1
|
Hong S, Baravkar SB, Lu Y, Masoud AR, Zhao Q, Zhou W. Molecular Modification of Queen Bee Acid and 10-Hydroxydecanoic Acid with Specific Tripeptides: Rational Design, Organic Synthesis, and Assessment for Prohealing and Antimicrobial Hydrogel Properties. Molecules 2025; 30:615. [PMID: 39942719 PMCID: PMC11819776 DOI: 10.3390/molecules30030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Royal jelly and medical grade honey are traditionally used in treating wounds and infections, although their effectiveness is often variable and insufficient. To overcome their limitations, we created novel amphiphiles by modifying the main reparative and antimicrobial components, queen bee acid (hda) and 10-hydroxyl-decanoic acid (hdaa), through peptide bonding with specific tripeptides. Our molecular design incorporated amphiphile targets as being biocompatible in wound healing, biodegradable, non-toxic, hydrogelable, prohealing, and antimicrobial. The amphiphilic molecules were designed in a hda(hdaa)-aa1-aa2-aa3 structural model with rational selection criteria for each moiety, prepared via Rink/Fmoc-tBu-based solid-phase peptide synthesis, and structurally verified by NMR and LC-MS/MS. We tested several amphiphiles among those containing moieties of hda or hdaa and isoleucine-leucine-aspartate (ILD-amidated) or IL-lysine (ILK-NH2). These tests were conducted to evaluate their prohealing and antimicrobial hydrogel properties. Our observation of their hydrogelation and hydrogel-rheology showed that they can form hydrogels with stable elastic moduli and injectable shear-thinning properties, which are suitable for cell and tissue repair and regeneration. Our disc-diffusion assay demonstrated that hdaa-ILK-NH2 markedly inhibited Staphylococcus aureus. Future research is needed to comprehensively evaluate the prohealing and antimicrobial properties of these novel molecules modified from hda and hdaa with tripeptides.
Collapse
Affiliation(s)
- Song Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
- Department of Ophthalmology, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA
| | - Sachin B. Baravkar
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Yan Lu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Qi Zhao
- NMR Laboratory, Department of Chemistry, Tulane University, New Orleans, LA 70115, USA;
| | - Weilie Zhou
- Department of Physics and AMRI, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
2
|
Wang Y, Zhang X, Xie D, Chen C, Huang Z, Li ZA. Chiral Engineered Biomaterials: New Frontiers in Cellular Fate Regulation for Regenerative Medicine. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202419610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 01/03/2025]
Abstract
AbstractChirality, the property of objects that are nonsuperimposable on their mirror images, plays a crucial role in biological processes and cellular behaviors. Chiral engineered biomaterials have emerged as a promising approach to regulating cellular fate in regenerative medicine. However, few reviews provide a comprehensive examination of recent advancements in chiral biomaterials and their applications in cellular fate regulation. Herein, various fabrication techniques available for chiral biomaterials, including the use of chiral molecules, surface patterning, and self‐assembly are discussed. The mechanisms through which chiral biomaterials influence cellular responses, such as modulation of adhesion receptors, intracellular signaling, and gene expression, are explored. Notably, chiral biomaterials have demonstrated their ability to guide stem cell differentiation and augment tissue‐specific functions. The potential applications of chiral biomaterials in musculoskeletal disorders, neurodegenerative diseases, cardiovascular diseases, and wound healing are highlighted. Challenges and future perspectives, including standardization of fabrication methods and translation to clinical settings, are addressed. In conclusion, chiral engineered biomaterials offer exciting prospects for precisely controlling cellular fate, advancing regenerative medicine, and enabling personalized therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Xin Zhang
- Institute of Sports Medicine Beijing Key Laboratory of Sports Injuries Peking University Third Hospital Beijing 100191 China
| | - Denghui Xie
- Department of Orthopaedic Surgery Center for Orthopaedic Surgery The Third Affiliated Hospital of Southern Medical University Guangzhou 510630 China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases Guangzhou 510630 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety New Cornerstone Science Laboratory National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhifeng Huang
- Department of Chemistry The Chinese University of Hong Kong Shatin Hong Kong SAR China
- School of Biomedical Sciences The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Zhong Alan Li
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- School of Biomedical Sciences The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Shun Hing Institute of Advanced Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Shenzhen Research Institute The Chinese University of Hong Kong No.10, 2nd Yuexing Road, Nanshan Shenzhen Guangdong Province 518057 China
| |
Collapse
|
3
|
Sun B, Sun J, Zhang K, Pang Y, Zhi C, Li F, Ye Y, Wang J, Liu Y, Deng J, Yang P, Zhang X. A bifunctional lactoferrin-derived amyloid coating prevents bacterial adhesion and occludes dentinal tubules via deep remineralization. Acta Biomater 2024; 188:393-405. [PMID: 39243838 DOI: 10.1016/j.actbio.2024.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Dentin hypersensitivity (DH) manifests as sharp and uncomfortable pain due to the exposure of dentinal tubules (DTs) following the erosion of tooth enamel. Desensitizing agents commonly used in clinical practice have limitations such as limited depth of penetration, slow remineralization and no antimicrobial properties. To alleviate these challenges, our study designed a lactoferrin-derived amyloid nanofilm (PTLF nanofilm) inspired by the saliva-acquired membrane (SAP). The nanofilm utilises Tris(2-carboxyethyl)phosphine (TCEP) to disrupt the disulfide bonds of lactoferrin (LF) under physiological conditions. The PTLF nanofilm modifies surfaces across various substrates and effectively prevents the early and stable adhesion of cariogenic bacteria, such as Streptococcus mutans and Lactobacillus acidophilus. Simultaneously, it adheres rapidly and securely to demineralized dentin surfaces, facilitating in-situ remineralization of HAP through a simple immersion process. This leads to the formation of a remineralized layer resembling natural dentin, with an occlusion depth of dentinal tubules exceeding 80 µm after three days. The in vivo and vitro results confirm that the PTLF nanofilm possesses good biocompatibility and its ability to exert simultaneous antimicrobial effects and dentin remineralization. Accordingly, this innovative bifunctional PTLF amyloid coating offers promising prospects for the management of DH-related conditions. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Bing Sun
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Jiao Sun
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Kai Zhang
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Yanyun Pang
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Department of Periodontology & Tissue Engineering, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Cheng Zhi
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Fan Li
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Yangyang Ye
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Jinglin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiayin Deng
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xu Zhang
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
| |
Collapse
|
4
|
Song Y, Wu M, Wang C, Fang H, Lei X. Zn 2+ Binding Increases Parallel Structure in the Aβ(16-22) Oligomer by Disrupting Salt Bridge in Antiparallel Structure. J Phys Chem B 2024; 128:1385-1393. [PMID: 38294417 DOI: 10.1021/acs.jpcb.3c06925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The aggregation of monomeric amyloid β protein (Aβ) into oligomers and amyloid plaque in the brain is associated with Alzheimer's disease. The hydrophobic central core Aβ16-22 has been widely studied due to its essential role in the fibrillization of full-length Aβ peptides. Compared to the homogeneous antiparallel structure of Aβ16-22 at the late stage, the early-stage prefibrillar aggregates contain varying proportions of different β structures. In this work, we studied the appearance probabilities of various self-assembly structures of Aβ16-22 and the effects of Zn2+ on these probabilities by replica exchange molecular dynamics simulations. It was found that at room temperature, Aβ16-22 can readily form assembled β-sheet structures in pure water, where a typical antiparallel arrangement dominates (24.8% of all sampled trimer structures). The addition of Zn2+ to the Aβ16-22 solution will dramatically decrease the appearance probability of antiparallel trimer structures to 12.5% by disrupting the formation of the Lys16-Glu22 salt bridge. Meanwhile, the probabilities of hybrid antiparallel/parallel structures increase. Our simulation results not only reveal the competition between antiparallel and parallel structures in the Aβ16-22 oligomers but also show that Zn2+ can affect the oligomer structures. The results also provide insights into the role of metal ions in the self-assembly of short peptides.
