1
|
Yang Y, Ebel B, Oppel IM, Patureau FW. Nine-Membered Ketolactams by Oxidative Cyclization Expansion. Org Lett 2025. [PMID: 40424094 DOI: 10.1021/acs.orglett.5c01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Considerable progress has been made over decades in synthetic organic chemistry in order to build up molecular complexity, often through the design of advanced catalytic systems. Yet, simply exposing organic molecules to benchmark oxidants in catalyst free conditions can sometimes lead to surprising and highly valuable products. Thus, a synthetic method for accessing rare 9-membered ketolactams is herein described, under mild oxidative conditions. Key 18O and 17O label experiments revealed an unexpected oxygen atom migration event in the ring expansion process. The scope, mechanism, synthetic applications, and 9 to 7 membered ring contraction opportunities are discussed.
Collapse
Affiliation(s)
- Yun Yang
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Ben Ebel
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Iris M Oppel
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
2
|
Wang S, Niu X, Zhou H, Cao J, Guo C, Chang J, Zhu B. Acid-Regulated Selective Synthesis of Benzofuran Derivatives via Single-Component BDA Retro-Aldol/Michael Addition Cascade and [4 + 2] Cycloaddition Reactions. J Org Chem 2025. [PMID: 40393964 DOI: 10.1021/acs.joc.5c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The acid-controlled single-component retro-aldol/Michael addition cascade reaction and [4 + 2] cycloaddition of benzofuran-derived azadienes (BDAs) are reported for the first time. Under the conditions of trifluoromethanesulfonic acid as the catalyst and with the addition of water, BDAs initiate the retro-aldol reaction, followed by a 1,4-Michael addition, yielding (arylmethylene)bis(dibenzofuran) products with excellent yields and broad substrate applicability. This represents the first application of BDAs in a retro-aldol reaction. In contrast, in the absence of water and with boron trifluoride etherate as the catalyst, BDAs undergo a [4 + 2] cycloaddition reaction, constructing the spiro[benzofuran-2,3'-benzofuro[3,2-b]pyridine] framework with high yields and diastereoselectivity. The method features mild conditions and high atom economy, and provides a new approach for constructing benzofuran scaffold derivatives.
Collapse
Affiliation(s)
- Shuhong Wang
- Pingyuan Laboratory, Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xinran Niu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Haojia Zhou
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Jiatong Cao
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Chenyang Guo
- Pingyuan Laboratory, Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- Pingyuan Laboratory, Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Zhu
- Pingyuan Laboratory, Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Ke M, Zheng J, Zong J, Tang K, Wang J, Zheng G, Zhang B, Cheng D, Ju Z, Chen F. Enantioselective [5 + 1] cycloaddition of sulfur ylides and vinylethylene carbonates via synergistic palladium/chiral phosphonic acid catalysis. Chem Sci 2025; 16:8108-8113. [PMID: 40206558 PMCID: PMC11977510 DOI: 10.1039/d5sc01050k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
An effective method for the synthesis of dihydropyrans through synergistic palladium and chiral phosphonic acid catalysis was reported. This protocol proceeded under mild reactions and provided dihydropyrans in up to 87% yield and up to 97% ee. Meanwhile, various derivations such as oxidation, Wittig-reaction, reductions, nucleophilic substitution, and Baeyer-Villiger were accomplished to furnish interesting compounds. To gain insight into the reaction mechanism, nonlinear relationship experiments and Hammett plot experiments were carried out. In addition, a range of products (3i, 4b, 4f, 4g, and 4j) accessible from this method exhibit various anti-inflammatory activities on NO and ROS inhibition.
Collapse
Affiliation(s)
- Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Jinying Zheng
- College of Chemical Engineering, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Jiayi Zong
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Keshuang Tang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Jiahao Wang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Guohui Zheng
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Boxuan Zhang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University 220 Handan Road, Yangpu District Shanghai City China
| | - Zhiran Ju
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road, Gongshu District Hangzhou City Zhejiang Province China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University 220 Handan Road, Yangpu District Shanghai City China
| |
Collapse
|
4
|
Wang X, Jin X, Ge L, Wang D, Zhang C, Wang Z, Shi X, Yang W. Copper-Catalyzed Dynamic Kinetic Asymmetric Arylation of Secondary Phosphine-Boranes for the Synthesis of P(III)-Stereogenic Centers. Org Lett 2025; 27:3024-3030. [PMID: 40085029 DOI: 10.1021/acs.orglett.5c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Transition-metal-catalyzed asymmetric C-P(III) bond formation is a direct method for the construction of P(III)-stereogenic centers; however, achieving high enantioselectivity remains a challenge. Herein, an unprecedented Cu-catalyzed dynamic kinetic resolution of secondary phosphine-boranes was successfully developed. This asymmetric C-P(BH3) coupling reaction provided the direct and highly enantioselective synthesis of P(III)-stereogenic centers, enabling the formation of chiral medium-sized benzophosphine-boranes (7-10-membered cycles). A mechanism of dynamic kinetic resolution involving the unusual rapid racemization of secondary phosphine-boranes has been proposed.
Collapse
Affiliation(s)
- Xue Wang
- College of Medicine and College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, P. R. China
| | - Xiao Jin
- College of Medicine and College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, P. R. China
- Shandong Provincial Key Laboratory of Biological Preparation and Application Technology for Functional Glycomics, Linyi, Shandong 276000, P. R. China
| | - Lei Ge
- College of Medicine and College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, P. R. China
| | - Deyin Wang
- College of Medicine and College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, P. R. China
| | - Chun Zhang
- College of Medicine and College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, P. R. China
- Shandong Provincial Key Laboratory of Biological Preparation and Application Technology for Functional Glycomics, Linyi, Shandong 276000, P. R. China
| | - Zhen Wang
- College of Medicine and College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, P. R. China
- Shandong Provincial Key Laboratory of Biological Preparation and Application Technology for Functional Glycomics, Linyi, Shandong 276000, P. R. China
| | - Xiaowei Shi
- College of Medicine and College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, P. R. China
- Shandong Provincial Key Laboratory of Biological Preparation and Application Technology for Functional Glycomics, Linyi, Shandong 276000, P. R. China
| | - Wenqiang Yang
- College of Medicine and College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, P. R. China
- Shandong Provincial Key Laboratory of Biological Preparation and Application Technology for Functional Glycomics, Linyi, Shandong 276000, P. R. China
| |
Collapse
|
5
|
Goel K, Satyanarayana G. Microwave-Assisted Palladium-Catalyzed Crossover-Annulation: Access to Fused Polycyclic Benzofuran Scaffolds. Org Lett 2025; 27:80-85. [PMID: 39720914 DOI: 10.1021/acs.orglett.4c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
This study demonstrates quick access to heteroatom-embodied complex fused polycyclic frameworks through a palladium-catalyzed domino process facilitated by microwave-assisted crossover annulation of o-alkynylarylhalides and dihydrobenzofurans derivatives. The overall success of this process lies in the careful design of dihydrobenzofuran precursors that direct the initial palladium-mediated annulation step to proceed in a highly regioselective manner to furnish a single regioisomeric product. Notably, this one-pot method has witnessed good substrate scope and has furnished products with excellent yields.
