1
|
Xiong Y, Guo H, Liu W. Unveiling the Biosynthetic Logic of Nosiheptide Based on Reconstitution of Its Bicyclic Thiopeptide Scaffold. J Am Chem Soc 2025; 147:15847-15858. [PMID: 40276895 DOI: 10.1021/jacs.5c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Thiopeptides, which share a macrocyclic framework characterized by a six-membered, nitrogen heterocycle central to multiple (thi)azol(in)es and dehydroamino acids, represent one of the most structurally complex groups of ribosomally synthesized and post-translationally modified peptides (RiPPs). Although post-translational modifications (PTMs) necessary for common framework formation were established, how bicyclic thiopeptides, which depend on additional specific enzyme activities to afford a side ring system, are formed remains poorly understood. Using the biosynthesis of nosiheptide as a model system, here, we report the first PTM logic to achieve a bicyclic thiopeptide based on in vivo and in vitro structural reconstitution. Eleven biosynthetic proteins are employed, processing the precursor peptide through the proper coordination of five PTM steps, of which three are common and two are specific: (1) formation of five thiazoles, (2) incorporation of an indolic moiety, (3) dehydration of five Ser/Thr residues, (4) indolic side ring closure, and (5) pyridine formation to establish the thiopeptide framework. Heterologous expression and biochemical characterization validated that the two macrocyclic ring systems are established in an interdependent and alternating manner. Distinct from tailoring PTMs, this study unveils a paradigm of a new PTM introduction for expanding the chemical and biological spaces during the establishment of the group-defining framework.
Collapse
Affiliation(s)
- Yijiao Xiong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Heng Guo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 1308 Keyuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Nguyen BX, Gurusinga FF, Mettal U, Schäberle TF, Yokoyama K. Radical-Mediated Nucleophilic Peptide Cross-Linking in Dynobactin Biosynthesis. J Am Chem Soc 2024; 146:31715-31732. [PMID: 39528355 DOI: 10.1021/jacs.4c10425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dynobactins are recently discovered ribosomally synthesized and post-translationally modified peptide (RiPP) antibiotics that selectively kill Gram-negative pathogens by inhibiting the β-barrel assembly machinery (Bam) located on their outer membranes. Such activity of dynobactins derives from their unique cross-links between Trp1-Asn4 and His6-Tyr8. In particular, the His6-Tyr8 cross-link is formed between Nτ of His6 and Cβ of Tyr8, an unprecedented type of cross-link in RiPP natural products. The mechanism of the C-N cross-link formation remains elusive. In this work, using in vitro characterizations, we demonstrate that both cross-links in dynobactins are biosynthesized by the radical S-adenosylmethionine (SAM) enzyme DynA. Subsequent mechanistic studies using deuterium-labeled DynB precursor peptides suggested that the C-N cross-linking proceeds through the Tyr8-Hβ atom abstraction by 5'-deoxyadenosyl radical. The absence of solvent exchange of Tyr8-Hα suggested that the mechanism unlikely involves α,β-desaturation of Tyr8. Furthermore, DynA catalyzed covalent modification of Tyr8 of H6A-DynB with small-molecule nucleophiles, suggesting the presence of a highly electrophilic Tyr-derived intermediate. Based on all these observations, we propose that DynA catalyzes Tyr8-Hβ atom abstraction to generate Tyr8-Cβ radical followed by its oxidation to a p-quinone methide intermediate, to which His6-Nτ attacks to form the C-N cross-link. This quinone methide-dependent mechanism of RiPPs cross-linking is distinct from the previously reported RiPPs cross-linking mechanisms and represents a novel mechanism in RiPPs biosynthesis. We will also discuss the functional, mechanistic, and evolutional relationships of DynA with other peptide-modifying radical SAM enzymes.
Collapse
Affiliation(s)
- Bach X Nguyen
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Friscasari F Gurusinga
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Ute Mettal
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
- German Center for Infection Research (DZIF), Site Giessen/Marburg/Langen, 35392 Giessen, Germany
| | - Kenichi Yokoyama
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Dashti Y, Mohammadipanah F, Zhang Y, Cerqueira Diaz PM, Vocat A, Zabala D, Fage CD, Romero-Canelon I, Bunk B, Spröer C, Alkhalaf LM, Overmann J, Cole ST, Challis GL. Discovery and Biosynthesis of Persiathiacins: Unusual Polyglycosylated Thiopeptides Active Against Multidrug Resistant Tuberculosis. ACS Infect Dis 2024; 10:3378-3391. [PMID: 39189814 PMCID: PMC11406533 DOI: 10.1021/acsinfecdis.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Thiopeptides are ribosomally biosynthesized and post-translationally modified peptides (RiPPs) that potently inhibit the growth of Gram-positive bacteria by targeting multiple steps in protein biosynthesis. The poor pharmacological properties of thiopeptides, particularly their low aqueous solubility, has hindered their development into clinically useful antibiotics. Antimicrobial activity screens of a library of Actinomycetota extracts led to discovery of the novel polyglycosylated thiopeptides persiathiacins A and B from Actinokineospora sp. UTMC 2448. Persiathiacin A is active against methicillin-resistant Staphylococcus aureus and several Mycobacterium tuberculosis strains, including drug-resistant and multidrug-resistant clinical isolates, and does not significantly affect the growth of ovarian cancer cells at concentrations up to 400 μM. Polyglycosylated thiopeptides are extremely rare and nothing is known about their biosynthesis. Sequencing and analysis of the Actinokineospora sp. UTMC 2448 genome enabled identification of the putative persiathiacin biosynthetic gene cluster (BGC). A cytochrome P450 encoded by this gene cluster catalyzes the hydroxylation of nosiheptide in vitro and in vivo, consistent with the proposal that the cluster directs persiathiacin biosynthesis. Several genes in the cluster encode homologues of enzymes known to catalyze the assembly and attachment of deoxysugars during the biosynthesis of other classes of glycosylated natural products. One of these encodes a glycosyl transferase that was shown to catalyze attachment of a D-glucose residue to nosiheptide in vitro. The discovery of the persiathiacins and their BGC thus provides the basis for the development of biosynthetic engineering approaches to the creation of novel (poly)glycosylated thiopeptide derivatives with enhanced pharmacological properties.