Collapse
Affiliation(s)
- Yongshun Song
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Mengjiao Wu
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Changying Wang
- School of Sciences, Changzhou Institute of Technology, Changzhou 213032, China
| | - Haiping Fang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoling Lei
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Klawa SJ, Lee M, Riker KD, Jian T, Wang Q, Gao Y, Daly ML, Bhonge S, Childers WS, Omosun TO, Mehta AK, Lynn DG, Freeman R. Uncovering supramolecular chirality codes for the design of tunable biomaterials. Nat Commun 2024; 15:788. [PMID: 38278785 PMCID: PMC10817930 DOI: 10.1038/s41467-024-45019-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
In neurodegenerative diseases, polymorphism and supramolecular assembly of β-sheet amyloids are implicated in many different etiologies and may adopt either a left- or right-handed supramolecular chirality. Yet, the underlying principles of how sequence regulates supramolecular chirality remains unknown. Here, we characterize the sequence specificity of the central core of amyloid-β 42 and design derivatives which enable chirality inversion at biologically relevant temperatures. We further find that C-terminal modifications can tune the energy barrier of a left-to-right chiral inversion. Leveraging this design principle, we demonstrate how temperature-triggered chiral inversion of peptides hosting therapeutic payloads modulates the dosed release of an anticancer drug. These results suggest a generalizable approach for fine-tuning supramolecular chirality that can be applied in developing treatments to regulate amyloid morphology in neurodegeneration as well as in other disease states.
Collapse
Affiliation(s)
- Stephen J Klawa
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michelle Lee
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Kyle D Riker
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Tengyue Jian
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Broad Pharm, San Diego, California, 92121, USA
| | - Qunzhao Wang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yuan Gao
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Margaret L Daly
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Shreeya Bhonge
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - W Seth Childers
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tolulope O Omosun
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- U.S. Department of Justice, Chicago, IL, 60603, USA
| | - Anil K Mehta
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- The National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, 32611, USA
| | - David G Lynn
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Baravkar SB, Lu Y, Masoud AR, Zhao Q, He J, Hong S. Development of a Novel Covalently Bonded Conjugate of Caprylic Acid Tripeptide (Isoleucine-Leucine-Aspartic Acid) for Wound-Compatible and Injectable Hydrogel to Accelerate Healing. Biomolecules 2024; 14:94. [PMID: 38254694 PMCID: PMC10813153 DOI: 10.3390/biom14010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Third-degree burn injuries pose a significant health threat. Safer, easier-to-use, and more effective techniques are urgently needed for their treatment. We hypothesized that covalently bonded conjugates of fatty acids and tripeptides can form wound-compatible hydrogels that can accelerate healing. We first designed conjugated structures as fatty acid-aminoacid1-amonoacid2-aspartate amphiphiles (Cn acid-AA1-AA2-D), which were potentially capable of self-assembling into hydrogels according to the structure and properties of each moiety. We then generated 14 novel conjugates based on this design by using two Fmoc/tBu solid-phase peptide synthesis techniques; we verified their structures and purities through liquid chromatography with tandem mass spectrometry and nuclear magnetic resonance spectroscopy. Of them, 13 conjugates formed hydrogels at low concentrations (≥0.25% w/v), but C8 acid-ILD-NH2 showed the best hydrogelation and was investigated further. Scanning electron microscopy revealed that C8 acid-ILD-NH2 formed fibrous network structures and rapidly formed hydrogels that were stable in phosphate-buffered saline (pH 2-8, 37 °C), a typical pathophysiological condition. Injection and rheological studies revealed that the hydrogels manifested important wound treatment properties, including injectability, shear thinning, rapid re-gelation, and wound-compatible mechanics (e.g., moduli G″ and G', ~0.5-15 kPa). The C8 acid-ILD-NH2(2) hydrogel markedly accelerated the healing of third-degree burn wounds on C57BL/6J mice. Taken together, our findings demonstrated the potential of the Cn fatty acid-AA1-AA2-D molecular template to form hydrogels capable of promoting the wound healing of third-degree burns.
Collapse
Affiliation(s)
- Sachin B. Baravkar
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Yan Lu
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Qi Zhao
- NMR Laboratory, Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Jibao He
- Microscopy Laboratory, Tulane University, New Orleans, LA 70118, USA
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Kandola T, Venkatesan S, Zhang J, Lerbakken BT, Von Schulze A, Blanck JF, Wu J, Unruh JR, Berry P, Lange JJ, Box AC, Cook M, Sagui C, Halfmann R. Pathologic polyglutamine aggregation begins with a self-poisoning polymer crystal. eLife 2023; 12:RP86939. [PMID: 37921648 PMCID: PMC10624427 DOI: 10.7554/elife.86939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
A long-standing goal of amyloid research has been to characterize the structural basis of the rate-determining nucleating event. However, the ephemeral nature of nucleation has made this goal unachievable with existing biochemistry, structural biology, and computational approaches. Here, we addressed that limitation for polyglutamine (polyQ), a polypeptide sequence that causes Huntington's and other amyloid-associated neurodegenerative diseases when its length exceeds a characteristic threshold. To identify essential features of the polyQ amyloid nucleus, we used a direct intracellular reporter of self-association to quantify frequencies of amyloid appearance as a function of concentration, conformational templates, and rational polyQ sequence permutations. We found that nucleation of pathologically expanded polyQ involves segments of three glutamine (Q) residues at every other position. We demonstrate using molecular simulations that this pattern encodes a four-stranded steric zipper with interdigitated Q side chains. Once formed, the zipper poisoned its own growth by engaging naive polypeptides on orthogonal faces, in a fashion characteristic of polymer crystals with intramolecular nuclei. We further show that self-poisoning can be exploited to block amyloid formation, by genetically oligomerizing polyQ prior to nucleation. By uncovering the physical nature of the rate-limiting event for polyQ aggregation in cells, our findings elucidate the molecular etiology of polyQ diseases.
Collapse
Affiliation(s)
- Tej Kandola
- Stowers Institute for Medical ResearchKansas CityUnited States
- The Open UniversityMilton KeynesUnited Kingdom
| | | | - Jiahui Zhang
- Department of Physics, North Carolina State UniversityRaleighUnited States
| | | | | | | | - Jianzheng Wu
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas CityUnited States
| | - Jay R Unruh
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Paula Berry
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Jeffrey J Lange
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Andrew C Box
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Malcolm Cook
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Celeste Sagui
- Department of Physics, North Carolina State UniversityRaleighUnited States
| | - Randal Halfmann
- Stowers Institute for Medical ResearchKansas CityUnited States
| |
Collapse
|
8
|
Ghosh C, Ghosh S, Chatterjee A, Bera P, Mampallil D, Ghosh P, Das D. Dual enzyme-powered chemotactic cross β amyloid based functional nanomotors. Nat Commun 2023; 14:5903. [PMID: 37737223 PMCID: PMC10516904 DOI: 10.1038/s41467-023-41301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Nanomotor chassis constructed from biological precursors and powered by biocatalytic transformations can offer important applications in the future, specifically in emergent biomedical techniques. Herein, cross β amyloid peptide-based nanomotors (amylobots) were prepared from short amyloid peptides. Owing to their remarkable binding capabilities, these soft constructs are able to host dedicated enzymes to catalyze orthogonal substrates for motility and navigation. Urease helps in powering the self-diffusiophoretic motion, while cytochrome C helps in providing navigation control. Supported by the simulation model, the design principle demonstrates the utilization of two distinct transport behaviours for two different types of enzymes, firstly enhanced diffusivity of urease with increasing fuel (urea) concentration and secondly, chemotactic motility of cytochrome C towards its substrate (pyrogallol). Dual catalytic engines allow the amylobots to be utilized for enhanced catalysis in organic solvent and can thus complement the technological applications of enzymes.