Collapse
Affiliation(s)
- Komal Goel
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502 284, Sangareddy District, Telangana, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502 284, Sangareddy District, Telangana, India
| |
Collapse
|
6
|
Xiong Z, Ge Y, Zhou Y, Li H, Yao W, Deng J, Wang Z. Asymmetric Formal [5 + 2] Annulation of 3-Hydroxyquinolinones and Vinylethylene Carbonates through Pd/Cu Tandem Catalysis. Org Lett 2024; 26:10334-10338. [PMID: 39569629 DOI: 10.1021/acs.orglett.4c03956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The asymmetric [5 + 2] cycloaddition of VECs remains to be comparatively rare. Herein, we reported an enantioselective formal [5 + 2] annulation of 3-hydroxyquinolinones and vinylethylene carbonates (VECs) through Pd- and Cu-catalyzed tandem allylation/asymmetric [1,3]-rearrangement/hemiketalization sequences. The strategy exhibits good substrate tolerance, affording a wide range of tricyclic quinolinones bearing two adjacent quaternary stereocenters in moderate to good yields with excellent enantioselectivities.
Collapse
Affiliation(s)
- Zongli Xiong
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yi Ge
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan 421001, People's Republic of China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Heping Li
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Jun Deng
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
7
|
Shi B, Xiao M, Zhao JP, Zhang Z, Xiao WJ, Lu LQ. Synthesis of Chiral Endocyclic Allenes and Alkynes via Pd-Catalyzed Asymmetric Higher-Order Dipolar Cycloaddition. J Am Chem Soc 2024; 146:26622-26629. [PMID: 39293040 DOI: 10.1021/jacs.4c10328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
A Pd-catalyzed asymmetric higher-order dipolar cycloaddition between allenyl carbonates and azadienes is achieved by exploiting novel alkylidene-π-allyl-Pd dipoles. This research provides a modular platform for the synthesis of challenging chiral endocyclic allenes bearing a medium-sized heterocyclic motif and a centrally chiral stereocenter in good yields with high enantio- and diastereoselectivities (29 examples, up to 97% yield, 97:3 er and >19:1 dr). Experimental and computational studies elucidate the possible reaction mechanism and the observed stereochemical results. Based on the mechanistic understanding, a new π-propargyl-Pd dipole was designed to further extend the success of the higher order dipolar cycloaddition strategy to the synthesis of 10-membered endocyclic alkynes from propargyl carbonates and azadienes (13 examples, up to 98% yield and 94.5:5.5 er).
Collapse
Affiliation(s)
- Bin Shi
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Meng Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Jin-Pu Zhao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430082, P. R. China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
8
|
Han Z, Xue Y, Xie H, Shang P, Sun J, Huang H. Type of Tetrahydronaphthalene-Fused 1,5-Dipoles and Their Application in Polycyclic Compounds Synthesis. J Org Chem 2024; 89:10551-10556. [PMID: 39016040 DOI: 10.1021/acs.joc.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Palladium-catalyzed dipolar cycloaddition reactions represent an efficient strategy for the construction of cyclic compounds, with the development of novel dipolar precursors being a key focus. In this study, a new type of dipolar precursor was synthesized through the assembly of the vinylethylene carbonate unit and the tetrahydronaphthalene skeleton. This dipolar precursor can undergo [3 + 2], [5 + 4], and [5 + 2] cycloaddition reactions, leading to the construction of tetrahydronaphthalene-fused oxazolidin-2-ones, 1,5-oxazonines, and tetrahydrooxepines. In general, all of these reactions exhibited good reaction efficiency and functional group tolerance.
Collapse
Affiliation(s)
- Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Yu Xue
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Hongling Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Peinan Shang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
9
|
Cheng L, Zhao JL, Zhang XT, Jia QS, Dong N, Peng Y, Kleij AW, Liu XW. Chemo-, Regio- and Stereoselective Preparation of (Z)-2-Butene-1,4-Diol Monoesters via Pd-Catalyzed Decarboxylative Acyloxylation. Chemistry 2024; 30:e202401377. [PMID: 38738789 DOI: 10.1002/chem.202401377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/14/2024]
Abstract
(Z)-alkenes are useful synthons but thermodynamically less stable than their (E)-isomers and typically more difficult to prepare. The synthesis of 1,4-hetero-bifunctionalized (Z)-alkenes is particularly challenging due to the inherent regio- and stereoselectivity issues. Herein we demonstrate a general, chemoselective and direct synthesis of (Z)-2-butene-1,4-diol monoesters. The protocol operates within a Pd-catalyzed decarboxylative acyloxylation regime involving vinyl ethylene carbonates (VECs) and various carboxylic acids as the reaction partners under mild and operationally attractive conditions. The newly developed process allows access to a structurally diverse pool of (Z)-2-butene-1,4-diol monoesters in good yields and with excellent regio- and stereoselectivity. Various synthetic transformations of the obtained (Z)-2-butene-1,4-diol monoesters demonstrate how these synthons are of great use to rapidly diversify the portfolio of these formal desymmetrized (Z)-alkenes.