Collapse
Affiliation(s)
- Yousef Dashti
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney NSW 2015, Australia
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Yu Zhang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Anthony Vocat
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland
| | - Daniel Zabala
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Isolda Romero-Canelon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Boyke Bunk
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Lona M Alkhalaf
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Jörg Overmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- Technical University of Braunschweig, 38106 Braunschweig, Germany
- German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, U.K
- Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3168, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton VIC 3168, Australia
| |
Collapse
|
4
|
Schröder MP, Pfeiffer IPM, Mordhorst S. Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry. Beilstein J Org Chem 2024; 20:1652-1670. [PMID: 39076295 PMCID: PMC11285071 DOI: 10.3762/bjoc.20.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
This review article aims to highlight the role of methyltransferases within the context of ribosomally synthesised and post-translationally modified peptide (RiPP) natural products. Methyltransferases play a pivotal role in the biosynthesis of diverse natural products with unique chemical structures and bioactivities. They are highly chemo-, regio-, and stereoselective allowing methylation at various positions. The different possible acceptor regions in ribosomally synthesised peptides are described in this article. Furthermore, we will discuss the potential application of these methyltransferases as powerful biocatalytic tools in the synthesis of modified peptides and other bioactive compounds. By providing an overview of the various methylation options available, this review is intended to emphasise the biocatalytic potential of RiPP methyltransferases and their impact on the field of natural product chemistry.
Collapse
Affiliation(s)
- Maria-Paula Schröder
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Isabel P-M Pfeiffer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Silja Mordhorst
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Wilkens D, Simon J. Biosynthesis and function of microbial methylmenaquinones. Adv Microb Physiol 2023; 83:1-58. [PMID: 37507157 DOI: 10.1016/bs.ampbs.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The membranous quinone/quinol pool is essential for the majority of life forms and its composition has been widely used as a biomarker in microbial taxonomy. The most abundant quinone is menaquinone (MK), which serves as an essential redox mediator in various electron transport chains of aerobic and anaerobic respiration. Several methylated derivatives of MK, designated methylmenaquinones (MMKs), have been reported to be present in members of various microbial phyla possessing either the classical MK biosynthesis pathway (Men) or the futalosine pathway (Mqn). Due to their low redox midpoint potentials, MMKs have been proposed to be specifically involved in appropriate electron transport chains of anaerobic respiration. The class C radical SAM methyltransferases MqnK, MenK and MenK2 have recently been shown to catalyse specific MK methylation reactions at position C-8 (MqnK/MenK) or C-7 (MenK2) to synthesise 8-MMK, 7-MMK and 7,8-dimethylmenaquinone (DMMK). MqnK, MenK and MenK2 from organisms such as Wolinella succinogenes, Adlercreutzia equolifaciens, Collinsella tanakaei, Ferrimonas marina and Syntrophus aciditrophicus have been functionally produced in Escherichia coli, enabling extensive quinone/quinol pool engineering of the native MK and 2-demethylmenaquinone (DMK). Cluster and phylogenetic analyses of available MK and MMK methyltransferase sequences revealed signature motifs that allowed the discrimination of MenK/MqnK/MenK2 family enzymes from other radical SAM enzymes and the identification of C-7-specific menaquinone methyltransferases of the MenK2 subfamily. It is envisaged that this knowledge will help to predict the methylation status of the menaquinone/menaquinol pool of any microbial species (or even a microbial community) from its (meta)genome.
Collapse
Affiliation(s)
- Dennis Wilkens
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
6
|
Nie L, Wei T, Cao M, Lyu Y, Wang S, Feng Z. Biosynthesis of coelulatin for the methylation of anthraquinone featuring HemN-like radical S-adenosyl-L-methionine enzyme. Front Microbiol 2022; 13:1040900. [PMID: 36466681 PMCID: PMC9714029 DOI: 10.3389/fmicb.2022.1040900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Bacterial aromatic polyketides are usually biosynthesized by the type II polyketide synthase (PKS-II) system. Advances in deoxyribonucleic acid (DNA) sequencing, informatics, and biotechnologies have broadened opportunities for the discovery of aromatic polyketides. Meanwhile, metagenomics is a biotechnology that has been considered as a promising approach for the discovery of novel natural products from uncultured bacteria. Here, we cloned a type II polyketide biosynthetic gene cluster (BGC) from the soil metagenome, and the heterologous expression of this gene cluster in Streptomyces coelicolor M1146 resulted in the production of three anthraquinones, two of which (coelulatins 2 and 3) had special hydroxymethyl and methyloxymethyl modifications at C2 of the polyketide scaffold. Gene deletion and in vitro biochemical characterization indicated that the HemN-like radical S-adenosyl-L-methionine (SAM) enzyme CoeI exhibits methylation and is involved in C2 modification.
Collapse
Affiliation(s)
- Lishuang Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tianyi Wei
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mingming Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shaochen Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Mu N, Guo H, Zhang E, Yin Y, Wang W, Chen D, Wang S, Liu W. Mutasynthesis Generates Antibacterial Benzothiophenic-Containing Nosiheptide Analogues. JOURNAL OF NATURAL PRODUCTS 2022; 85:2274-2281. [PMID: 36122372 DOI: 10.1021/acs.jnatprod.2c00273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nosiheptide is a bicyclic thiopeptide featuring an indole-containing side ring, which is biologically important in maintaining its potent antibacterial activity. By using mutational biosynthesis, the pharmaceutically significant benzothiophene was introduced into the nosiheptide biosynthetic pathway, resulting in the generation of three bioactive nosiheptide analogues with characteristic benzothiophene-containing side rings. Insights were provided into the transformation relationship of these analogues, which effectively improves the yield of S-NOS-1 with favorable activity against Gram-positive pathogens.
Collapse
Affiliation(s)
- Ning Mu
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People's Republic of China
| | - Heng Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - E Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People's Republic of China
| | - Yu Yin
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, People's Republic of China
| | - Wengui Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People's Republic of China
| | - Dandan Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
- Huzhou Zhongke Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, People's Republic of China
| | - Shoufeng Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People's Republic of China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
8
|
Nguyen TQ, Nicolet Y. Structure and Catalytic Mechanism of Radical SAM Methylases. Life (Basel) 2022; 12:1732. [PMID: 36362886 PMCID: PMC9692996 DOI: 10.3390/life12111732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 08/14/2023] Open
Abstract
Methyl transfer is essential in myriad biological pathways found across all domains of life. Unlike conventional methyltransferases that catalyze this reaction through nucleophilic substitution, many members of the radical S-adenosyl-L-methionine (SAM) enzyme superfamily use radical-based chemistry to methylate unreactive carbon centers. These radical SAM methylases reductively cleave SAM to generate a highly reactive 5'-deoxyadenosyl radical, which initiates a broad range of transformations. Recently, crystal structures of several radical SAM methylases have been determined, shedding light on the unprecedented catalytic mechanisms used by these enzymes to overcome the substantial activation energy barrier of weakly nucleophilic substrates. Here, we review some of the discoveries on this topic over the last decade, focusing on enzymes for which three-dimensional structures are available to identify the key players in the mechanisms, highlighting the dual function of SAM as a methyl donor and a 5'-deoxyadenosyl radical or deprotonating base source. We also describe the role of the protein matrix in orchestrating the reaction through different strategies to catalyze such challenging methylations.
