo F. G. Cicero
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- IRCCS Policlinico S. Orsola-Malpighi di Bologna, 40138 Bologna, Italy
| |
Collapse
|
42
|
Wei X, Huang J, Zhang C, Xu C, Pu K, Zhang Y. Highly Bright Near-Infrared Chemiluminescent Probes for Cancer Imaging and Laparotomy. Angew Chem Int Ed Engl 2023; 62:e202213791. [PMID: 36579889 DOI: 10.1002/anie.202213791] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Near-infrared (NIR) chemiluminescence imaging holds potential for sensitive imaging of cancer due to its low background; however, few NIR chemiluminophores are available, which share the drawback of low chemiluminescence quantum yields (ΦCL ). Herein, we report the synthesis of NIR chemiluminophores for cancer imaging and laparotomy. Molecular engineering of the electron-withdrawing group at the para-position of the phenol-dioxetane leads to a highly bright NIR chemiluminophore (DPT), showing the ΦCL (4.6×10-2 Einstein mol-1 ) that is 3 to 5-fold higher than existing NIR chemiluminophores. By caging the phenol group of DPT with a cathepsin B (CatB) responsive moiety, an activatable chemiluminescence probe (DPTCB ) is developed for real-time turn-on detection of deeply buried tumor tissues in living mice. Due to its high brightness, DPTCB permits accurate chemiluminescence-guided laparotomy.
Collapse
Affiliation(s)
- Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P.R. China
| |
Collapse
|
43
|
David M, Jaber Q, Fridman M, Shabat D. Dual Chemiexcitation by a Unique Dioxetane Scaffold Gated by an OR Logic Set of Triggers. Chemistry 2023; 29:e202300422. [PMID: 36779696 DOI: 10.1002/chem.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/14/2023]
Abstract
Chemiexcitation of phenoxy-1,2-dioxetane chemiluminescent luminophores is initiated by electron transfer from a meta-positioned phenolate ion to the peroxide-dioxetane bond. Here we report the development of a unique 1,2-dioxetane chemiluminescent scaffold with chemiexcitation gated by an OR logic dual-set of triggering events. This scaffold is composed of meta-dihydroxyphenyl-1,2-dioxetane-adamantyl molecules, equipped with acrylic acid and chlorine substituents, that chemiexcitation under physiological conditions. A dual-mode chemiluminescent probe, armed with two different triggering substrates designed for activation by the enzymes β-galactosidase and alkaline phosphatase, was synthesized. The probe emitted intense light signals in the response to each enzyme, demonstrating its ability to serve as a single-component chemiluminescent sensor for dual-analyte detection. We also demonstrated the ability of the probe to detect β-galactosidase and phosphatase activities in bacteria. This is the first 1,2-dioxetane scaffold capable of responding to two different chemiexcitation events from two different positions on the same dioxetane molecule. We anticipate that the OR-gated mode of chemiexcitation, described herein, will find utility in the preparation of chemiluminescent probes with a dual-analyte detection/imaging mode.
Collapse
Affiliation(s)
- Maya David
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Qais Jaber
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
44
|
Abstract
Chemiluminescent molecules which emit light in response to a chemical reaction are powerful tools for the detection and measurement of biological analytes and enable the understanding of complex biochemical processes in living systems. Triggerable chemiluminescent 1,2-dioxetanes have been studied and tuned over the past decades to advance quantitative measurement of biological analytes and molecular imaging in live cells and animals. A crucial determinant of success for these 1,2-dioxetane based sensors is their chemical structure, which can be manipulated to achieve desired chemical properties. In this Perspective, we survey the structural space of triggerable 1,2-dioxetane and assess how their design features affect chemiluminescence properties including quantum yield, emission wavelength, and decomposition kinetics. Based on this appraisal, we identify some structural modifications of 1,2-dioxetanes that are ripe for exploration in the context of chemiluminescent biological sensors.