Collapse
Affiliation(s)
- Long Cheng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Jia-Li Zhao
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Xiao-Tian Zhang
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Qiao-Sen Jia
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Ni Dong
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Yu Peng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 -, Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 -, Barcelona, Spain
| | - Xiang-Wei Liu
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| |
Collapse
|
10
|
Xie F, Dong S, Liu J, Yu M, Ren D, Zhao J, Liu X. Enantio- and Diastereoselective Copper-Catalyzed Borylative Coupling of Styrenes and Azadienes. Org Lett 2024; 26:5335-5340. [PMID: 38885466 DOI: 10.1021/acs.orglett.4c01722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Here we disclose a CuB-catalyzed reaction between aurone-derived α,β-unsaturated imines and styrenes to produce 2-substituted benzofuran derivatives bearing both the γ-boryl functionality and α,β-unsymmetric stereogenic centers. The reaction represents the first transition-metal-catalyzed unsymmetric 1,4-Michael additions of azadienes, which would enrich the arsenal of CuB catalysis in organic synthesis. In addition, the synthetically versatile boron-alkylated products can be elaborated by chemical transformations to useful optically active benzofuran heterocycles.
Collapse
Affiliation(s)
- Fang Xie
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Shijie Dong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jiayi Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Miao Yu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Deyue Ren
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiaodan Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|
11
|
Tang Y, Sun X, Tan Y, Wang L, Xiong Y, Guo H. Palladium-Catalyzed (4 + 1) Annulation of 4-Vinylbenzodioxinones with Sulfur Ylides: Diastereoselective Synthesis of Dihydrobenzofuran Derivatives. J Org Chem 2024; 89:8951-8959. [PMID: 38814141 DOI: 10.1021/acs.joc.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Palladium-catalyzed (4 + 1) annulation of 4-vinylbenzodioxinones with sulfur ylides has been developed to afford various dihydrobenzofuran derivatives in moderate to high yields with excellent diastereoselectivities. The scale-up reaction and further derivations of the product worked well, demonstrating the application potential of the current reaction in organic synthesis.
Collapse
Affiliation(s)
- Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaojing Sun
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yu Tan
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Lan Wang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yanmei Xiong
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
12
|
Zhang Z, Liang FF, Zhang SL, Sun W, Zhou AX, Sun M. Pd-Catalyzed Three-Component Coupling of Cyclopropenones via Sequential C-C Bond Activation and Allylation. Org Lett 2024; 26:4262-4267. [PMID: 38722897 DOI: 10.1021/acs.orglett.4c01200] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A novel Pd-catalyzed three-component domino reaction for the stereoselective synthesis of highly functionalized allyl cinnamates has been developed. In this protocol, a sequential process of C-C bond activation and intermolecular allylic substitution was well-organized. The key for this transformation is the in situ generated hydrolysis product of cyclopropenone, which triggered a new reaction with vinylethylene carbonates. The reaction mechanism was investigated, demonstrating the high stereoselectivity and excellent atomic economy in this process.
Collapse
Affiliation(s)
- Zhou Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Fei-Fei Liang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Shu-Lin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - An-Xi Zhou
- Key Laboratory of Applied Organic Chemistry, Higher Institutions of Jiangxi Province, Shangrao Normal University, Shangrao, Jiangxi 334001, China
| | - Meng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| |
Collapse
|
13
|
Dong ZH, Li S, Long T, Zhan J, Ruan CK, Yan X, Chu WD, Yuan K, Liu QZ. Copper-Catalyzed Enantioselective 1,2-Allylation of Azadienes with Allylboronates. Org Lett 2024; 26:3235-3240. [PMID: 38557113 DOI: 10.1021/acs.orglett.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Catalytic asymmetric 1,2-allylation of aurone-derived azadienes is very difficult to achieve due to the driving force for aromatization and the greater steric hindrance of 1,2-addition compared with 1,4-addition. By taking advantage of the ability of nitrogen ligated metal complexes, we successfully demonstrated the first example of copper-catalyzed 1,2-allylation of azadienes with allylboronates for the highly enantioselective synthesis of homoallylic amines. Meanwhile, the enantioenriched 1,4-addition products could also be obtained through a subsequent 3,3-sigmatropic rearrangement of the 1,2-addition products. Extensive DFT calculations were carried out to elucidate the origins of high regioselectivity (1,2- vs 1,4-) and enantioselectivity.
Collapse
Affiliation(s)
- Zhi-Hong Dong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Shu Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Teng Long
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Jie Zhan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Cheng-Kai Ruan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Xu Yan
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Tianshui Normal University, Tianshui, Gansu 741001, P.R. China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| | - Kun Yuan
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Tianshui Normal University, Tianshui, Gansu 741001, P.R. China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P.R. China
| |
Collapse
|
14
|
Wang L, Yang S, Tang Y, Li K, Lu M, Guo H. Palladium-Catalyzed [5 + 4] Cycloaddition of 4-Vinyl-4-Butyrolactones with N-Tosyl Azadienes: Construction of Nine-Membered Ring. J Org Chem 2024; 89:5019-5028. [PMID: 38502934 DOI: 10.1021/acs.joc.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
In this paper, we reported the palladium-catalyzed formal [5 + 4] cycloaddition reactions between 4-vinyl-4-butyrolactones (VBLs) and azadienes. Under mild reaction conditions, a wide range of benzofuran-fused 9-membered heterocyclic compounds had been provided in moderate to excellent yields with exclusive regioselectivities and excellent diastereoselectivities. The practical applicability of the synthesis was demonstrated through scale-up reaction and further transformation.