Collapse
Affiliation(s)
| | - Yvain Nicolet
- Metalloproteins Unit, Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| |
Collapse
|
9
|
Soualmia F, Guillot A, Sabat N, Brewee C, Kubiak X, Haumann M, Guinchard X, Benjdia A, Berteau O. Exploring the Biosynthetic Potential of TsrM, a B 12 -dependent Radical SAM Methyltransferase Catalyzing Non-radical Reactions. Chemistry 2022; 28:e202200627. [PMID: 35253932 DOI: 10.1002/chem.202200627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 12/20/2022]
Abstract
B12 -dependent radical SAM enzymes are an emerging enzyme family with approximately 200,000 proteins. These enzymes have been shown to catalyze chemically challenging reactions such as methyl transfer to sp2- and sp3-hybridized carbon atoms. However, to date we have little information regarding their complex mechanisms and their biosynthetic potential. Here we show, using X-ray absorption spectroscopy, mutagenesis and synthetic probes that the vitamin B12 -dependent radical SAM enzyme TsrM catalyzes not only C- but also N-methyl transfer reactions further expanding its synthetic versatility. We also demonstrate that TsrM has the unique ability to directly transfer a methyl group to the benzyl core of tryptophan, including the least reactive position C4. Collectively, our study supports that TsrM catalyzes non-radical reactions and establishes the usefulness of radical SAM enzymes for novel biosynthetic schemes including serial alkylation reactions at particularly inert C-H bonds.
Collapse
Affiliation(s)
- Feryel Soualmia
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Nazarii Sabat
- UPR 2301, Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Clémence Brewee
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Xavier Kubiak
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Xavier Guinchard
- UPR 2301, Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
10
|
Mathew LG, Brimberry M, Lanzilotta WN. Class C Radical SAM Methyltransferases Involved in Anaerobic Heme Degradation. ACS BIO & MED CHEM AU 2022; 2:120-124. [PMID: 37101744 PMCID: PMC10114669 DOI: 10.1021/acsbiomedchemau.1c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Class C radical SAM methyltransferases catalyze a diverse array of difficult chemical transformations in the biosynthesis of a range of compounds of biomedical importance. Phylogenetic analysis suggests that all of these enzymes are related to "CpdH" (formerly "HemN") and "HemW", proteins with essential roles in anaerobic heme biosynthesis and heme transport, respectively. These functions are essential to anaerobic metabolism in Escherichia coli. Interestingly, evolution has come full circle, and the divergence of this protein sequence/fold has resulted in the class C radical SAM methyltransferases. Several pathogenic organisms have further adapted this fold to catalyze the anaerobic degradation of heme. In this review, we summarize what is known about the mechanism of anaerobic heme degradation and the evolutionary implications.
Collapse
|
11
|
Abstract
HemN is a radical S-adenosylmethionine (SAM) enzyme that catalyzes the anaerobic oxidative decarboxylation of coproporphyrinogen III to produce protoporphyrinogen IX, a key intermediate in heme biosynthesis. Proteins homologous to HemN (HemN-like proteins) are widespread in both prokaryotes and eukaryotes. Although these proteins are in most cases annotated as anaerobic coproporphyrinogen III oxidases (CPOs) in the public database, many of them are actually not CPOs but have diverse functions such as methyltransferases, cyclopropanases, heme chaperones, to name a few. This Perspective discusses the recent advances in the understanding of HemN-like proteins, and particular focus is placed on the diverse chemistries and functions of this growing protein family.
Collapse
Affiliation(s)
- Jinduo Cheng
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Wan-Qiu Liu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xiaoyu Zhu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
12
|
Brimberry MA, Mathew L, Lanzilotta W. Making and breaking carbon-carbon bonds in class C radical SAM methyltransferases. J Inorg Biochem 2022; 226:111636. [PMID: 34717253 PMCID: PMC8667262 DOI: 10.1016/j.jinorgbio.2021.111636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Radical S-adenosylmethionine (SAM) enzymes utilize a [4Fe-4S]1+ cluster and S-(5'-adenosyl)-L-methionine, (SAM), to generate a highly reactive radical and catalyze what is arguably the most diverse set of chemical reactions for any known enzyme family. At the heart of radical SAM catalysis is a highly reactive 5'-deoxyadenosyl radical intermediate (5'-dAdo●) generated through reductive cleavage of SAM or nucleophilic attack of the unique iron of the [4Fe-4S]+ cluster on the 5' C atom of SAM. Spectroscopic studies reveal the 5'-dAdo● is transiently captured in an FeC bond (Ω species). In the presence of substrate, homolytic scission of this metal‑carbon bond regenerates the 5'-dAdo● for catalytic hydrogen atom abstraction. While reminiscent of the adenosylcobalamin mechanism, radical SAM enzymes appear to encompass greater catalytic diversity. In this review we discuss recent developments for radical SAM enzymes involved in unique chemical rearrangements, specifically regarding class C radical SAM methyltransferases. Illuminating this class of radical SAM enzymes is especially significant as many enzymes have been shown to play critical roles in pathogenesis and the synthesis of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Marley A. Brimberry
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602
| | - Liju Mathew
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602
| | - William Lanzilotta
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602.,To whom correspondence should be addressed. Phone, (706) 542-1324; fax, (706) 542-1738;
| |
Collapse
|
13
|
Wang B, Silakov A, Booker SJ. Using peptide substrate analogs to characterize a radical intermediate in NosN catalysis. Methods Enzymol 2022; 666:469-487. [DOI: 10.1016/bs.mie.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Guo H, Bai X, Yang Q, Xue Y, Chen D, Tao J, Liu W. NocU is a cytochrome P450 oxygenase catalyzing N-hydroxylation of the indolic moiety during the maturation of the thiopeptide antibiotics nocathiacins. Org Biomol Chem 2021; 19:8338-8342. [PMID: 34523664 DOI: 10.1039/d1ob01284c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ribosomally synthesized and post-translationally modified peptide (RiPP) natural products include the family of thiopeptide antibiotics, where nocathiacins (NOCs) and nosiheptide (NOS) are structurally related bicyclic members featuring an indolic moiety within the side ring system. Compared with NOS, NOCs bear additional functionalities that lead to the improvement of water solubility and bioavailability, a problem inherent to most of the thiopeptide antibiotics, and thus hold potential for clinical use in anti-infective agent development. The process through which post-translational modifications (PTMs) occur to afford these functionalities remains unclear. In this study, an engineered NOS-producing strain is applied to study the function of NocU, a cytochrome P450 oxygenase unique during the PTMs in NOC biosynthesis. Benefiting from the isolation and structure characterization of nosiheptide U (NOS-U), a new NOS-type compound with an extra hydroxyl group at the indole nitrogen, we report that NocU is responsible for the N-hydroxylation of the indolic moiety during the maturation of NOCs. This finding reveals the cause of structural differences at the indole nitrogen of NOCs, which will not only accelerate the biosynthetic studies of NOCs, but also promote new analog development by utilizing the compatibility of the biosynthetic machinery of thiopeptide antibiotics.