Collapse
|
45
|
Kagalwala HN, Bueno L, Wanniarachchi H, Unruh DK, Hamal KB, Pavlich CI, Carlson GJ, Pinney KG, Mason RP, Lippert AR. Oxygen-Sensing Chemiluminescent Iridium(III) 1,2-Dioxetanes: Unusual Coordination and Activity. ANALYSIS & SENSING 2023; 3:e202200085. [PMID: 37006671 PMCID: PMC10061878 DOI: 10.1002/anse.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 11/23/2022]
Abstract
Next generation chemiluminescent iridium 1,2-dioxetane complexes have been developed which consist of the Schaap's 1,2-dioxetane scaffold directly attached to the metal center. This was achieved by synthetically modifying the scaffold precursor with a phenylpyridine moiety, which can act as a ligand. Reaction of this scaffold ligand with the iridium dimer [Ir(BTP)2(μ-Cl)]2 (BTP = 2-(benzo[b]thiophen-2-yl)pyridine) yielded isomers which depict ligation through either the cyclometalating carbon or, interestingly, the sulfur atom of one BTP ligand. Their corresponding 1,2-dioxetanes display chemiluminescent responses in buffered solutions, exhibiting a single, red-shifted peak at 600 nm. This triplet emission was effectively quenched by oxygen, yielding in vitro Stern-Volmer constants of 0.1 and 0.009 mbar-1 for the carbon-bound and sulfur compound, respectively. Lastly, the sulfur-bound dioxetane was further utilized for oxygen sensing in muscle tissue of living mice and xenograft models of tumor hypoxia, depicting the ability of the probe chemiluminescence to penetrate biological tissue (total flux ~ 106 p/s).
Collapse
Affiliation(s)
- Husain N Kagalwala
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314 (USA)
| | - Lorena Bueno
- Prognostic Imaging Research Laboratory, Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390-9058 (USA)
| | - Hashini Wanniarachchi
- Prognostic Imaging Research Laboratory, Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390-9058 (USA)
| | - Daniel K Unruh
- X-ray Diffraction Facility, Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (USA)
| | - Khagendra B Hamal
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348 (USA)
| | - Cyprian I Pavlich
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348 (USA)
| | - Graham J Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348 (USA)
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348 (USA)
| | - Ralph P Mason
- Prognostic Imaging Research Laboratory, Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390-9058 (USA)
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314 (USA)
| |
Collapse
|
46
|
Organic persistent luminescence imaging for biomedical applications. Mater Today Bio 2022; 17:100481. [PMID: 36388456 PMCID: PMC9647223 DOI: 10.1016/j.mtbio.2022.100481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/08/2022] Open
Abstract
Persistent luminescence is a unique visual phenomenon that occurs after cessation of excitation light irradiation or following oxidization of luminescent molecules. The energy stored within the molecule is released in a delayed manner, resulting in luminescence that can be maintained for seconds, minutes, hours, or even days. Organic persistent luminescence materials (OPLMs) are highly robust and their facile modification and assembly into biocompatible nanostructures makes them attractive tools for in vivo bioimaging, whilst offering an alternative to conventional fluorescence imaging materials for biomedical applications. In this review, we give attention to the existing limitations of each class of OPLM-based molecular bioimaging probes based on their luminescence mechanisms, and how recent research progress has driven efforts to circumvent their shortcomings. We discuss the multifunctionality-focused design strategies, and the broad biological application prospects of these molecular probes. Furthermore, we provide insights into the next generation of OPLMs being developed for bioimaging techniques.
Collapse
|
47
|
Gao Z, Jia S, Ou H, Hong Y, Shan K, Kong X, Wang Z, Feng G, Ding D. An Activatable Near-Infrared Afterglow Theranostic Prodrug with Self-Sustainable Magnification Effect of Immunogenic Cell Death. Angew Chem Int Ed Engl 2022; 61:e202209793. [PMID: 35916871 DOI: 10.1002/anie.202209793] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Herein, we report an activatable near-infrared (NIR) afterglow theranostic prodrug that circumvents high background noise interference caused by external light excitation. The prodrug can release hydroxycamptothecin (HCPT) in response to the high intratumoral peroxynitrite level associated with immunogenic cell death (ICD), and synchronously activate afterglow signal to monitor the drug release process and cold-to-hot tumor transformation. The prodrug itself is an ICD inducer achieved by photodynamic therapy (PDT). PDT initiates ICD and recruits first-arrived neutrophils to secrete peroxynitrite to trigger HCPT release. Intriguingly, we demonstrate that HCPT can significantly amplify PDT-mediated ICD process. The prodrug thus shows a self-sustainable ICD magnification effect by establishing an "ICD-HCPT release-amplified ICD" cycling loop. In vivo studies demonstrate that the prodrug can eradicate existing tumors and prevent further tumor recurrence through antitumor immune response.