Collapse
Affiliation(s)
- Lan Wang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Sen Yang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yi Tang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Kuan Li
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Mengxi Lu
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
15
|
Ghorai D, Tóth BL, Lanzi M, Kleij AW. Vinyl and Alkynyl Substituted Heterocycles as Privileged Scaffolds in Transition Metal Promoted Stereoselective Synthesis. Acc Chem Res 2024; 57:726-738. [PMID: 38387878 PMCID: PMC10918838 DOI: 10.1021/acs.accounts.3c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
ConspectusBiologically active compounds and pharmaceutically relevant intermediates often feature sterically congested stereogenic centers, in particular, carbon stereocenters that are either tertiary tetrasubstituted ones or quaternary in nature. Synthons that comprise such bulky and often structurally complex core units are of high synthetic value and represent important incentives for communities connected to drug discovery and development. Streamlined approaches that give access to a diverse set of compounds incorporating acyclic bulky stereocenters are relatively limited, though vital. They enable further exploration of three-dimensional entities that can be designed and implemented in discovery programs, thereby extending the pool of molecular properties that is inaccessible for flat molecules. However, the lack of modular substrates in particular areas of chemical space inspired us to consider functionalized heterocycles known as cyclic carbonates and carbamates as a productive way to create sterically crowded alkenes and stereocenters.In this Account, we describe the major approximations we followed over the course of 8 years using transition metal (TM) catalysis as an instrument to control the stereochemical course of various allylic and propargylic substitution processes and related transformations. Allylic substitution reactions empowered by Pd-catalysis utilizing a variety of nucleophiles are discussed, with amination being the seed of all of this combined work. These procedures build on vinyl-substituted cyclic carbonates (VCCs) that are simple and easy-to-access precursors and highly modular in nature compared to synthetically limited vinyl oxiranes. Overall these decarboxylative conversions take place with either "linear" or "branched" regioselectivities that are ligand controlled and offer access to a wide scope of functional allylic scaffolds. Alternative approaches, including dual TM/photocatalyzed transformations, allowed us to expand the repertoire of challenging stereoselective conversions. This was achieved through key single-electron pathways and via formal umpolung of intermediates, resulting in new types of carbon-carbon bond formation reactions significantly expanding the scope of allylic substitution reactions.Heterocyclic substrate variants that have triple bond functional groups were also designed by us to enable difficult-to-promote stereoselective propargylic substitution reactions through TM catalysis. In these processes, inspired by the Nishibayashi laboratory and their seminal findings in the area, we discovered various new reactivity patterns. This provided access to a range of different stereodefined building blocks such as 1,2-diborylated 1,3-dienes and tetrasubstituted α-allenols under Cu- or Ni-catalysis. In this realm, the use of lactone-derived substrates gives access to elusive chiral γ-amino acids and lactams with high stereofidelity and good structural diversity.Apart from the synthetic efforts, we have elucidated some of the pertinent mechanistic manifolds operative in these transformations to better understand the limitations and opportunities with these specifically functionalized heterocycles that allowed us to create complex synthons. We combined both theoretical and experimental investigations that lead to several unexpected outcomes in terms of enantioinduction models, catalyst preactivation, and intermediates that are intimately connected to rationales for the observed selectivity profiles. The combined work we have communicated over the years offers insight into the unique reactivity of cyclic carbonates/carbamates acting as privileged precursors. It may inspire other members of the synthetic communities to widen the scope of precursors toward novel stereoselective transformations with added value in drug discovery and development in both academic and commercial settings.
Collapse
Affiliation(s)
- Debasish Ghorai
- Institute
of Chemical Research of Catalonia (ICIQ), the Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Balázs L. Tóth
- Institute
of Chemical Research of Catalonia (ICIQ), the Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Matteo Lanzi
- Institute
of Chemical Research of Catalonia (ICIQ), the Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Arjan W. Kleij
- Institute
of Chemical Research of Catalonia (ICIQ), the Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan
Institute of Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
16
|
Wang XL, Jiang HB, Zheng SC, Zhao XM. Rhodium-Catalyzed Tandem Asymmetric Allylic Decarboxylative Addition and Cyclization of Vinylethylene Carbonates with N-Nosylimines. Molecules 2024; 29:1019. [PMID: 38474531 DOI: 10.3390/molecules29051019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
A enantioselective tandem transformation, concerning asymmetric allylic decarboxylative addition and cyclization of N-nosylimines with vinylethylene carbonates (VECs), in the presence of [Rh(C2H4)2Cl]2, chiral sulfoxide-N-olefin tridentate ligand has been developed. The reaction of VECs with various substituted N-nosylimines proceeded smoothly under mild conditions, providing highly functionalized oxazolidine frameworks in good to high yields with good to excellent enantioselectivity.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hai-Bin Jiang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Sheng-Cai Zheng
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiao-Ming Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
17
|
Ke M, Li X, Zong J, Wang B, Zheng J, Zhang S, Chen JA, Chen F. Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers via Synergistic Pd/Cu Catalysis. Org Lett 2024; 26:1201-1206. [PMID: 38308848 DOI: 10.1021/acs.orglett.3c04375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
We developed an asymmetric decarboxylative allylic alkylation of vinylethylene carbonates with α-fluoro pyridinyl acetates through a synergistic palladium/copper catalysis. This protocol provides chiral allylic alcohol with carbon-fluorine quaternary stereogenic centers in good yield with good enantioselectivities and excellent regioselectivities. The utility of this approach was further demonstrated via a gram-scale experiment and derivatizations of the product.
Collapse
Affiliation(s)
- Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinzhi Li
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiayi Zong
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bowen Wang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jinying Zheng
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shujia Zhang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jian-Ai Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
18
|
Li F, Chen X, Huang BQ, Xu HD, Zhu CF, Shen MH. Palladium-catalyzed ring-opening [5+2] annulation of vinylethylene carbonates (VECs) and C5-substituted Meldrum's acids: rapid synthesis of 7-membered lactones. Chem Commun (Camb) 2024; 60:1774-1777. [PMID: 38252322 DOI: 10.1039/d3cc05819k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A novel approach for the synthesis of unsaturated 7-membered lactones by Pd-catalyzed [5+2] dipolar cycloaddition of vinylethylene carbonates (VECs) and C5-substituted Meldrum's acid derivatives has been developed. Various Meldrum's acid derivatives worked well in this reaction under mild reaction conditions. A variety of 7-membered lactones can be accessed in a facile manner in moderate to good yields by employing easily prepared Meldrum's acid derivatives.
Collapse
Affiliation(s)
- Fei Li
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Xin Chen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Ben-Qing Huang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Chi-Fan Zhu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
19
|
Pan J, Ho TO, Chen YC, Yang BM, Zhao Y. Enantioselective Construction of Eight-Membered N-Heterocycles from Simple 1,3-Dienes via Pd(0) Lewis Base Catalysis. Angew Chem Int Ed Engl 2024; 63:e202317703. [PMID: 38100515 DOI: 10.1002/anie.202317703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
We report herein an unprecedented enantioselective (4+4) cycloaddition of simple 1,3-dienes with azadienes for the construction of fused eight-membered N-heterocycles. In this transformation, the π-Lewis basic Pd(0) catalyst achieves activation of 1,3-dienes to induce nucleophilic addition to azadienes followed by ring cyclization via a selective terminal allylic substitution. Furthermore, highly efficient and diastereoselective derivatizations of the eight-membered rings provide a facile access to diverse enantiopure fused tetra- to hexacyclic compounds with potential application in medicinal chemistry.