Collapse
Affiliation(s)
- Heng Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xuebing Bai
- Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Qian Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yufeng Xue
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Dandan Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China.
| | - Jiang Tao
- Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China.
| |
Collapse
|
15
|
Benjdia A, Berteau O. Radical SAM Enzymes and Ribosomally-Synthesized and Post-translationally Modified Peptides: A Growing Importance in the Microbiomes. Front Chem 2021; 9:678068. [PMID: 34350157 PMCID: PMC8326336 DOI: 10.3389/fchem.2021.678068] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
To face the current antibiotic resistance crisis, novel strategies are urgently required. Indeed, in the last 30 years, despite considerable efforts involving notably high-throughput screening and combinatorial libraries, only few antibiotics have been launched to the market. Natural products have markedly contributed to the discovery of novel antibiotics, chemistry and drug leads, with more than half anti-infective and anticancer drugs approved by the FDA being of natural origin or inspired by natural products. Among them, thanks to their modular structure and simple biosynthetic logic, ribosomally synthesized and posttranslationally modified peptides (RiPPs) are promising scaffolds. In addition, recent studies have highlighted the pivotal role of RiPPs in the human microbiota which remains an untapped source of natural products. In this review, we report on recent developments in radical SAM enzymology and how these unique biocatalysts have been shown to install complex and sometimes unprecedented posttranslational modifications in RiPPs with a special focus on microbiome derived enzymes.
Collapse
Affiliation(s)
- Alhosna Benjdia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Olivier Berteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| |
Collapse
|
16
|
Lu J, Li Y, Bai Z, Lv H, Wang H. Enzymatic macrocyclization of ribosomally synthesized and posttranslational modified peptides via C-S and C-C bond formation. Nat Prod Rep 2021; 38:981-992. [PMID: 33185226 DOI: 10.1039/d0np00044b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2000 to 2020 Ribosomally synthesized and posttranslational modified peptides (RiPPs) are a rapidly growing class of bioactive natural products. Many members of RiPPs contain macrocyclic structural units constructed by modification enzymes through macrocyclization of linear precursor peptides. In this study, we summarize recent progress in the macrocyclization of RiPPs by C-S and C-C bond formation with a focus on the current understanding of the enzymatic mechanisms.
Collapse
Affiliation(s)
- Jingxia Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yuqing Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Zengbing Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Hongmei Lv
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
17
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 488] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
18
|
Chan DCK, Burrows LL. Thiopeptides: antibiotics with unique chemical structures and diverse biological activities. J Antibiot (Tokyo) 2020; 74:161-175. [PMID: 33349675 DOI: 10.1038/s41429-020-00387-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Thiopeptides are a class of natural product antibiotics with diverse structures and functions. Their complex structures and biosynthesis have intrigued researchers since their discovery in 1948, but not a single thiopeptide has been approved for human use. This is mainly due to their poor solubility, challenging synthesis, and low bioavailability. This review summarizes the current research on the biosynthesis and biological activity of thiopeptide antibiotics since 2015. The focus of research since 2015 has been on uncovering biosynthetic routes, developing methods for total synthesis, and understanding the biological activity of thiopeptides. Overall, there is still much to learn about this family of molecules.
Collapse
Affiliation(s)
- Derek C K Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada. .,Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
19
|
Vinogradov AA, Suga H. Introduction to Thiopeptides: Biological Activity, Biosynthesis, and Strategies for Functional Reprogramming. Cell Chem Biol 2020; 27:1032-1051. [PMID: 32698017 DOI: 10.1016/j.chembiol.2020.07.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
Thiopeptides (also known as thiazolyl peptides) are structurally complex natural products with rich biological activities. Known for over 70 years for potent killing of Gram-positive bacteria, thiopeptides are experiencing a resurgence of interest in the last decade, primarily brought about by the genomic revolution of the 21st century. Every area of thiopeptide research-from elucidating their biological function and biosynthesis to expanding their structural diversity through genome mining-has made great strides in recent years. These advances lay the foundation for and inspire novel strategies for thiopeptide engineering. Accordingly, a number of diverse approaches are being actively pursued in the hope of developing the next generation of natural-product-inspired therapeutics. Here, we review the contemporary understanding of thiopeptide biological activities, biosynthetic pathways, and approaches to structural and functional reprogramming, with a special focus on the latter.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
20
|
Zhang E, Guo H, Chen D, Yang Q, Fan Y, Yin Y, Wang W, Chen D, Wang S, Liu W. Mutational biosynthesis to generate novel analogs of nosiheptide featuring a fluorinated indolic acid moiety. Org Biomol Chem 2020; 18:4051-4055. [PMID: 32412572 DOI: 10.1039/d0ob00084a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nosiheptide (NOS) is a member of bicyclic thiopeptides possessing a biologically important indolic acid (IA) moiety appended onto the family-characteristic core system. The IA formation relies primarily on NosL, a radical S-adenosylmethionine (SAM) protein that catalyzes a complex rearrangement of the carbon side chain of l-tryptophan, leading to the generation of 3-methyl-2-indolic acid (MIA). Here, we establish an efficient mutational biosynthesis strategy for the structural expansion of the side-ring system of NOS. The nosL-deficient mutant Streptomyces actuosus SL4005 complemented by chemically feeding 6-fluoro-MIA is capable of accumulating two new products. The target product 6'-fluoro-NOS contains an additional fluorine atom at C6 of the IA moiety, in contrast with an unexpected product 6'-fluoro-NOSint that features an open side ring and a bis-dehydroalanine (Dha) tail. The newly obtained 6'-fluoro-NOS displayed equivalent or slightly reduced activities against the tested drug-resistant pathogens compared with NOS, but dramatically decreased water solubility compared with NOS. Our results indicate that the modification of the IA moiety of NOS not only affects its biological activity but also affects its activity which will be key considerations for further modification.