Collapse
Affiliation(s)
- Chandranath Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, 741246, India
| | - Souvik Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, 741246, India
| | - Ayan Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, 741246, India
| | - Palash Bera
- Tata Institute of Fundamental Research (TIFR), Hyderabad, Telangana, 500046, India
| | - Dileep Mampallil
- Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Mangalam, Andhra Pradesh, 517507, India
| | - Pushpita Ghosh
- School of Chemistry, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Kerala, 695551, India
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
9
|
Kandola T, Venkatesan S, Zhang J, Lerbakken B, Schulze AV, Blanck JF, Wu J, Unruh J, Berry P, Lange JJ, Box A, Cook M, Sagui C, Halfmann R. Pathologic polyglutamine aggregation begins with a self-poisoning polymer crystal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533418. [PMID: 36993401 PMCID: PMC10055281 DOI: 10.1101/2023.03.20.533418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A long-standing goal of amyloid research has been to characterize the structural basis of the rate-determining nucleating event. However, the ephemeral nature of nucleation has made this goal unachievable with existing biochemistry, structural biology, and computational approaches. Here, we addressed that limitation for polyglutamine (polyQ), a polypeptide sequence that causes Huntington's and other amyloid-associated neurodegenerative diseases when its length exceeds a characteristic threshold. To identify essential features of the polyQ amyloid nucleus, we used a direct intracellular reporter of self-association to quantify frequencies of amyloid appearance as a function of concentration, conformational templates, and rational polyQ sequence permutations. We found that nucleation of pathologically expanded polyQ involves segments of three glutamine (Q) residues at every other position. We demonstrate using molecular simulations that this pattern encodes a four-stranded steric zipper with interdigitated Q side chains. Once formed, the zipper poisoned its own growth by engaging naive polypeptides on orthogonal faces, in a fashion characteristic of polymer crystals with intramolecular nuclei. We further show that self-poisoning can be exploited to block amyloid formation, by genetically oligomerizing polyQ prior to nucleation. By uncovering the physical nature of the rate-limiting event for polyQ aggregation in cells, our findings elucidate the molecular etiology of polyQ diseases.
Collapse
Affiliation(s)
- Tej Kandola
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- The Open University, Milton Keyes, MK7 6AA, UK
| | | | - Jiahui Zhang
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Alex Von Schulze
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jillian F Blanck
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jianzheng Wu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Paula Berry
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Andrew Box
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Malcolm Cook
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
10
|
Nguyen PH, Derreumaux P. Multistep molecular mechanisms of Aβ16-22 fibril formation revealed by lattice Monte Carlo simulations. J Chem Phys 2023; 158:235101. [PMID: 37318171 DOI: 10.1063/5.0149419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
As a model of self-assembly from disordered monomers to fibrils, the amyloid-β fragment Aβ16-22 was subject to past numerous experimental and computational studies. Because dynamics information between milliseconds and seconds cannot be assessed by both studies, we lack a full understanding of its oligomerization. Lattice simulations are particularly well suited to capture pathways to fibrils. In this study, we explored the aggregation of 10 Aβ16-22 peptides using 65 lattice Monte Carlo simulations, each simulation consisting of 3 × 109 steps. Based on a total of 24 and 41 simulations that converge and do not converge to the fibril state, respectively, we are able to reveal the diversity of the pathways leading to fibril structure and the conformational traps slowing down the fibril formation.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
11
|
Gordon-Kim C, Rha A, Poppitz GA, Smith-Carpenter J, Luu R, Roberson AB, Conklin R, Blake A, Lynn DG. Polyanion order controls liquid-to-solid phase transition in peptide/nucleic acid co-assembly. Front Mol Biosci 2022; 9:991728. [PMID: 36452451 PMCID: PMC9702359 DOI: 10.3389/fmolb.2022.991728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/25/2022] [Indexed: 01/06/2024] Open
Abstract
The Central Dogma highlights the mutualistic functions of protein and nucleic acid biopolymers, and this synergy appears prominently in the membraneless organelles widely distributed throughout prokaryotic and eukaryotic organisms alike. Ribonucleoprotein granules (RNPs), which are complex coacervates of RNA with proteins, are a prime example of these membranelles organelles and underly multiple essential cellular functions. Inspired by the highly dynamic character of these organelles and the recent studies that ATP both inhibits and templates phase separation of the fused in sarcoma (FUS) protein implicated in several neurodegenerative diseases, we explored the RNA templated ordering of a single motif of the Aβ peptide of Alzheimer's disease. We now know that this strong cross-β propensity motif alone assembles through a liquid-like coacervate phase that can be externally templated to form distinct supramolecular assemblies. Now we provide evidence that structured phosphates, ranging from complex structures like double stranded and quadraplex DNA to simple trimetaphosphate, differentially impact the liquid to solid phase transition necessary for paracrystalline assembly. The results from this simple model illustrate the potential of ordered environmental templates in the transition to potentially irreversible pathogenic assemblies and provides insight into the ordering dynamics necessary for creating functional synthetic polymer co-assemblies.
Collapse
Affiliation(s)
| | - Allisandra Rha
- Children’s Health of Orange County, Research Institute, Orange, CA, United States
| | - George A. Poppitz
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | | | - Regina Luu
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | | | - Russell Conklin
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Alexis Blake
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, GA, United States
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
12
|
Bera S, Cazade PA, Bhattacharya S, Guerin S, Ghosh M, Netti F, Thompson D, Adler-Abramovich L. Molecular Engineering of Rigid Hydrogels Co-assembled from Collagenous Helical Peptides Based on a Single Triplet Motif. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46827-46840. [PMID: 36206330 PMCID: PMC9585512 DOI: 10.1021/acsami.2c09982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The potential of ultra-short peptides to self-assemble into well-ordered functional nanostructures makes them promising minimal components for mimicking the basic ingredient of nature and diverse biomaterials. However, selection and modular design of perfect de novo sequences are extremely tricky due to their vast possible combinatorial space. Moreover, a single amino acid substitution can drastically alter the supramolecular packing structure of short peptide assemblies. Here, we report the design of rigid hybrid hydrogels produced by sequence engineering of a new series of ultra-short collagen-mimicking tripeptides. Connecting glycine with different combinations of proline and its post-translational product 4-hydroxyproline, the single triplet motif, displays the natural collagen-helix-like structure. Improved mechanical rigidity is obtained via co-assembly with the non-collagenous hydrogelator, fluorenylmethoxycarbonyl (Fmoc) diphenylalanine. Characterizations of the supramolecular interactions that promote the self-supporting and self-healing properties of the co-assemblies are performed by physicochemical experiments and atomistic models. Our results clearly demonstrate the significance of sequence engineering to design functional peptide motifs with desired physicochemical and electromechanical properties and reveal co-assembly as a promising strategy for the utilization of small, readily accessible biomimetic building blocks to generate hybrid biomolecular assemblies with structural heterogeneity and functionality of natural materials.