Collapse
Affiliation(s)
- Jiaoting Pan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Takumi Ogawa Ho
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
20
|
Tang Y, Zhang R, Dong Y, Yu S, Wu Y, Xiao Y, Guo H. 4-Vinylbenzodioxinones as a new type of precursor for palladium-catalyzed (4+3) cycloaddition of azomethine imines. Chem Commun (Camb) 2024; 60:1436-1439. [PMID: 38206119 DOI: 10.1039/d3cc06012h] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In this paper, benzo-fused cyclic carbonates were designed and synthesized as a new type of precursor of π-allylpalladium zwitterionic intermediates, and were applied in Pd-catalyzed diastereo- and enantioselective (4+3) cycloaddition with C,N-cyclic azomethine imines, leading to various biologically important 1,3,4-benzoxadiazepine derivatives in 43-99% yields with 6 : 1 to >20 : 1 dr and up to 95% ee.
Collapse
Affiliation(s)
- Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Rulei Zhang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Yujie Dong
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yumei Xiao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Tian K, Chang X, Xiao L, Dong XQ, Wang CJ. Stereodivergent synthesis of α-fluoro α-azaaryl γ-butyrolactones via cooperative copper and iridium catalysis. FUNDAMENTAL RESEARCH 2024; 4:77-85. [PMID: 38933830 PMCID: PMC11197661 DOI: 10.1016/j.fmre.2022.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022] Open
Abstract
The development of stereodivergent synthetic methods to access all four stereoisomers of biologically important α-fluoro γ-butyrolactones containing vicinal stereocenters is of great importance and poses a formidable challenge owing to ring strain and steric hindrance. Herein, a novel asymmetric [3+2] annulation of α-fluoro α-azaaryl acetates with vinylethylene carbonate was successfully developed through Cu/Ir-catalyzed cascade allylic alkylation/lactonization, affording a variety of enantioenriched α-fluoro γ-butyrolactones bearing vicinal stereogenic centers with high reaction efficiency and excellent levels of both stereoselectivity and regioselectivity (up to 98% yield, generally >20:1 dr and >99% ee). Notably, all four stereoisomers of these pharmaceutically valuable molecules could be accessed individually via simple permutations of two enantiomeric catalysts. In addition, other azaaryl acetates bearing α-methyl, α-chlorine or α-phenyl group were tolerated well in this transformation. Reaction mechanistic investigations were conducted to explore the process of this bimetallic catalysis based on the results of reaction intermediates, isotopic labelling experiments, and kinetic studies.
Collapse
Affiliation(s)
- Kui Tian
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Lu Xiao
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- Suzhou Institute of Wuhan University, Suzhou 215123, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| |
Collapse
|
22
|
Wang YJ, Zhao LM. Synthesis of 10-Membered Azecines through Pd-Catalyzed Formal [6+4] Cycloaddition and Their Transannular Reaction to Polycyclic Compounds. Chemistry 2023; 29:e202302111. [PMID: 37776147 DOI: 10.1002/chem.202302111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Azecine fragments are frequently presented in natural products and bioactive compounds. However, minor efforts have been devoted to these 10-membered N-heterocycles, and their synthesis is still challenging. Reported herein is the first catalytic formal [6+4] cycloaddition for the synthesis of 10-membered azecines. Under palladium catalysis, the reaction of δ-vinylvalerolactones and benzofuran-derived azadienes proceeds smoothly to afford benzofuran-fused azecines with high diastereoselectivity in moderate to good yields. A unique transannular reaction of these 10-membered azecines for the construction of polycyclic compounds is also demonstrated.
Collapse
Affiliation(s)
- Yu-Jiao Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| |
Collapse
|
23
|
Rao HW, Zhao TL, Wang L, Deng HD, Zhang YP, You Y, Wang ZH, Zhao JQ, Yuan WC. Palladium-catalyzed decarboxylative α-allylation of thiazolidinones and azlactones with sulfonamido-substituted acyclic allylic carbonates. Org Biomol Chem 2023; 21:8593-8602. [PMID: 37861421 DOI: 10.1039/d3ob01404e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A palladium-catalyzed decarboxylative α-allylation of thiazolidinones and azlactones with aza-π-allylpalladium zwitterionic intermediates, in situ generated from sulfonamido-substituted allylic carbonates, is successfully developed. This method allows the formation of a series of structurally diverse 5-alkylated thiazolidinones and 2-piperidones under mild conditions in moderate to high yields (up to 99% yield).
Collapse
Affiliation(s)
- Han-Wen Rao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Tian-Lan Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Long Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Hong-Dan Deng
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
24
|
Khuntia R, Mahapatra SK, Roy L, Chandra Pan S. Structurally divergent enantioselective synthesis of benzofuran fused azocine derivatives and spiro-cyclopentanone benzofurans enabled by sequential catalysis. Chem Sci 2023; 14:10768-10776. [PMID: 37829006 PMCID: PMC10566461 DOI: 10.1039/d3sc03239f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
An important objective in organic synthesis and medicinal chemistry is the capacity to access structurally varied and complex molecules rapidly and affordably from easily available starting materials. Herein, a protocol for the structurally divergent synthesis of benzofuran fused azocine derivatives and spiro-cyclopentanone benzofurans has been developed via chiral bifunctional urea catalyzed reaction between aurone-derived α,β-unsaturated imine and ynone followed by switchable divergent annulation reactions by Lewis base catalysts (DBU and PPh3) with concomitant epimerization. The skeletally diversified products were formed in high yields with high diastereo- and enantioselectivities. Computational analysis with DFT and accurate DLPNO-CCSD(T) has been employed to gain deeper insights into mechanistic intricacies and investigate the role of chiral and Lewis base catalysts in skeletal diversity.