Collapse
Affiliation(s)
- E Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Minimal lactazole scaffold for in vitro thiopeptide bioengineering. Nat Commun 2020; 11:2272. [PMID: 32385237 PMCID: PMC7210931 DOI: 10.1038/s41467-020-16145-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Lactazole A is a cryptic thiopeptide from Streptomyces lactacystinaeus, encoded by a compact 9.8 kb biosynthetic gene cluster. Here, we establish a platform for in vitro biosynthesis of lactazole A, referred to as the FIT-Laz system, via a combination of the flexible in vitro translation (FIT) system with recombinantly produced lactazole biosynthetic enzymes. Systematic dissection of lactazole biosynthesis reveals remarkable substrate tolerance of the biosynthetic enzymes and leads to the development of the minimal lactazole scaffold, a construct requiring only 6 post-translational modifications for macrocyclization. Efficient assembly of such minimal thiopeptides with FIT-Laz opens access to diverse lactazole analogs with 10 consecutive mutations, 14- to 62-membered macrocycles, and 18 amino acid-long tail regions, as well as to hybrid thiopeptides containing non-proteinogenic amino acids. This work suggests that the minimal lactazole scaffold is amenable to extensive bioengineering and opens possibilities to explore untapped chemical space of thiopeptides. Lactazole A is a thiopeptide from Streptomyces lactacystinaeus, encoded by a compact 9.8 kb biosynthetic gene cluster. Here, the authors show a platform for in vitro biosynthesis of lactazole A via a combination of a flexible in vitro translation system with recombinantly produced lactazole biosynthetic enzymes.
Collapse
|
22
|
Ji W, Ji X, Zhang Q, Mandalapu D, Deng Z, Ding W, Sun P, Zhang Q. Sulfonium‐Based Homolytic Substitution Observed for the Radical SAM Enzyme HemN. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenjuan Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| | | | - Zixin Deng
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Sun
- School of Pharmacy Second Military Medical University Shanghai 200433 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
23
|
Ji W, Ji X, Zhang Q, Mandalapu D, Deng Z, Ding W, Sun P, Zhang Q. Sulfonium‐Based Homolytic Substitution Observed for the Radical SAM Enzyme HemN. Angew Chem Int Ed Engl 2020; 59:8880-8884. [DOI: 10.1002/anie.202000812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Wenjuan Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| | | | - Zixin Deng
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Sun
- School of Pharmacy Second Military Medical University Shanghai 200433 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
24
|
Reis JPA, Figueiredo SAC, Sousa ML, Leão PN. BrtB is an O-alkylating enzyme that generates fatty acid-bartoloside esters. Nat Commun 2020; 11:1458. [PMID: 32193394 PMCID: PMC7081238 DOI: 10.1038/s41467-020-15302-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
Esterification reactions are central to many aspects of industrial and biological chemistry. The formation of carboxyesters typically occurs through nucleophilic attack of an alcohol onto the carboxylate carbon. Under certain conditions employed in organic synthesis, the carboxylate nucleophile can be alkylated to generate esters from alkyl halides, but this reaction has only been observed transiently in enzymatic chemistry. Here, we report a carboxylate alkylating enzyme - BrtB - that catalyzes O-C bond formation between free fatty acids of varying chain length and the secondary alkyl halide moieties found in the bartolosides. Guided by this reactivity, we uncovered a variety of natural fatty acid-bartoloside esters, previously unrecognized products of the bartoloside biosynthetic gene cluster.
Collapse
Affiliation(s)
- João P A Reis
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Sandra A C Figueiredo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Maria Lígia Sousa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
25
|
Bai X, Guo H, Chen D, Yang Q, Tao J, Liu W. Isolation and structure determination of two new nosiheptide-type compounds provide insights into the function of the cytochrome P450 oxygenase NocV in nocathiacin biosynthesis. Org Chem Front 2020. [DOI: 10.1039/c9qo01328h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two new nosiheptide-type compounds isolated from an engineered strain provide insights into the function of the cytochrome P450 oxygenase NocV.
Collapse
Affiliation(s)
- Xuebing Bai
- Department of General Dentistry
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Heng Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Dandan Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Qian Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Jiang Tao
- Department of General Dentistry
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
26
|
Jin WB, Wu S, Xu YF, Yuan H, Tang GL. Recent advances in HemN-like radical S-adenosyl-l-methionine enzyme-catalyzed reactions. Nat Prod Rep 2020; 37:17-28. [DOI: 10.1039/c9np00032a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
HemN-like radical S-adenosyl-l-methionine (SAM) enzymes have been recently disclosed to catalyze diverse chemically challenging reactions from primary to secondary metabolic pathways.
Collapse
Affiliation(s)
- Wen-Bing Jin
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Sheng Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Yi-Fan Xu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Hua Yuan
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
27
|
Mathew LG, Beattie NR, Pritchett C, Lanzilotta WN. New Insight into the Mechanism of Anaerobic Heme Degradation. Biochemistry 2019; 58:4641-4654. [PMID: 31652058 DOI: 10.1021/acs.biochem.9b00841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ChuW, ChuX, and ChuY are contiguous genes downstream from a single promoter that are expressed in the enteric pathogen Escherichia coli O157:H7 when iron is limiting. These genes, and the corresponding proteins, are part of a larger heme uptake and utilization operon that is common to several other enteric pathogens, such as Vibrio cholerae. The aerobic degradation of heme has been well characterized in humans and several pathogenic bacteria, including E. coli O157:H7, but only recently was it shown that ChuW catalyzes the anaerobic degradation of heme to release iron and produce a reactive tetrapyrrole termed "anaerobilin". ChuY has been shown to function as an anaerobilin reductase, in a role that parallels biliverdin reductase. In this work we have employed biochemical and biophysical approaches to further interrogate the mechanism of the anaerobic degradation of heme. We demonstrate that the iron atom of the heme does not participate in the catalytic mechanism of ChuW and that S-adenosyl-l-methionine binding induces conformational changes that favor catalysis. In addition, we show that ChuX and ChuY have synergistic and additive effects on the turnover rate of ChuW. Finally, we have found that ChuS is an effective source of heme or protoporphyrin IX for ChuW under anaerobic conditions. These data indicate that ChuS may have dual functionality in vivo. Specifically, ChuS serves as a heme oxygenase during aerobic metabolism of heme but functions as a cytoplasmic heme storage protein under anaerobic conditions, akin to what has been shown for PhuS (45% sequence identity) from Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Liju G Mathew
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies , University of Georgia , Athens , Georgia 30602 , United States
| | - Nathaniel R Beattie
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies , University of Georgia , Athens , Georgia 30602 , United States
| | - Clayton Pritchett
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies , University of Georgia , Athens , Georgia 30602 , United States
| | - William N Lanzilotta
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
28
|
Abstract
Bacterial natural products display astounding structural diversity, which, in turn, endows them with a remarkable range of biological activities that are of significant value to modern society. Such structural features are generated by biosynthetic enzymes that construct core scaffolds or perform peripheral modifications, and can thus define natural product families, introduce pharmacophores and permit metabolic diversification. Modern genomics approaches have greatly enhanced our ability to access and characterize natural product pathways via sequence-similarity-based bioinformatics discovery strategies. However, many biosynthetic enzymes catalyse exceptional, unprecedented transformations that continue to defy functional prediction and remain hidden from us in bacterial (meta)genomic sequence data. In this Review, we highlight exciting examples of unusual enzymology that have been uncovered recently in the context of natural product biosynthesis. These suggest that much of the natural product diversity, including entire substance classes, awaits discovery. New approaches to lift the veil on the cryptic chemistries of the natural product universe are also discussed.