Collapse
Affiliation(s)
- Santu Bera
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, The Center for Nanoscience and Nanotechnology,
and The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Pierre-Andre Cazade
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Shayon Bhattacharya
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Sarah Guerin
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Moumita Ghosh
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, The Center for Nanoscience and Nanotechnology,
and The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Francesca Netti
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, The Center for Nanoscience and Nanotechnology,
and The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Lihi Adler-Abramovich
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, The Center for Nanoscience and Nanotechnology,
and The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
13
|
Yamazaki M, Ikeda K, Kameda T, Nakao H, Nakano M. Kinetic Mechanism of Amyloid-β-(16-22) Peptide Fibrillation. J Phys Chem Lett 2022; 13:6031-6036. [PMID: 35748616 DOI: 10.1021/acs.jpclett.2c01065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The kinetic mechanism of amyloid fibril formation by a peptide fragment containing seven residues of the amyloid-β protein Aβ-(16-22) was investigated. We found that the N- and C-terminal unprotected Aβ-(16-22), containing no aggregation nuclei, showed rapid fibrillation within seconds to minutes in a neutral aqueous buffer solution. The fibrillation kinetics were well described by the nucleation-elongation model, suggesting that primary nucleation was the rate-limiting step. On the basis of both experimental and theoretical analyses, the aggregated nucleus was estimated to be composed of 6-7 peptide molecules, wherein the two β-sheets were associated with their hydrophobic surfaces. Thin fibers with widths of 10-20 nm were formed, which increased their length and thickness, attaining a width of >20 nm over several tens of minutes, probably owing to the lateral association of the fibers. Electrostatic and hydrophobic interactions play important roles in aggregation. These results provide a basis for understanding the fibrillation of short peptides.
Collapse
Affiliation(s)
- Moe Yamazaki
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
14
|
Konar M, Ghosh D, Samanta S, Govindaraju T. Combating amyloid-induced cellular toxicity and stiffness by designer peptidomimetics. RSC Chem Biol 2022; 3:220-226. [PMID: 35360886 PMCID: PMC8827053 DOI: 10.1039/d1cb00235j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Amyloid beta (Aβ) aggregation species-associated cellular stress instigates cytotoxicity and adverse cellular stiffness in neuronal cells. The study and modulation of these adverse effects demand immediate attention to tackle Alzheimer's disease (AD). We present a de novo design, synthesis and evaluation of Aβ14-23 peptidomimetics with cyclic dipeptide (CDP) units at defined positions. Our study identified AkdNMC with CDP units at the middle, N- and C-termini as a potent candidate to understand and ameliorate Aβ aggregation-induced cellular toxicity and adverse stiffness. Aβ14-23 peptidomimetics incorporated with cyclic dipeptide-based unnatural amino acid at defined positions serve as potential candidates to understand and ameliorate amyloid-induced cellular toxicity and physio-mechanical anomalies.![]()
Collapse
Affiliation(s)
- Mouli Konar
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
15
|
Piao Z, Park JK, Park SJ, Jeong B. Hypothermic Stem Cell Storage Using a Polypeptide Thermogel. Biomacromolecules 2021; 22:5390-5399. [PMID: 34855378 DOI: 10.1021/acs.biomac.1c01472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a polypeptide-based thermogel as a new tool for hypothermic storage of stem cells at ambient temperature (25 °C). Stem cells were suspended in the sol state (10 °C) of an aqueous poly(ethylene glycol)-poly(l-alanine) (PEG-PA) solution (4.0 wt %) in phosphate-buffered saline (PBS), which turned into a stem cell-incorporated gel by a heat-induced sol-to-gel transition. The cell harvesting procedure from the thermogels was simply performed through a gel-to-sol transition by diluting and cooling the system. More than 99% of stem cells died in PBS and Pluronic F127 thermogel (control thermogel) when the cells were stored at 25 °C for 7 days. The cell recovery rate from the PEG-PA thermogel (64%) was significantly greater than that from the commercially available HypoThermosol FRS preservation solution (HTS) (26%). Additionally, the surviving stem cells from the PEG-PA thermogel were healthier than those from HTS in terms of (1) expression of stemness biomarkers (NANOG, OCT4, and SOX2), (2) proliferation rate, and (3) differentiation potentials into osteogenic, chondrogenic, and adipogenic lineages. Membrane stabilization was suggested as a cell protection mechanism in the cytocompatible PEG-PA thermogel. The PEG-PA thermogel provides a convenient cytocompatible way for the storage and recovery of cells and thus is a promising tool for the transportation and short-term banking of cells.
Collapse
Affiliation(s)
- Zhengyu Piao
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jin Kyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
16
|
Zhang Z, Yuan Q, Li M, Bao B, Tang Y. A Ratiometric Fluorescent Conjugated Oligomer for Amyloid β Recognition, Aggregation Inhibition, and Detoxification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104581. [PMID: 34708516 DOI: 10.1002/smll.202104581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The sensitive recognition and effective inhibition of toxic amyloid β protein (Aβ) aggregates play a critical role in early diagnosis and treatment of neurodegenerative diseases. In this work, a new conjugated oligo(fluorene-co-phenylene) (OFP) modified with 1,8-naphthalimide (NA) derivative OFP-NA-NO2 is designed and synthesized as a ratiometric fluorescence probe for sensing Aβ, inhibiting the assembly of Aβ, and detoxicating the cytotoxicity of Aβ aggregates. In the presence of Aβ, the active ester group on the side chain of OFP-NA-NO2 can covalently react with the amino group on Aβ, effectively inhibiting the formation of Aβ aggregates and degrading the preformed fibrils. In this case, the fluorescence intensity ratio of NA to OFP (INA /IOFP ) increases greatly. The detection limit is calculated to be 89.9 nM, presenting the most sensitive ratiometric recognition of Aβ. Interestingly, OFP-NA-NO2 can dramatically recover the cell viability of PC-12 and restore the Aβ-clearing ability of microglia. Therefore, this ratiometric probe exhibits the targeted recognition of Aβ, effective inhibition of Aβ aggregates, and detox effect, which is potential for early diagnosis and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Meiqi Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Benkai Bao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
17
|
Synthesis, Characterization and Evaluation of Peptide Nanostructures for Biomedical Applications. Molecules 2021; 26:molecules26154587. [PMID: 34361740 PMCID: PMC8348434 DOI: 10.3390/molecules26154587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.
Collapse
|
18
|
Chen Y, Zhang W, Ding Y, Liang C, Shi Y, Hu ZW, Wang L, Yang Z. Preorganization boosts the artificial esterase activity of a self-assembling peptide. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1029-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Molecular engineering of piezoelectricity in collagen-mimicking peptide assemblies. Nat Commun 2021; 12:2634. [PMID: 33976129 PMCID: PMC8113556 DOI: 10.1038/s41467-021-22895-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Realization of a self-assembled, nontoxic and eco-friendly piezoelectric device with high-performance, sensitivity and reliability is highly desirable to complement conventional inorganic and polymer based materials. Hierarchically organized natural materials such as collagen have long been posited to exhibit electromechanical properties that could potentially be amplified via molecular engineering to produce technologically relevant piezoelectricity. Here, by using a simple, minimalistic, building block of collagen, we fabricate a peptide-based piezoelectric generator utilising a radically different helical arrangement of Phe-Phe-derived peptide, Pro-Phe-Phe and Hyp-Phe-Phe, based only on proteinogenic amino acids. The simple addition of a hydroxyl group increases the expected piezoelectric response by an order of magnitude (d35 = 27 pm V−1). The value is highest predicted to date in short natural peptides. We demonstrate tripeptide-based power generator that produces stable max current >50 nA and potential >1.2 V. Our results provide a promising device demonstration of computationally-guided molecular engineering of piezoelectricity in peptide nanotechnology. Piezoelectric materials which are non-toxic and eco-friendly are of interest. Here, the authors report on the creation of collagen-mimetic peptides which can be self-assembled into piezoelectric materials and study the design characteristics required for optimized power generation.