Collapse
Affiliation(s)
- Rupkumar Khuntia
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India https://www.iitg.ac.in/span/
| | - Sanat Kumar Mahapatra
- Institute of Chemical Technology Mumbai IOC Odisha Campus Bhubaneswar Bhubaneswar 751013 India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai IOC Odisha Campus Bhubaneswar Bhubaneswar 751013 India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India https://www.iitg.ac.in/span/
| |
Collapse
|
25
|
Huang Y, Tan M, Wang N, Zhang Y, Yao H, Xiao X, Huang N, Zou K. Highly Regio- and Diastereoselective Phosphine-Catalyzed [2 + 4] Annulation of Benzofuran-Derived Azadienes with Allyl Carbonates: Access to Spiro[benzofuran-cyclohexanes]. J Org Chem 2023; 88:13030-13041. [PMID: 37648964 DOI: 10.1021/acs.joc.3c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A novel highly regio- and diastereoselective phosphine-catalyzed [2 + 4] annulation of benzofuran-derived azadienes (BDAs) with acidic hydrogen-tethered allyl carbonates has been developed ingeniously. A range of functionalized spiro[benzofuran-cyclohexane] derivatives with two consecutive stereocenters were smoothly obtained in moderate to excellent yields under mild reaction conditions from readily available materials. Moreover, this method is a practical and scalable strategy that creates the core structural motif of the fungistatic drug, griseofulvin.
Collapse
Affiliation(s)
- Yifei Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Mengting Tan
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yufei Zhang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
26
|
Dong Y, Liu J, Li K, Han S, Liang B, Yang F, Yu S, Wu Y, Zhang C, Guo H. Palladium-Catalyzed Asymmetric (3 + 2) Cycloaddition of 5-Allenyloxazolidine-2,4-Diones with Barbiturate-Derived Alkenes: Synthesis of Spirobarbiturate-γ-Lactams. Org Lett 2023; 25:6328-6333. [PMID: 37610081 DOI: 10.1021/acs.orglett.3c02242] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The 5-allenyloxazolidine-2,4-diones had been synthesized as novel precursors of π-allyl palladium zwitterion and were applied in a palladium-catalyzed enantioselective (3 + 2) annulation by using barbiturate-derived alkenes as the reaction partner in the presence of an axially chiral phosphoramidite ligand. This reaction proceeded smoothly under mild reaction conditions, affording highly functionalized spirobarbiturate-γ-lactam derivatives in excellent yields along with high diastereo- and enantioselectivities. The scale-up reaction and further transformation of the product were also successful.
Collapse
Affiliation(s)
- Yujie Dong
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Jun Liu
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Kuan Li
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Sheng Han
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Bo Liang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Fazhou Yang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Cheng Zhang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
27
|
Cai LY, Song XQ, Wang K, Zhang Y, Zhao HW. Pd-catalyzed decarboxylative 1,4-addition reactions of benzofuran-based azadienes with allyl phenyl carbonates. Org Biomol Chem 2023; 21:6556-6564. [PMID: 37525936 DOI: 10.1039/d3ob00968h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Under the catalysis of Pd(OAc)2/dppf/Na2CO3, the decarboxylative 1,4-addition reaction of benzofuran-based azadienes with allyl phenyl carbonates took place easily and delivered the desired products in reasonable chemical yields. The chemical structure of the target compounds was clearly identified by single crystal X-ray structural analysis.
Collapse
Affiliation(s)
- Lu-Yu Cai
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiu-Qing Song
- Large-scale Instruments and Equipments Sharing Platform, Beijing University of Technology, Beijing 100124, P. R. China
| | - Kuo Wang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yue Zhang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Hong-Wu Zhao
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
28
|
Pham QH, Tague AJ, Richardson C, Gardiner MG, Pyne SG, Hyland CJT. Palladium-catalysed enantio- and regioselective (3 + 2) cycloaddition reactions of sulfamidate imine-derived 1-azadienes towards spirocyclic cyclopentanes. Chem Sci 2023; 14:4893-4900. [PMID: 37181759 PMCID: PMC10171190 DOI: 10.1039/d3sc01510f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
An enantio- and diastereoselective Pd-catalysed (3 + 2) cycloaddition of bis(trifluoroethyl) 2-vinyl-cyclopropane-1,1-dicarboxylate (VCP) with cyclic sulfamidate imine-derived 1-azadienes (SDAs) has been developed. These reactions provide highly functionalized spiroheterocycles having three contiguous stereocentres, including a tetrasubstituted carbon bearing an oxygen functionality. The two geminal trifluoroethyl ester moieties can be manipulated in a facially selective manner to afford more diversely decorated spirocycles with four contiguous stereocentres. In addition, diastereoselective reduction of the imine moiety can also afford a fourth stereocentre and exposes the important 1,2-amino alcohol functionality.
Collapse
Affiliation(s)
- Quoc Hoang Pham
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| | - Andrew J Tague
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| | - Michael G Gardiner
- Research School of Chemistry, The Australian National University Canberra 2601 Australia
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| | - Christopher J T Hyland
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| |
Collapse
|
29
|
Shi L, Xiong Q, Wu SY, Li Y, Shen P, Lu J, Ran GY. Enantioselective Synthesis of Ten-Membered Lactones via Palladium-Catalyzed [5 + 5] Annulation. Org Lett 2023; 25:2030-2035. [PMID: 36939298 DOI: 10.1021/acs.orglett.3c00374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Ten-membered lactones are the core units of many biologically active natural products but with a great synthetic challenge. Based on the principle of vinylogy, novel types of cyclic vinylogous anhydrides have been designed as five-carbon carbonyl synthons, further applied in [5 + 5] annulation with vinylethylene carbonates under chiral palladium catalysis. This strategy features excellent regioselectivity, mild conditions, and broad substrate scope, affording a range of spiro ten-membered lactones bearing oxindole and pyrrolidinone motif in excellent yield (up to 99%) with moderate to high enantioselectivity (up to 89% ee).
Collapse
Affiliation(s)
- Liu Shi
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Qiang Xiong
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shu-Yi Wu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yang Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peng Shen
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ji Lu
- College of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Guang-Yao Ran
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
30
|
Li K, Zhen S, Wang W, Du J, Yu S, Wu Y, Guo H. Fungicide-inspired precursors of π-allylpalladium intermediates for palladium-catalyzed decarboxylative cycloadditions. Chem Sci 2023; 14:3024-3029. [PMID: 36937593 PMCID: PMC10016346 DOI: 10.1039/d3sc00112a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Inspired by a fungicide, we designed 5-vinyloxazolidine-2,4-diones as new precursors of π-allylpalladium zwitterionic intermediates and developed palladium-catalyzed asymmetric (5 + 3) cycloaddition with azomethine imines and (3 + 2) cycloaddition with 1,1-dicyanoalkenes. Both reactions proceeded smoothly under mild reaction conditions to produce various chiral heterocyclic compounds in high yields with excellent enantioselectivities. These results revealed that 5-vinyloxazolidine-2,4-diones were a type of suitable precursor for palladium catalysis and will find extensive applications in Pd-catalyzed reactions such as cycloaddition and allylic alkylation.