Collapse
|
29
|
Radle MI, Miller DV, Laremore TN, Booker SJ. Methanogenesis marker protein 10 (Mmp10) from Methanosarcina acetivorans is a radical S-adenosylmethionine methylase that unexpectedly requires cobalamin. J Biol Chem 2019; 294:11712-11725. [PMID: 31113866 DOI: 10.1074/jbc.ra119.007609] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/10/2019] [Indexed: 11/06/2022] Open
Abstract
Methyl coenzyme M reductase (MCR) catalyzes the last step in the biological production of methane by methanogenic archaea, as well as the first step in the anaerobic oxidation of methane to methanol by methanotrophic archaea. MCR contains a number of unique post-translational modifications in its α subunit, including thioglycine, 1-N-methylhistidine, S-methylcysteine, 5-C-(S)-methylarginine, and 2-C-(S)-methylglutamine. Recently, genes responsible for the thioglycine and methylarginine modifications have been identified in bioinformatics studies and in vivo complementation of select mutants; however, none of these reactions has been verified in vitro Herein, we purified and biochemically characterized the radical S-adenosylmethionine (SAM) protein MaMmp10, the product of the methanogenesis marker protein 10 gene in the methane-producing archaea Methanosarcina acetivorans Using an array of approaches, including kinetic assays, LC-MS-based quantification, and MALDI TOF-TOF MS analyses, we found that MaMmp10 catalyzes the methylation of the equivalent of Arg285 in a peptide substrate surrogate, but only in the presence of cobalamin. We noted that the methyl group derives from SAM, with cobalamin acting as an intermediate carrier, and that MaMmp10 contains a C-terminal cobalamin-binding domain. Given that Mmp10 has not been annotated as a cobalamin-binding protein, these findings suggest that cobalamin-dependent radical SAM proteins are more prevalent than previously thought.
Collapse
Affiliation(s)
- Matthew I Radle
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Danielle V Miller
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Tatiana N Laremore
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Squire J Booker
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802 .,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802.,Howard Hughes Medical Institute, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
30
|
Revisiting the Mechanism of the Anaerobic Coproporphyrinogen III Oxidase HemN. Angew Chem Int Ed Engl 2019; 58:6235-6238. [DOI: 10.1002/anie.201814708] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/13/2019] [Indexed: 12/26/2022]
|
31
|
Wang B, LaMattina JW, Marshall SL, Booker SJ. Capturing Intermediates in the Reaction Catalyzed by NosN, a Class C Radical S-Adenosylmethionine Methylase Involved in the Biosynthesis of the Nosiheptide Side-Ring System. J Am Chem Soc 2019; 141:5788-5797. [PMID: 30865439 DOI: 10.1021/jacs.8b13157] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nosiheptide is a ribosomally synthesized and post-translationally modified thiopeptide natural product that possesses antibacterial, anticancer, and immunosuppressive properties. It contains a bicyclic structure composed of a large macrocycle and a unique side-ring system containing a 3,4-dimethylindolic acid bridge connected to the side chains of Glu6 and Cys8 of the core peptide via ester and thioester linkages, respectively. In addition to the structural peptide, encoded by the nosM gene, the biosynthesis of the side-ring structure requires the actions of NosI, -J, -K, -L, and -N. NosN is annotated as a class C radical S-adenosylmethionine (SAM) methylase, but its true function is to transfer a C1 unit from SAM to C4 of 3-methyl-2-indolic acid (MIA) with concomitant formation of a bond between the carboxylate of Glu6 of the core peptide and the nascent C1 unit. However, exactly when NosN performs its function during the biosynthesis of nosiheptide is unknown. Herein, we report the syntheses and use of three peptide mimics as potential substrates designed to address the timing of NosN's function. Our results show that NosN clearly closes the side ring before NosO forms the pyridine ring and most likely before NosD/E catalyzes formation of the dehydrated amino acids, although the possibility of a more random process (i.e., NosN acting after NosD/E) cannot be ruled out. Using a substrate mimic containing a rigid structure, we also identify and characterize two reaction-based adducts containing SAM fused to C4 of MIA. The two SAM adducts are derived from a consensus radical-containing species proposed to be the key intermediate-or a derivative of the key intermediate-in our proposed catalytic mechanism of NosN.
Collapse
|
32
|
Ji X, Mo T, Liu W, Ding W, Deng Z, Zhang Q. Revisiting the Mechanism of the Anaerobic Coproporphyrinogen III Oxidase HemN. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xinjian Ji
- Department of ChemistryFudan University Shanghai 200433 China
| | - Tianlu Mo
- Department of ChemistryFudan University Shanghai 200433 China
| | - Wan‐Qiu Liu
- Department of ChemistryFudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of ChemistryFudan University Shanghai 200433 China
| |
Collapse
|
33
|
Qiu Y, Du Y, Wang S, Zhou S, Guo Y, Liu W. Radical S-Adenosylmethionine Protein NosN Forms the Side Ring System of Nosiheptide by Functionalizing the Polythiazolyl Peptide S-Conjugated Indolic Moiety. Org Lett 2019; 21:1502-1505. [DOI: 10.1021/acs.orglett.9b00293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yanping Qiu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yanan Du
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shoufeng Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shuaixiang Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
34
|
Oberheide A, Pflanze S, Stallforth P, Arndt HD. Solid-Phase-Based Total Synthesis and Stereochemical Assignment of the Cryptic Natural Product Aurantizolicin. Org Lett 2019; 21:729-732. [DOI: 10.1021/acs.orglett.8b03940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ansgar Oberheide
- Friedrich-Schiller-Universität, Institut für Organische und Makromolekulare Chemie, Humboldtstr. 10, D-07743 Jena, Germany
| | - Sebastian Pflanze
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Chemistry of Microbial Communication, Beutenbergstr. 11A, D-07745 Jena, Germany
| | - Pierre Stallforth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Chemistry of Microbial Communication, Beutenbergstr. 11A, D-07745 Jena, Germany
| | - Hans-Dieter Arndt
- Friedrich-Schiller-Universität, Institut für Organische und Makromolekulare Chemie, Humboldtstr. 10, D-07743 Jena, Germany
| |
Collapse
|
35
|
Abstract
Although considerable knowledge of the biosynthetic machinery of thiopeptide antibiotics has been accumulated, the regulation of their production remains unclear. In this issue of Cell Chemical Biology, Li et al. (2018) have now characterized a key transcription factor and suggest its feedback regulation by biosynthesis intermediates and the final product.