Collapse
Affiliation(s)
- Zhiyuan Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shaorui Jia
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hanlin Ou
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ke Shan
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan, 250353, China
| | - Xianglong Kong
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan, 250353, China
| | - Zhiming Wang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Guangxue Feng
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
48
|
Gao Z, Jia S, Ou H, Hong Y, Shan K, Kong X, Wang Z, Feng G, Ding D. An Activatable Near‐Infrared Afterglow Theranostic Prodrug with Self‐Sustainable Magnification Effect of Immunogenic Cell Death. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhiyuan Gao
- Nankai University College of Life Sciences CHINA
| | - Shaorui Jia
- Nankai University College of Life Sciences CHINA
| | - Hanlin Ou
- Nankai University College of Life Sciences CHINA
| | - Yuning Hong
- La Trobe University Department of Chemistry and Physics AUSTRALIA
| | - Ke Shan
- Qilu University of Technology Shandong Artificial Intelligence Institute CHINA
| | - Xianglong Kong
- Qilu University of Technology Shandong Artificial Intelligence Institute CHINA
| | - Zhiming Wang
- South China University of Technology School of Materials Science and Engineering CHINA
| | - Guangxue Feng
- South China University of Technology School of Materials Science and Engineering CHINA
| | - Dan Ding
- Nankai University College of Life Sciences 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
49
|
Zhou WL, Lin W, Chen Y, Liu Y. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging. Chem Sci 2022; 13:7976-7989. [PMID: 35919429 PMCID: PMC9278158 DOI: 10.1039/d2sc01770a] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Purely organic room temperature phosphorescence, especially in aqueous solution, is attracting increasing attention owing to its large Stokes shift, long lifetime, low preparation cost, low toxicity, good processing performance advantages, and broad application value. This review mainly focuses on macrocyclic (cyclodextrin and cucurbituril) hosts, nanoassembly, and macromolecule (polyether) confinement-driven RTP. As an optical probe, the assembly and the two-stage assembly strategy can realize the confined purely organic RTP and achieve energy transfer and light-harvesting from fluorescence to delayed fluorescence or phosphorescence. This supramolecular assembly is widely applied for luminescent materials, cell imaging, and other fields because it effectively avoids oxygen quenching. In addition, the near-infrared excitation, near-infrared emission, and in situ imaging of purely organic room temperature phosphorescence in assembled confinement materials are also prospected.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
- College of Chemistry and Material Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University Tongliao 028000 P. R. China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
50
|
Li J, Luo Y, Zeng Z, Cui D, Huang J, Xu C, Li L, Pu K, Zhang R. Precision cancer sono-immunotherapy using deep-tissue activatable semiconducting polymer immunomodulatory nanoparticles. Nat Commun 2022; 13:4032. [PMID: 35821238 PMCID: PMC9276830 DOI: 10.1038/s41467-022-31551-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Nanomedicine holds promise to enhance cancer immunotherapy; however, its potential to elicit highly specific anti-tumor immunity without compromising immune tolerance has yet to be fully unlocked. This study develops deep-tissue activatable cancer sono-immunotherapy based on the discovery of a semiconducting polymer that generates sonodynamic singlet oxygen (1O2) substantially higher than other sonosensitizers. Conjugation of two immunomodulators via 1O2-cleavable linkers onto this polymer affords semiconducting polymer immunomodulatory nanoparticles (SPINs) whose immunotherapeutic actions are largely inhibited. Under ultrasound irradiation, SPINs generate 1O2 not only to directly debulk tumors and reprogram tumor microenvironment to enhance tumor immunogenicity, but also to remotely release the immunomodulators specifically at tumor site. Such a precision sono-immunotherapy eliminates tumors and prevents relapse in pancreatic mouse tumor model. SPINs show effective antitumor efficacy even in a rabbit tumor model. Moreover, the sonodynamic activation of SPINs confines immunotherapeutic action primarily to tumors, reducing the sign of immune-related adverse events. To improve the specificity of immunotherapy, here the authors report the design of a semiconducting polymer immunomodulatory nanoparticle with sonodynamic process to remotely release immune-modulators for deep-tissue precision cancer sono-immunotherapy.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yu Luo
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, China
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Dong Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Liping Li
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, 030032, Taiyuan, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, 030032, Taiyuan, China.
| |
Collapse
|