Collapse
Affiliation(s)
- Kuan Li
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| | - Shuo Zhen
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| | - Wang Wang
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| | - Juan Du
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University Zhengzhou 450001 China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University Zhengzhou 450001 China
| | - Hongchao Guo
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| |
Collapse
|
31
|
Du J, Li YF, Ding CH. Recent advances of Pd-p-allyl zwitterions in cycloaddition reactions. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
32
|
Chniti S, Kollár L, Bényei A, Dörnyei Á, Takács A. Highly Chemoselective One‐Step Synthesis of Novel
N
‐Substituted‐Pyrrolo[3,4‐b]quinoline‐1,3‐diones via Palladium‐Catalyzed Aminocarbonylation/Carbonylative Cyclisation Sequence. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Sami Chniti
- Department of General and Inorganic Chemistry Faculty of Sciences University of Pécs Ifjúság útja 6. 7624 Pécs Hungary
| | - László Kollár
- Department of General and Inorganic Chemistry Faculty of Sciences University of Pécs Ifjúság útja 6. 7624 Pécs Hungary
- János Szentágothai Research Centre University of Pécs Ifjúság útja 20. 7624 Pécs Hungary
- ELKH-PTE Research Group for Selective Chemical Syntheses Ifjúság útja 6. 7624 Pécs Hungary
| | - Attila Bényei
- Department of Pharmaceutical Chemistry University of Debrecen Egyetem tér 1. H-4032 Pécs Hungary
| | - Ágnes Dörnyei
- Department of Analytical and Environmental Chemistry Faculty of Sciences University of Pécs Ifjúság útja 6. 7624 Pécs Hungary
| | - Attila Takács
- Department of General and Inorganic Chemistry Faculty of Sciences University of Pécs Ifjúság útja 6. 7624 Pécs Hungary
- János Szentágothai Research Centre University of Pécs Ifjúság útja 20. 7624 Pécs Hungary
| |
Collapse
|
33
|
A Lewis Acid-Promoted Michael Addition and Ring-Expansion Cascade for the Construction of Nitrogen-Containing Medium-Sized Rings. Molecules 2023; 28:molecules28041650. [PMID: 36838638 PMCID: PMC9966210 DOI: 10.3390/molecules28041650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
A Lewis acid-promoted annulation of azadienes and cyclobutamines was developed. This reaction proceeded through Michael addition and ring-expansion cascade, affording the corresponding nitrogen-containing medium-sized rings with a broad scope in moderate to high yields. The catalytic asymmetric version of this reaction has also been explored using a chiral base.
Collapse
|
34
|
Li QZ, Guan YL, Huang QW, Qi T, Xiang P, Zhang X, Leng HJ, Li JL. Temperature-Controlled Divergent Asymmetric Synthesis of Indole-Based Medium-Sized Heterocycles through Palladium Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Yi-Long Guan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Qian-Wei Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Peng Xiang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| |
Collapse
|
35
|
Qin X, Zou N, Nong C, Mo D. Recent Advances on the Synthesis of Nine-Membered N-Heterocycles. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
36
|
Lin H, Yang X, Ning W, Huang X, Cao X, Ge Y, Mao B, Wang C, Guo H, Yuan C. Palladium-Catalyzed Asymmetric Cascade Intramolecular Cyclization/Intermolecular Michael Addition Reaction of Allenyl Benzoxazinones with 1-Azadienes. Org Lett 2022; 24:9442-9446. [PMID: 36537815 DOI: 10.1021/acs.orglett.2c03842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We herein designed and synthesized allenyl benzoxazinones of a novel type, which were then involved in a Pd-catalyzed asymmetric cascade intramolecular cyclization/intermolecular Michael addition reaction with 1-azadienes. A broad range of chiral C2-functionalized quinoline derivatives were afforded in moderate to good yields (up to 93%) with high enantioselectivities (up to 93% ee) in this reaction.
Collapse
Affiliation(s)
- Huawei Lin
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Xianru Yang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Wenyue Ning
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Xiaofang Huang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Xiaoqun Cao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Yanqing Ge
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Biming Mao
- School of Parmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| |
Collapse
|
37
|
Lu LG, Chen JH, Huang XB, Liu MC, Zhou YB, Wu HY. Palladium-Catalyzed Ring-Opening Reaction of Cyclopropenones with Vinyl Epoxides. J Org Chem 2022; 87:16851-16859. [DOI: 10.1021/acs.joc.2c01976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Li-Guo Lu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Jun-Hua Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Xiao-Bo Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| |
Collapse
|
38
|
Xiao F, Liao P, Lu X, Wang J, Dong XQ, Wang CJ. Iridium-Catalyzed Asymmetric Cascade Allylation/Lactonization of Indole Esters: Access to Chiral Tricyclic Oxazinoindolones. Org Lett 2022; 24:8592-8597. [DOI: 10.1021/acs.orglett.2c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Fan Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, P.R. China
| | - Peiqin Liao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Xiaoguang Lu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Jin Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, P.R. China
| |
Collapse
|
39
|
Chang MY, Chen KT. Synthesis of sulfonyl benzocyclononadienols. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Recent applications of vinylethylene carbonates in Pd-catalyzed allylic substitution and annulation reactions: Synthesis of multifunctional allylic and cyclic structural motifs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Zhao C, Khan S, Khan I, Shah BH, Zhang YJ. Pd‐Catalyzed Asymmetric Allylic Cycloaddition of Vinylethylene Carbonates with Nitroalkenes: A Route to Tetrahydrofurans bearing Vicinal Tetrasubstituted Stereocenters. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Can Zhao
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Sardaraz Khan
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Ijaz Khan
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Babar Hussain Shah
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Yong Jian Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan Road 200240 Shanghai CHINA
| |
Collapse
|
42
|
Yu C, Yu Y, Sun L, Li X, Liu Z, Ke M, Chen F. Highly diastereo- and enantioselective synthesis of multisubstituted allylic amino acid derivatives by allylic alkylation of a chiral glycine-based nickel complex and vinylethylene carbonates. Org Biomol Chem 2022; 20:4894-4899. [PMID: 35678149 DOI: 10.1039/d2ob00726f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The asymmetric synthesis of multisubstituted allylic amino acid derivatives was accomplished by the allylic alkylation of a chiral glycine-based nickel complex with vinylethylene carbonates. High enantioselectivities and diastereoselectivities were obtained under mild reaction conditions. The gram-scale synthesis was carried out with a good yield and high enantioselectivity, indicating that the method is a highly efficient route to chiral multisubstituted allylic amino acid derivatives.