Collapse
Affiliation(s)
- Claudia Roessler
- Friedrich Schiller University, Institute of Organic and Macromolecular Chemistry, Humboldtstr. 10, D-07743 Jena, Germany
| | - Hans-Dieter Arndt
- Friedrich Schiller University, Institute of Organic and Macromolecular Chemistry, Humboldtstr. 10, D-07743 Jena, Germany.
| |
Collapse
|
36
|
Abdel Monaim SAH, Somboro AM, El-Faham A, de la Torre BG, Albericio F. Bacteria Hunt Bacteria through an Intriguing Cyclic Peptide. ChemMedChem 2018; 14:24-51. [PMID: 30394699 DOI: 10.1002/cmdc.201800597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/10/2018] [Indexed: 12/15/2022]
Abstract
In the last few decades, peptides have been victorious over small molecules as therapeutics due to their broad range of applications, high biological activity, and high specificity. However, the main challenges to overcome if peptides are to become effective drugs is their low oral bioavailability and instability under physiological conditions. Cyclic peptides play a vital role in this context because they show higher stability under physiological conditions, higher membrane permeability, and greater oral bioavailability than that of their corresponding linear analogues. In this regard, cyclic antimicrobial peptides (AMPs) have gained considerable attention in the field of novel antibiotic development. Bacterial strains produce cyclic AMPs through two pathways: ribosomal and nonribosomal. This review provides an overview of the chemical classification of cyclic AMPs isolated from bacteria, and provides a description of their biological activity and mode of action.
Collapse
Affiliation(s)
- Shimaa A H Abdel Monaim
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.,Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Anou M Somboro
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 12321, Egypt
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa.,Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
37
|
Mandalapu D, Ji X, Zhang Q. Reductive Cleavage of Sulfoxide and Sulfone by Two Radical S-Adenosyl-l-methionine Enzymes. Biochemistry 2018; 58:36-39. [DOI: 10.1021/acs.biochem.8b00844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
38
|
Holliday GL, Akiva E, Meng EC, Brown SD, Calhoun S, Pieper U, Sali A, Booker SJ, Babbitt PC. Atlas of the Radical SAM Superfamily: Divergent Evolution of Function Using a "Plug and Play" Domain. Methods Enzymol 2018; 606:1-71. [PMID: 30097089 DOI: 10.1016/bs.mie.2018.06.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The radical SAM superfamily contains over 100,000 homologous enzymes that catalyze a remarkably broad range of reactions required for life, including metabolism, nucleic acid modification, and biogenesis of cofactors. While the highly conserved SAM-binding motif responsible for formation of the key 5'-deoxyadenosyl radical intermediate is a key structural feature that simplifies identification of superfamily members, our understanding of their structure-function relationships is complicated by the modular nature of their structures, which exhibit varied and complex domain architectures. To gain new insight about these relationships, we classified the entire set of sequences into similarity-based subgroups that could be visualized using sequence similarity networks. This superfamily-wide analysis reveals important features that had not previously been appreciated from studies focused on one or a few members. Functional information mapped to the networks indicates which members have been experimentally or structurally characterized, their known reaction types, and their phylogenetic distribution. Despite the biological importance of radical SAM chemistry, the vast majority of superfamily members have never been experimentally characterized in any way, suggesting that many new reactions remain to be discovered. In addition to 20 subgroups with at least one known function, we identified additional subgroups made up entirely of sequences of unknown function. Importantly, our results indicate that even general reaction types fail to track well with our sequence similarity-based subgroupings, raising major challenges for function prediction for currently identified and new members that continue to be discovered. Interactive similarity networks and other data from this analysis are available from the Structure-Function Linkage Database.
Collapse
Affiliation(s)
- Gemma L Holliday
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States.
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - Elaine C Meng
- Resource for Biocomputing, Visualization, and Informatics, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA, United States
| | - Shoshana D Brown
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - Sara Calhoun
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States; Graduate Program in Biophysics, University of California, San Francisco, CA, United States
| | - Ursula Pieper
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States; Quantitative Biosciences Institute, University of California, San Francisco, CA, United States
| | - Squire J Booker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Department of Chemistry, The Pennsylvania State University, University Park, PA, United States; The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, PA, United States
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, United States; Quantitative Biosciences Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
39
|
Wang B, LaMattina JW, Badding ED, Gadsby LK, Grove TL, Booker SJ. Using Peptide Mimics to Study the Biosynthesis of the Side-Ring System of Nosiheptide. Methods Enzymol 2018; 606:241-268. [PMID: 30097095 PMCID: PMC6501191 DOI: 10.1016/bs.mie.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thiopeptide natural products have gained interest recently for their diverse pharmacological properties, including antibacterial, antifungal, anticancer, and antimalarial activities. Due to their inherent poor solubility and uptake, there is interest in developing new thiopeptides that mimic these unique structures, but which exhibit better pharmacokinetic properties. One strategy is to exploit the biosynthetic pathways using a chemoenzymatic approach to make analogs. However, a complete understanding of thiopeptide biosynthesis is not available, especially for those molecules that contain a large number of modifications to the thiopeptide core. This gap in knowledge and the lack of a facile method for generating a variety of thiopeptide intermediates makes studying particular enzymatic steps difficult. We developed a method to produce thiopeptide mimics based on established synthetic procedures to study the reaction catalyzed by NosN, the class C radical S-adenosylmethionine methylase involved in carbon transfer to C4 of 3-methylindolic acid and completion of the side-ring system in nosiheptide. Herein, we detail strategies for overproducing and isolating NosN, as well as procedures for synthesizing substrate mimics to study the formation of the side-ring system of nosiheptide.