Collapse
|
20
|
Pappas CG, Liu B, Marić I, Ottelé J, Kiani A, van der Klok ML, Onck PR, Otto S. Two Sides of the Same Coin: Emergence of Foldamers and Self-Replicators from Dynamic Combinatorial Libraries. J Am Chem Soc 2021; 143:7388-7393. [PMID: 33955219 PMCID: PMC8154527 DOI: 10.1021/jacs.1c00788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The ability of molecules
and systems to make copies of themselves
and the ability of molecules to fold into stable, well-defined three-dimensional
conformations are of considerable importance in the formation and
persistence of life. The question of how, during the emergence of
life, oligomerization reactions become selective and channel these
reactions toward a small number of specific products remains largely
unanswered. Herein, we demonstrate a fully synthetic chemical system
where structurally complex foldamers and self-replicating assemblies
emerge spontaneously and with high selectivity from pools of oligomers
as a result of forming noncovalent interactions. Whether foldamers
or replicators form depends on remarkably small differences in building
block structures and composition and experimental conditions. We also
observed the dynamic transformation of a foldamer into a replicator.
These results show that the structural requirements/design criteria
for building blocks that lead to foldamers are similar to those that
lead to replicators. What determines whether folding or replication
takes place is not necessarily the type of noncovalent interaction,
but only whether they occur intra- or intermolecularly. This work
brings together, for the first time, the fields of replicator and
foldamer chemistry.
Collapse
Affiliation(s)
- Charalampos G Pappas
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Bin Liu
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ivana Marić
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jim Ottelé
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Armin Kiani
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marcus L van der Klok
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
21
|
Bera S, Dong X, Krishnarjuna B, Raab SA, Hales DA, Ji W, Tang Y, Shimon LJ, Ramamoorthy A, Clemmer DE, Wei G, Gazit E. Solid-state packing dictates the unexpected solubility of aromatic peptides. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100391. [PMID: 33928264 PMCID: PMC8063180 DOI: 10.1016/j.xcrp.2021.100391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 05/10/2023]
Abstract
The understanding and prediction of the solubility of biomolecules, even of the simplest ones, reflect an open question and unmet need. Short aromatic tripeptides are among the most highly aggregative biomolecules. However, in marked contrast, Ala-Phe-Ala (AFA) was surprisingly found to be non-aggregative and could be solubilized at millimolar concentrations. Here, aiming to uncover the underlying molecular basis of its high solubility, we explore in detail the solubility, aggregation propensity, and atomic-level structure of the tripeptide. We demonstrate an unexpectedly high water solubility of AFA reaching 672 mM, two orders of magnitude higher than reported previously. The single crystal structure reveals an anti-parallel β sheet conformation devoid of any aromatic interactions. This study provides clear mechanistic insight into the structural basis of solubility and suggests a simple and feasible tool for its estimation, bearing implications for design of peptide drugs, peptides materials, and advancement of peptide nanotechnology.
Collapse
Affiliation(s)
- Santu Bera
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai, 200433, People’s Republic of China
| | - Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Shannon A. Raab
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN 47401, USA
| | - David A. Hales
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN 47401, USA
- Department of Chemistry, Hendrix College, Conway, AR 72032, USA
| | - Wei Ji
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai, 200433, People’s Republic of China
| | - Linda J.W. Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - David E. Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN 47401, USA
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai, 200433, People’s Republic of China
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
22
|
Fibrilar Polymorphism of the Bacterial Extracellular Matrix Protein TasA. Microorganisms 2021; 9:microorganisms9030529. [PMID: 33806534 PMCID: PMC8000256 DOI: 10.3390/microorganisms9030529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
Functional amyloid proteins often appear as fibers in extracellular matrices of microbial soft colonies. In contrast to disease-related amyloid structures, they serve a functional goal that benefits the organism that secretes them, which is the reason for the title “functional”. Biofilms are a specific example of a microbial community in which functional amyloid fibers play a role. Functional amyloid proteins contribute to the mechanical stability of biofilms and mediate the adhesion of the cells to themselves as well as to surfaces. Recently, it has been shown that functional amyloid proteins also play a regulatory role in biofilm development. TasA is the major proteinaceous fibrilar component of the extracellular matrix of biofilms made of the soil bacterium and Gram-positive Bacillus subtilis. We have previously shown, as later corroborated by others, that in acidic solutions, TasA forms compact aggregates that are composed of tangled fibers. Here, we show that in a neutral pH and above a certain TasA concentration, the fibers of TasA are elongated and straight and that they bundle up in highly concentrated salt solutions. TasA fibers resemble the canonic amyloid morphology; however, these fibers also bear an interesting nm-scale periodicity along the fiber axis. At the molecular level, TasA fibers contain a twisted β-sheet structure, as indicated by circular dichroism measurements. Our study shows that the morphology of TasA fibers depends on the environmental conditions. Different fibrilar morphologies may be related with different functional roles in biofilms, ranging from granting biofilms with a mechanical support to acting as antibiotic agents.
Collapse
|
23
|
Bunce SJ, Wang Y, Radford SE, Wilson AJ, Hall CK. Structural insights into peptide self-assembly using photo-induced crosslinking experiments and discontinuous molecular dynamics. AIChE J 2021; 67:e17101. [PMID: 33776061 PMCID: PMC7988534 DOI: 10.1002/aic.17101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/07/2020] [Indexed: 11/09/2022]
Abstract
Determining the structure of the (oligomeric) intermediates that form during the self-assembly of amyloidogenic peptides is challenging because of their heterogeneous and dynamic nature. Thus, there is need for methodology to analyze the underlying molecular structure of these transient species. In this work, a combination of fluorescence quenching, photo-induced crosslinking (PIC) and molecular dynamics simulation was used to study the assembly of a synthetic amyloid-forming peptide, Aβ16-22. A PIC amino acid containing a trifluormethyldiazirine (TFMD) group-Fmoc(TFMD)Phe-was incorporated into the sequence (Aβ*16-22). Electrospray ionization ion-mobility spectrometry mass-spectrometry (ESI-IMS-MS) analysis of the PIC products confirmed that Aβ*16-22 forms assemblies with the monomers arranged as anti-parallel, in-register β-strands at all time points during the aggregation assay. The assembly process was also monitored separately using fluorescence quenching to profile the fibril assembly reaction. The molecular picture resulting from discontinuous molecule dynamics simulations showed that Aβ16-22 assembles through a single-step nucleation into a β-sheet fibril in agreement with these experimental observations. This study provides detailed structural insights into the Aβ16-22 self-assembly processes, paving the way to explore the self-assembly mechanism of larger, more complex peptides, including those whose aggregation is responsible for human disease.