Collapse
Affiliation(s)
- Chao Yu
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuyan Yu
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Longwu Sun
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Xinzhi Li
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Zhigang Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China. .,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | - Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Fener Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.,Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China. .,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China. .,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| |
Collapse
|
43
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
44
|
Li K, Yang S, Zheng B, Wang W, Wu Y, Li J, Guo H. A new type of δ-vinylvalerolactone for palladium-catalyzed cycloaddition: synthesis of nine-membered heterocycles. Chem Commun (Camb) 2022; 58:6646-6649. [PMID: 35593191 DOI: 10.1039/d2cc01134d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this paper, a new type of δ-vinylvalerolactone was designed and synthesized, and used as a new precursor in Pd-catalyzed [6+3] cycloaddition with azomethine imines, leading to nine-membered 1,2-dinitrogen-containing heterocycles in 77-98% yields with >20 : 1 d.r. These nine-membered ring-fused products were further transformed into unusual tetracyclic bridged-ring compounds without loss of the diastereoselectivities.
Collapse
Affiliation(s)
- Kuan Li
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Sen Yang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Bing Zheng
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Li
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
45
|
Mao B, Xu J, Shi W, Wang W, Wu Y, Xiao Y, Guo H. Pd-Catalyzed [4 + 2] cycloaddition of methylene cyclic carbamates with dihydropyrazolone-derived alkenes: synthesis of spiropyrazolones. Org Biomol Chem 2022; 20:4086-4090. [PMID: 35545885 DOI: 10.1039/d2ob00535b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a palladium-catalyzed [4 + 2] cycloaddition of 5-methylene-1,3-oxazinan-2-ones with 4-arylidene-2,4-dihydro-3H-pyrazol-3-ones has been developed to produce spiropyrazolones in high yields with excellent diastereoselectivities in nearly all cases. The cycloaddition reaction was scaled-up without significant loss of yield, and its synthetic utility has been demonstrated by further transformations of the products. The reaction type of N-Ts cyclic carbamates under palladium catalysis was extended to include [4 + 2] cycloaddition for the first time.
Collapse
Affiliation(s)
- Biming Mao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China. .,Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China
| | - Jiaqing Xu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Wangyu Shi
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yumei Xiao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
46
|
Shi W, Ren Y, Zhao H, Tang Y, Piao S, Mao B, Wang W, Wu Y, Wang B, Guo H. Phosphine-Catalyzed (4 + 2) Annulation of Allenoates with Benzofuran-Derived Azadienes and Subsequent Thio-Michael Addition. Org Lett 2022; 24:3747-3752. [PMID: 35549282 DOI: 10.1021/acs.orglett.2c01500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A phosphine-catalyzed (4 + 2) annulation of tetrahydrobenzofuranone-derived allenoates and benzofuran-derived azadienes (BDAs) has been achieved to construct the decahydro-2H-naphtho[1,8-bc]furan derivatives, which were subsequently treated with 4-methylbenzenethiol and trimethylamine to produce thio-Michael addition products in high to excellent yields with good diastereoselectivities.
Collapse
Affiliation(s)
- Wangyu Shi
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, PR China
| | - Yue Ren
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, PR China
| | - Haoran Zhao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, PR China
| | - Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, PR China
| | - Shixiang Piao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, PR China
| | - Biming Mao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, PR China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Bo Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
47
|
Ke M, Yu Y, Zhang K, Zuo S, Liu Z, Xiao X, Chen F. Synergistic Pd/Cu Catalyzed Allylation of Cyclic Ketimine Esters with Vinylethylene Carbonates: Enantioselective Construction of Trisubstituted Allylic 2
H
‐Pyrrole Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miaolin Ke
- Institute of Pharmaceutical Science and Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Yuyan Yu
- Institute of Pharmaceutical Science and Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ke Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| | - Sheng Zuo
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| | - Zhigang Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| |
Collapse
|
48
|
Zhang MM, Qu BL, Shi B, Xiao WJ, Lu LQ. High-order dipolar annulations with metal-containing reactive dipoles. Chem Soc Rev 2022; 51:4146-4174. [PMID: 35521739 DOI: 10.1039/d1cs00897h] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Medium-sized heterocycles are widespread among a spectrum of structurally intriguing and biologically significant natural products and synthetic pharmaceuticals. Metal-catalyzed high-order dipolar annulations resembling reactions of metal-containing reactive dipoles with dipolarophiles constitute a highly efficient and flexible strategy for constructing medium-sized heterocycles. Mechanistically, these annulation reactions usually proceeding through stepwise pathways are different from the classic high-order pericyclic reactions that follow the Woodward-Hoffman rules. More significantly, asymmetric high-order dipolar annulations using chiral organometallic catalysts have been proven successful for constructing chiral medium-sized heterocycles with high enantio- and diastereoselectivity. This review highlights the impressive advances in this area and is focused on the reactivity, scope, mechanisms and applications of high-order dipolar annulation reactions.
Collapse
Affiliation(s)
- Mao-Mao Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Bao-Le Qu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Bin Shi
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
49
|
Reyes E, Prieto L, Carrillo L, Uria U, Vicario J. Recent Developments in Transannular Reactions. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1843-1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transannular reactions have shown a remarkable performance for the construction of polycyclic scaffolds from medium- or large sized cyclic molecules in an unconventional manner. Recent examples of transannular reactions reported from 2011 have been reviewed, emphasizing the excellent performance of this approach when accessing the target compounds. This review also highlights how this methodology provides an alternative approach to other commonly used methodologies for the construction of cyclic entities such as cyclization or cycloaddition reactions
Collapse
|
50
|
Stereodivergent Desymmetrization of Simple Dicarboxylates via Branch‐Selective Pd/Cu Catalyzed Allylic Substitution. Chemistry 2022; 28:e202200273. [DOI: 10.1002/chem.202200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 11/07/2022]
|