Collapse
Affiliation(s)
- Bo Wang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Joseph W LaMattina
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Edward D Badding
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Lauren K Gadsby
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Tyler L Grove
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Squire J Booker
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
40
|
A radical S-adenosyl-L-methionine enzyme and a methyltransferase catalyze cyclopropane formation in natural product biosynthesis. Nat Commun 2018; 9:2771. [PMID: 30018376 PMCID: PMC6050322 DOI: 10.1038/s41467-018-05217-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/23/2018] [Indexed: 11/09/2022] Open
Abstract
Cyclopropanation of unactivated olefinic bonds via addition of a reactive one-carbon species is well developed in synthetic chemistry, whereas natural cyclopropane biosynthesis employing this strategy is very limited. Here, we identify a two-component cyclopropanase system, composed of a HemN-like radical S-adenosyl-L-methionine (SAM) enzyme C10P and a methyltransferase C10Q, catalyzes chemically challenging cyclopropanation in the antitumor antibiotic CC-1065 biosynthesis. C10P uses its [4Fe-4S] cluster for reductive cleavage of the first SAM to yield a highly reactive 5'-deoxyadenosyl radical, which abstracts a hydrogen from the second SAM to produce a SAM methylene radical that adds to an sp2-hybridized carbon of substrate to form a SAM-substrate adduct. C10Q converts this adduct to CC-1065 via an intramolecular SN2 cyclization mechanism with elimination of S-adenosylhomocysteine. This cyclopropanation strategy not only expands the enzymatic reactions catalyzed by the radical SAM enzymes and methyltransferases, but also sheds light on previously unnoticed aspects of the versatile SAM-based biochemistry.
Collapse
|
41
|
Hegemann JD, van der Donk WA. Investigation of Substrate Recognition and Biosynthesis in Class IV Lanthipeptide Systems. J Am Chem Soc 2018; 140:5743-5754. [PMID: 29633842 PMCID: PMC5932250 DOI: 10.1021/jacs.8b01323] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lanthipeptides belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs) and are subdivided into four classes. The first two classes have been heavily studied, but less is known about classes III and IV. The lanthipeptide synthetases of classes III and IV share a similar organization of protein domains: A lyase domain at the N-terminus, a central kinase domain, and a C-terminal cyclase domain. Here, we provide deeper insight into class IV enzymes (LanLs). A series of putative producer strains was screened to identify production conditions of four new venezuelin-like lanthipeptides, and an Escherichia coli based heterologous production system was established for a fifth. The latter not only allowed production of fully modified core peptide but was also employed as the basis for mutational analysis of the precursor peptide to identify regions important for enzyme recognition. These experiments were complemented by in vitro binding studies aimed at identifying the region of the leader peptide recognized by the LanL enzymes as well as determining which domain of the enzyme is recognizing the substrate peptide. Combined, these studies revealed that the kinase domain is mediating the interaction with the precursor peptide and that a putatively α-helical stretch of residues at the center to N-terminal region of the leader peptide is important for enzyme recognition. In addition, a combination of in vitro assays and tandem mass spectrometry was used to elucidate the order of dehydration events in these systems.
Collapse
Affiliation(s)
- Julian D Hegemann
- Howard Hughes Medical Institute and Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana, Illinois 61801 , United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana, Illinois 61801 , United States
| |
Collapse
|
42
|
Lanz ND, Blaszczyk AJ, McCarthy EL, Wang B, Wang RX, Jones BS, Booker SJ. Enhanced Solubilization of Class B Radical S-Adenosylmethionine Methylases by Improved Cobalamin Uptake in Escherichia coli. Biochemistry 2018; 57:1475-1490. [PMID: 29298049 DOI: 10.1021/acs.biochem.7b01205] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The methylation of unactivated carbon and phosphorus centers is a burgeoning area of biological chemistry, especially given that such reactions constitute key steps in the biosynthesis of numerous enzyme cofactors, antibiotics, and other natural products of clinical value. These kinetically challenging reactions are catalyzed exclusively by enzymes in the radical S-adenosylmethionine (SAM) superfamily and have been grouped into four classes (A-D). Class B radical SAM (RS) methylases require a cobalamin cofactor in addition to the [4Fe-4S] cluster that is characteristic of RS enzymes. However, their poor solubility upon overexpression and their generally poor turnover has hampered detailed in vitro studies of these enzymes. It has been suggested that improper folding, possibly caused by insufficient cobalamin during their overproduction in Escherichia coli, leads to formation of inclusion bodies. Herein, we report our efforts to improve the overproduction of class B RS methylases in a soluble form by engineering a strain of E. coli to take in more cobalamin. We cloned five genes ( btuC, btuE, btuD, btuF, and btuB) that encode proteins that are responsible for cobalamin uptake and transport in E. coli and co-expressed these genes with those that encode TsrM, Fom3, PhpK, and ThnK, four class B RS methylases that suffer from poor solubility during overproduction. This strategy markedly enhances the uptake of cobalamin into the cytoplasm and improves the solubility of the target enzymes significantly.
Collapse
|
43
|
Zhang Z, Mahanta N, Hudson GA, Mitchell DA, van der Donk WA. Mechanism of a Class C Radical S-Adenosyl-l-methionine Thiazole Methyl Transferase. J Am Chem Soc 2017; 139:18623-18631. [PMID: 29190095 PMCID: PMC5748327 DOI: 10.1021/jacs.7b10203] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The past decade has seen the discovery of four different classes of radical S-adenosylmethionine (rSAM) methyltransferases that methylate unactivated carbon centers. Whereas the mechanism of class A is well understood, the molecular details of methylation by classes B-D are not. In this study, we present detailed mechanistic investigations of the class C rSAM methyltransferase TbtI involved in the biosynthesis of the potent thiopeptide antibiotic thiomuracin. TbtI C-methylates a Cys-derived thiazole during posttranslational maturation. Product analysis demonstrates that two SAM molecules are required for methylation and that one SAM (SAM1) is converted to 5'-deoxyadenosine and the second SAM (SAM2) is converted to S-adenosyl-l-homocysteine (SAH). Isotope labeling studies show that a hydrogen is transferred from the methyl group of SAM2 to the 5'-deoxyadenosine of SAM1 and the other two hydrogens of the methyl group of SAM2 appear in the methylated product. In addition, a hydrogen appears to be transferred from the β-position of the thiazole to the methyl group in the product. We also show that the methyl protons in the product can exchange with solvent. A mechanism consistent with these observations is presented that differs from other characterized radical SAM methyltransferases.
Collapse
Affiliation(s)
- Zhengan Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Nilkamal Mahanta
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| | - Graham A Hudson
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
44
|
Qiu Y, Du Y, Zhang F, Liao R, Zhou S, Peng C, Guo Y, Liu W. Thiolation Protein-Based Transfer of Indolyl to a Ribosomally Synthesized Polythiazolyl Peptide Intermediate during the Biosynthesis of the Side-Ring System of Nosiheptide. J Am Chem Soc 2017; 139:18186-18189. [DOI: 10.1021/jacs.7b11367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Rijing Liao
- Xuhui
Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Chao Peng
- National
Center for Protein Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai 201210, China
| | | | - Wen Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|