Collapse
Affiliation(s)
- Samuel J. Bunce
- School of ChemistryUniversity of LeedsLeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
| | - Yiming Wang
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonNew JerseyUSA
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsLeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
| | - Carol K. Hall
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
24
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 455] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
25
|
Lau CYJ, Mastrobattista E. Programming supramolecular peptide materials by modulating the intermediate steps in the complex assembly pathway: Implications for biomedical applications. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Tan J, Zhang L, Hsieh MC, Goodwin JT, Grover MA, Lynn DG. Chemical control of peptide material phase transitions. Chem Sci 2021; 12:3025-3031. [PMID: 34164071 PMCID: PMC8179288 DOI: 10.1039/d0sc03666h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Progressive solute-rich polymer phase transitions provide pathways for achieving ordered supramolecular assemblies. Intrinsically disordered protein domains specifically regulate information in biological networks via conformational ordering. Here we consider a molecular tagging strategy to control ordering transitions in polymeric materials and provide a proof-of-principle minimal peptide phase network captured with a dynamic chemical network. Substrate initiated assembly of a dynamic chemical network.![]()
Collapse
Affiliation(s)
- Junjun Tan
- Department of Chemistry and Biology, Emory University Atlanta Georgia 30322 USA
| | - Li Zhang
- Department of Chemistry and Biology, Emory University Atlanta Georgia 30322 USA
| | - Ming-Chien Hsieh
- Department of Chemistry and Biology, Emory University Atlanta Georgia 30322 USA .,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Jay T Goodwin
- Department of Chemistry and Biology, Emory University Atlanta Georgia 30322 USA
| | - Martha A Grover
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - David G Lynn
- Department of Chemistry and Biology, Emory University Atlanta Georgia 30322 USA
| |
Collapse
|
27
|
Gordon CK, Luu R, Lynn D. Capturing nested information from disordered peptide phases. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Regina Luu
- Departments of Chemistry and Biology Emory University Atlanta Georgia USA
| | - David Lynn
- Departments of Chemistry and Biology Emory University Atlanta Georgia USA
| |
Collapse
|
28
|
Cawood EE, Guthertz N, Ebo JS, Karamanos TK, Radford SE, Wilson AJ. Modulation of Amyloidogenic Protein Self-Assembly Using Tethered Small Molecules. J Am Chem Soc 2020; 142:20845-20854. [PMID: 33253560 PMCID: PMC7729939 DOI: 10.1021/jacs.0c10629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Protein–protein
interactions (PPIs) are involved in many
of life’s essential biological functions yet are also an underlying
cause of several human diseases, including amyloidosis. The modulation
of PPIs presents opportunities to gain mechanistic insights into amyloid
assembly, particularly through the use of methods which can trap specific
intermediates for detailed study. Such information can also provide
a starting point for drug discovery. Here, we demonstrate that covalently
tethered small molecule fragments can be used to stabilize specific
oligomers during amyloid fibril formation, facilitating the structural
characterization of these assembly intermediates. We exemplify the
power of covalent tethering using the naturally occurring truncated
variant (ΔN6) of the human protein β2-microglobulin
(β2m), which assembles into amyloid fibrils associated
with dialysis-related amyloidosis. Using this approach, we have trapped
tetramers formed by ΔN6 under conditions which would normally
lead to fibril formation and found that the degree of tetramer stabilization
depends on the site of the covalent tether and the nature of the protein–fragment
interaction. The covalent protein–ligand linkage enabled structural
characterization of these trapped, off-pathway oligomers using X-ray
crystallography and NMR, providing insight into why tetramer stabilization
inhibits amyloid assembly. Our findings highlight the power of “post-translational
chemical modification” as a tool to study biological molecular
mechanisms.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jessica S Ebo
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
29
|
Yang J, An HW, Wang H. Self-Assembled Peptide Drug Delivery Systems. ACS APPLIED BIO MATERIALS 2020; 4:24-46. [DOI: 10.1021/acsabm.0c00707] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jia Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
30
|
Liang C, Wang Z, Xu T, Chen Y, Zheng D, Zhang L, Zhang W, Yang Z, Shi Y, Gao J. Preorganization Increases the Self-Assembling Ability and Antitumor Efficacy of Peptide Nanomedicine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22492-22498. [PMID: 32352747 DOI: 10.1021/acsami.0c02572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inspired by the biological process of phosphorylation for which different sites of the same protein may have different activities and functions, we utilized phosphatase-based enzyme-instructed self-assembly (EISA) to construct self-assembled nanomedicine from the precursors with different phosphorylated sites. We found that, although the obtained self-assembling molecules after EISA were identical, the changes of EISA catalytic sites could determine the outcome of molecular self-assembly. The precursor with the phosphorylated site in the middle preorganized before EISA, while the ones with other phosphorylated sites could not preorganize before EISA. After EISA, the preorganized precursor then resulted in more stable and ordered assemblies than those of the others, which showed increased cellular uptake and up to 1.7-fold higher efficacy in an antitumor therapeutic compared to those assembled from unorganized precursors.
Collapse
Affiliation(s)
- Chunhui Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhongyan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Tengyan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yaoxia Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Debin Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Lushuai Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Wenwen Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yang Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
31
|
Bhattacharya S, Xu L, Thompson D. Long-range Regulation of Partially Folded Amyloidogenic Peptides. Sci Rep 2020; 10:7597. [PMID: 32371882 PMCID: PMC7200734 DOI: 10.1038/s41598-020-64303-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 04/15/2020] [Indexed: 01/20/2023] Open
Abstract
Neurodegeneration involves abnormal aggregation of intrinsically disordered amyloidogenic peptides (IDPs), usually mediated by hydrophobic protein-protein interactions. There is mounting evidence that formation of α-helical intermediates is an early event during self-assembly of amyloid-β42 (Aβ42) and α-synuclein (αS) IDPs in Alzheimer’s and Parkinson’s disease pathogenesis, respectively. However, the driving force behind on-pathway molecular assembly of partially folded helical monomers into helical oligomers assembly remains unknown. Here, we employ extensive molecular dynamics simulations to sample the helical conformational sub-spaces of monomeric peptides of both Aβ42 and αS. Our computed free energies, population shifts, and dynamic cross-correlation network analyses reveal a common feature of long-range intra-peptide modulation of partial helical folds of the amyloidogenic central hydrophobic domains via concerted coupling with their charged terminal tails (N-terminus of Aβ42 and C-terminus of αS). The absence of such inter-domain fluctuations in both fully helical and completely unfolded (disordered) states suggests that long-range coupling regulates the dynamicity of partially folded helices, in both Aβ42 and αS peptides. The inter-domain coupling suggests a form of intra-molecular allosteric regulation of the aggregation trigger in partially folded helical monomers. This approach could be applied to study the broad range of amyloidogenic peptides, which could provide a new path to curbing pathogenic aggregation of partially folded conformers into oligomers, by inhibition of sites far from the hydrophobic core.
Collapse
Affiliation(s)
- Shayon Bhattacharya
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Liang Xu
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| |
Collapse
|
32
|
Rengifo RF, Sementilli A, Kim Y, Liang C, Li NX, Mehta AK, Lynn DG. Liquid‐Like Phases Preorder Peptides for Supramolecular Assembly. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Rolando F. Rengifo
- Chemistry Department Emory University 1515 Dickey Drive Atlanta GA 30322
| | - Anthony Sementilli
- Chemistry Department Emory University 1515 Dickey Drive Atlanta GA 30322
| | - Youngsun Kim
- Chemistry Department Emory University 1515 Dickey Drive Atlanta GA 30322
| | - Chen Liang
- Chemistry Department Emory University 1515 Dickey Drive Atlanta GA 30322
| | - Noel Xiang'An Li
- Chemistry Department Emory University 1515 Dickey Drive Atlanta GA 30322
| | - Anil K. Mehta
- Chemistry Department Emory University 1515 Dickey Drive Atlanta GA 30322
| | - David G. Lynn
- Chemistry Department Emory University 1515 Dickey Drive Atlanta GA 30322
| |
Collapse
|
33
|
Sen S, Udgaonkar JB. Binding-induced folding under unfolding conditions: Switching between induced fit and conformational selection mechanisms. J Biol Chem 2019; 294:16942-16952. [PMID: 31582563 PMCID: PMC6851327 DOI: 10.1074/jbc.ra119.009742] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
The chemistry of protein-ligand binding is the basis of virtually every biological process. Ligand binding can be essential for a protein to function in the cell by stabilizing or altering the conformation of a protein, particularly for partially or completely unstructured proteins. However, the mechanisms by which ligand binding impacts disordered proteins or influences the role of disorder in protein folding is not clear. To gain insight into this question, the mechanism of folding induced by the binding of a Pro-rich peptide ligand to the SH3 domain of phosphatidylinositol 3-kinase unfolded in the presence of urea has been studied using kinetic methods. Under strongly denaturing conditions, folding was found to follow a conformational selection (CS) mechanism. However, under mildly denaturing conditions, a ligand concentration-dependent switch in the mechanism was observed. The folding mechanism switched from being predominantly a CS mechanism at low ligand concentrations to being predominantly an induced fit (IF) mechanism at high ligand concentrations. The switch in the mechanism manifests itself as an increase in the reaction flux along the IF pathway at high ligand concentrations. The results indicate that, in the case of intrinsically disordered proteins too, the folding mechanism is determined by the concentration of the ligand that induces structure formation.
Collapse
Affiliation(s)
- Sreemantee Sen
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India Indian Institute of Science Education and Research, Pune, Pashan, Pune 411 008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India Indian Institute of Science Education and Research, Pune, Pashan, Pune 411 008, India
| |
Collapse
|
34
|
Zhao X, Li L, Zhao Y, An H, Cai Q, Lang J, Han X, Peng B, Fei Y, Liu H, Qin H, Nie G, Wang H. In Situ Self‐Assembled Nanofibers Precisely Target Cancer‐Associated Fibroblasts for Improved Tumor Imaging. Angew Chem Int Ed Engl 2019; 58:15287-15294. [DOI: 10.1002/anie.201908185] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Xiao‐Xiao Zhao
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
- Sino-Danish CenterUniversity of Chinese Academy of Science (UCAS) No.19A Yuquan Road Beijing 100049 China
| | - Li‐Li Li
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Zhao
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Hong‐Wei An
- Institute of High Energy PhysicsChinese Academy of Science (CAS) No.19A Yuquan Road Beijing 100049 China
| | - Qian Cai
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jia‐Yan Lang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Xue‐Xiang Han
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Bo Peng
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Yue Fei
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Liu
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Qin
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Guangjun Nie
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Wang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
35
|
Zhao X, Li L, Zhao Y, An H, Cai Q, Lang J, Han X, Peng B, Fei Y, Liu H, Qin H, Nie G, Wang H. In Situ Self‐Assembled Nanofibers Precisely Target Cancer‐Associated Fibroblasts for Improved Tumor Imaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiao‐Xiao Zhao
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
- Sino-Danish Center University of Chinese Academy of Science (UCAS) No.19A Yuquan Road Beijing 100049 China
| | - Li‐Li Li
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Zhao
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Hong‐Wei An
- Institute of High Energy Physics Chinese Academy of Science (CAS) No.19A Yuquan Road Beijing 100049 China
| | - Qian Cai
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Jia‐Yan Lang
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Xue‐Xiang Han
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Bo Peng
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Yue Fei
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Liu
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Qin
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Guangjun Nie
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
36
|
Bera S, Arad E, Schnaider L, Shaham-Niv S, Castelletto V, Peretz Y, Zaguri D, Jelinek R, Gazit E, Hamley IW. Unravelling the role of amino acid sequence order in the assembly and function of the amyloid-β core. Chem Commun (Camb) 2019; 55:8595-8598. [PMID: 31276123 PMCID: PMC7616937 DOI: 10.1039/c9cc03654g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
The amino acid sequence plays an essential role in amyloid formation. Here, using the central core recognition module of the Aβ peptide and its reverse sequence, we show that although both peptides assemble into β-sheets, their morphologies, kinetics and cell toxicities display marked differences. In addition, the native peptide, but not the reverse one, shows notable affinity towards bilayer lipid model membranes that modulates the aggregation pathways to stabilize the oligomeric intermediate states and function as the toxic agent responsible for neuronal dysfunction.
Collapse
Affiliation(s)
- Santu Bera
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Elad Arad
- Department of Chemistry & Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Lee Schnaider
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Shira Shaham-Niv
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | - Yossef Peretz
- Department of Chemistry & Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Dor Zaguri
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Raz Jelinek
- Department of Chemistry & Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, UK.
| |
Collapse
|
37
|
Bunce SJ, Wang Y, Stewart KL, Ashcroft AE, Radford SE, Hall CK, Wilson AJ. Molecular insights into the surface-catalyzed secondary nucleation of amyloid-β 40 (Aβ 40) by the peptide fragment Aβ 16-22. SCIENCE ADVANCES 2019; 5:eaav8216. [PMID: 31245536 PMCID: PMC6588359 DOI: 10.1126/sciadv.aav8216] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/15/2019] [Indexed: 05/15/2023]
Abstract
Understanding the structural mechanism by which proteins and peptides aggregate is crucial, given the role of fibrillar aggregates in debilitating amyloid diseases and bioinspired materials. Yet, this is a major challenge as the assembly involves multiple heterogeneous and transient intermediates. Here, we analyze the co-aggregation of Aβ40 and Aβ16-22, two widely studied peptide fragments of Aβ42 implicated in Alzheimer's disease. We demonstrate that Aβ16-22 increases the aggregation rate of Aβ40 through a surface-catalyzed secondary nucleation mechanism. Discontinuous molecular dynamics simulations allowed aggregation to be tracked from the initial random coil monomer to the catalysis of nucleation on the fibril surface. Together, the results provide insight into how dynamic interactions between Aβ40 monomers/oligomers on the surface of preformed Aβ16-22 fibrils nucleate Aβ40 amyloid assembly. This new understanding may facilitate development of surfaces designed to enhance or suppress secondary nucleation and hence to control the rates and products of fibril assembly.
Collapse
Affiliation(s)
- Samuel J. Bunce
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Katie L. Stewart
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Corresponding author. (S.E.R.); (C.K.H.); (A.J.W.)
| | - Carol K. Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
- Corresponding author. (S.E.R.); (C.K.H.); (A.J.W.)
| | - Andrew J. Wilson
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Corresponding author. (S.E.R.); (C.K.H.); (A.J.W.)
| |
Collapse
|
38
|
Bera S, Mondal S, Xue B, Shimon LJW, Cao Y, Gazit E. Rigid helical-like assemblies from a self-aggregating tripeptide. NATURE MATERIALS 2019; 18:503-509. [PMID: 30988450 PMCID: PMC7616940 DOI: 10.1038/s41563-019-0343-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 03/13/2019] [Indexed: 05/25/2023]
Abstract
The structural versatility, biocompatibility and dynamic range of the mechanical properties of protein materials have been explored in functional biomaterials for a wide array of biotechnology applications. Typically, such materials are made from self-assembled peptides with a predominant β-sheet structure, a common structural motif in silk and amyloid fibrils. However, collagen, the most abundant protein in mammals, is based on a helical arrangement. Here we show that Pro-Phe-Phe, the most aggregation-prone tripeptide of natural amino acids, assembles into a helical-like sheet that is stabilized by the dry hydrophobic interfaces of Phe residues. This architecture resembles that of the functional PSMα3 amyloid, highlighting the role of dry helical interfaces as a core structural motif in amyloids. Proline replacement by hydroxyproline, a major constituent of collagen, generates minimal helical-like assemblies with enhanced mechanical rigidity. These results establish a framework for designing functional biomaterials based on ultrashort helical protein elements.
Collapse
Affiliation(s)
- Santu Bera
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Sudipta Mondal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, China
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, China
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
39
|
Wang L, Gong C, Yuan X, Wei G. Controlling the Self-Assembly of Biomolecules into Functional Nanomaterials through Internal Interactions and External Stimulations: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E285. [PMID: 30781679 PMCID: PMC6410314 DOI: 10.3390/nano9020285] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/02/2023]
Abstract
Biomolecular self-assembly provides a facile way to synthesize functional nanomaterials. Due to the unique structure and functions of biomolecules, the created biological nanomaterials via biomolecular self-assembly have a wide range of applications, from materials science to biomedical engineering, tissue engineering, nanotechnology, and analytical science. In this review, we present recent advances in the synthesis of biological nanomaterials by controlling the biomolecular self-assembly from adjusting internal interactions and external stimulations. The self-assembly mechanisms of biomolecules (DNA, protein, peptide, virus, enzyme, metabolites, lipid, cholesterol, and others) related to various internal interactions, including hydrogen bonds, electrostatic interactions, hydrophobic interactions, π⁻π stacking, DNA base pairing, and ligand⁻receptor binding, are discussed by analyzing some recent studies. In addition, some strategies for promoting biomolecular self-assembly via external stimulations, such as adjusting the solution conditions (pH, temperature, ionic strength), adding organics, nanoparticles, or enzymes, and applying external light stimulation to the self-assembly systems, are demonstrated. We hope that this overview will be helpful for readers to understand the self-assembly mechanisms and strategies of biomolecules and to design and develop new biological nanostructures or nanomaterials for desired applications.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China.
| | - Coucong Gong
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| | - Xinzhu Yuan
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China.
| | - Gang Wei
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| |
Collapse
|
40
|
Abstract
The aggregation of monomeric amyloid β protein (Aβ) peptide into oligomers and amyloid fibrils in the mammalian brain is associated with Alzheimer's disease. Insight into the thermodynamic stability of the Aβ peptide in different polymeric states is fundamental to defining and predicting the aggregation process. Experimental determination of Aβ thermodynamic behavior is challenging due to the transient nature of Aβ oligomers and the low peptide solubility. Furthermore, quantitative calculation of a thermodynamic phase diagram for a specific peptide requires extremely long computational times. Here, using a coarse-grained protein model, molecular dynamics (MD) simulations are performed to determine an equilibrium concentration and temperature phase diagram for the amyloidogenic peptide fragment Aβ16-22 Our results reveal that the only thermodynamically stable phases are the solution phase and the macroscopic fibrillar phase, and that there also exists a hierarchy of metastable phases. The boundary line between the solution phase and fibril phase is found by calculating the temperature-dependent solubility of a macroscopic Aβ16-22 fibril consisting of an infinite number of β-sheet layers. This in silico determination of an equilibrium (solubility) phase diagram for a real amyloid-forming peptide, Aβ16-22, over the temperature range of 277-330 K agrees well with fibrillation experiments and transmission electron microscopy (TEM) measurements of the fibril morphologies formed. This in silico approach of predicting peptide solubility is also potentially useful for optimizing biopharmaceutical production and manufacturing nanofiber scaffolds for tissue engineering.
Collapse
|
41
|
Zhang X, Gong C, Akakuru OU, Su Z, Wu A, Wei G. The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chem Soc Rev 2019; 48:5564-5595. [DOI: 10.1039/c8cs01003j] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembling 2D organic biomaterials exhibit versatile abilities for structural and functional tailoring, as well as high potential for biomedical applications.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
- Faculty of Physics and Astronomy
- University of Jena
| | - Coucong Gong
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Gang Wei
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
- Cixi Institute of Biomedical Engineering
| |
Collapse
|
42
|
Li X, Lei J, Qi R, Xie L, Wei G. Mechanistic insight into E22Q-mutation-induced antiparallel-to-parallel β-sheet transition of Aβ16−22fibrils: an all-atom simulation study. Phys Chem Chem Phys 2019; 21:15686-15694. [DOI: 10.1039/c9cp02561h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
E22Q mutation of Aβ16−22fibrils facilitates parallel β-sheet formation by enhancing Q22–Q22 hydrogen-bonding interaction and A21–A21, F20–F20, F19–F19 and V18–V18 hydrophobic interaction.
Collapse
Affiliation(s)
- Xuhua Li
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics
- Fudan University
- Shanghai
- China
| | - Jiangtao Lei
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics
- Fudan University
- Shanghai
- China
| | - Ruxi Qi
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics
- Fudan University
- Shanghai
- China
| | - Luogang Xie
- College of Physics and Electronic Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 453002
- People's Republic of China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics
- Fudan University
- Shanghai
- China
| |
Collapse
|
43
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
44
|
Bai Y, Chotera A, Taran O, Liang C, Ashkenasy G, Lynn DG. Achieving biopolymer synergy in systems chemistry. Chem Soc Rev 2018; 47:5444-5456. [PMID: 29850753 DOI: 10.1039/c8cs00174j] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic and materials chemistry initiatives have enabled the translation of the macromolecular functions of biology into synthetic frameworks. These explorations into alternative chemistries of life attempt to capture the versatile functionality and adaptability of biopolymers in new orthogonal scaffolds. Information storage and transfer, however, so beautifully represented in the central dogma of biology, require multiple components functioning synergistically. Over a single decade, the emerging field of systems chemistry has begun to catalyze the construction of mutualistic biopolymer networks, and this review begins with the foundational small-molecule-based dynamic chemical networks and peptide amyloid-based dynamic physical networks on which this effort builds. The approach both contextualizes the versatile approaches that have been developed to enrich chemical information in synthetic networks and highlights the properties of amyloids as potential alternative genetic elements. The successful integration of both chemical and physical networks through β-sheet assisted replication processes further informs the synergistic potential of these networks. Inspired by the cooperative synergies of nucleic acids and proteins in biology, synthetic nucleic-acid-peptide chimeras are now being explored to extend their informational content. With our growing range of synthetic capabilities, structural analyses, and simulation technologies, this foundation is radically extending the structural space that might cross the Darwinian threshold for the origins of life as well as creating an array of alternative systems capable of achieving the progressive growth of novel informational materials.
Collapse
Affiliation(s)
- Yushi Bai
- Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Liang C, Hsieh MC, Li NX, Lynn DG. Conformational evolution of polymorphic amyloid assemblies. Curr Opin Struct Biol 2018; 51:135-140. [DOI: 10.1016/j.sbi.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
46
|
Gobeaux F, Wien F. Reversible Assembly of a Drug Peptide into Amyloid Fibrils: A Dynamic Circular Dichroism Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7180-7191. [PMID: 29772895 DOI: 10.1021/acs.langmuir.8b00094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The common view on the amyloid fibril formation is that it is a multistep process that involves many oligomeric intermediate species, which leads to a high degree of polymorphism. This view derives from numerous kinetic studies whose vast majority was carried out with amyloid β fragments or other pathological amyloidogenic sequences. Yet, it is not clear whether the mechanisms inferred from these studies are universal and also apply to functional amyloids, in particular to peptide hormones which form reversible amyloid structures. In the present work, we study the self-assembly properties of atosiban, a nonapeptide drug, whose sequence is very close to those of the oxytocin and vasopressin hormones. We show that this very soluble peptide consistently self-assembles into 7 nm wide amyloid fibrils above a critical aggregation concentration (2-10 w/w % depending on the buffer conditions). The peptide system is characterized in details, from the monomeric to the assembled form, with osmotic concentration measurements, transmission electron microscopy, small-angle X-ray scattering, infrared and fluorescence spectroscopy, and circular dichroism (CD). We have followed in situ the fibril assembly with fluorescence and synchrotron radiation CD and noticed that the peptide undergoes conformational changes during the process. However, several lines of evidence point toward the association of monomers and dimers into fibrils without passing through oligomeric intermediate species contrary to what is usually reported for pathogenic amyloids. The native β-hairpin conformation of the monomer could explain the straightforward assembly. The tyrosine stacking is also shown to play an important role.
Collapse
Affiliation(s)
- Frédéric Gobeaux
- LIONS-NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette Cedex , France
| | - Frank Wien
- SOLEIL Synchrotron , Saint Aubin 91190 , France
| |
Collapse
|
47
|
Malishev R, Abbasi R, Jelinek R, Chai L. Bacterial Model Membranes Reshape Fibrillation of a Functional Amyloid Protein. Biochemistry 2018; 57:5230-5238. [DOI: 10.1021/acs.biochem.8b00002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ravit Malishev
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Razan Abbasi
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Liraz Chai
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|