1
|
Zhang BQ, Chen L, Xiao WY, Liu Y, Li YL, Deng J. Switchable organocatalytic enantioselective sulfenocyclization of cyclohexadienes enabling chemodivergent access to chiral bicyclo[m.n.1] ring systems. Nat Commun 2025; 16:4705. [PMID: 40394010 PMCID: PMC12092718 DOI: 10.1038/s41467-025-59918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 05/07/2025] [Indexed: 05/22/2025] Open
Abstract
The precise control over regio- and stereoselectivity from the same substrate represents a significant challenge in organic chemistry. Herein, a switchable organocatalytic enantioselective carbosulfenylation/sulfenolactonization of cyclohexa-1,4-dienes to access the chiral bicyclo[m.n.1] ring systems, which are the critical core skeleton of many important natural products and biologically active compounds, is achieved. By simply tuning the substituent of the sulfenylating agent, a series of synthetically challenging chiral bridged bicyclo[3.3.1]nonanes and 2-oxabicyclo[3.2.1]octanes bearing three consecutive stereocenters are obtained with good yields and excellent enantioselectivities (up to 94% yield and 97% ee). Furthermore, the initial investigation of the bicyclic derivative as a chiral ligand in metal catalysis is also conducted. Our findings offer a version of switchable divergent asymmetric synthesis in which different products can be controllably generated from an identical set of substrates by simply adjusting reaction parameters.
Collapse
Affiliation(s)
- Bing-Qian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Lei Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Wen-Ying Xiao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| | - Yin-Long Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, USA.
| | - Jun Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Du YM, Chen XY, Li Y, Koh MJ, Shu W. Rapid assembly of enantioenriched α-arylated ketones via Ni-catalyzed asymmetric cross-hydrocarbonylation enabled by alkene sorting. Nat Commun 2025; 16:4163. [PMID: 40325002 PMCID: PMC12052995 DOI: 10.1038/s41467-025-57967-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/10/2025] [Indexed: 05/07/2025] Open
Abstract
Enantioenriched α-arylated dialkyl ketones with acidic proton are ubiquitous subunits in valuable target organic molecules and serve as versatile synthetic precursors for other value-added chiral blocks. Herein, a distinct synthetic strategy of enantioenriched α-arylated dialkyl ketones enabled by nickel-catalyzed iterative cross-hydrocarbonylation of two alkenes has been developed, representing a reaction mode for the direct synthesis of asymmetric α-arylated dialkyl ketones. One aliphatic alkene and one styrene are creatively used as surrogates of two different alkyl precursors. Two different alkenes are sewed together by a "carbonyl glue" with exclusive alkene sorting. This straightforward and gas-free protocol transforms a diverse array of styrene and unactivated alkenes into highly valuable α-arylated dialkyl ketones with high levels of enantioselectivity, allowing for the construction of enantioenriched unsymmetric dialkyl ketones from only alkenes. This process is also applicable to late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Yi-Ming Du
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Xiao-Yi Chen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Yulong Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, PR China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| | - Wei Shu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
| |
Collapse
|
3
|
Wu S, Li M, Lu J, Yang C, Huang Y, Lin A. Enantioselective Synthesis of Hydrindanes via Palladium-Catalyzed Asymmetric Desymmetrization of Cyclohexadiene Derivatives. Org Lett 2025. [PMID: 39907521 DOI: 10.1021/acs.orglett.4c04733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
We herein disclose a strategy for the asymmetric desymmetrization of cyclohexadiene derivatives via a palladium-catalyzed Heck and tandem Heck/Tsuji-Trost allylic alkoxylation reaction. By employing DCE as the solvent, we obtained a variety of chiral hydrindanes containing an all-carbon quaternary carbon center and a tertiary carbon chiral center in good yields with excellent enantioselectivities. With alcohols as the solvent, the valuable chiral hydrindanes with one quaternary stereocenter and two tertiary centers were constructed with a high level of enantioinduction.
Collapse
Affiliation(s)
- Shu Wu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Miaomiao Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiajun Lu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chi Yang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yue Huang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
4
|
Liu P, Dong H, Gong B, Gao S, Lin A, Yao H. Palladium-Catalyzed Asymmetric Tandem Carbonylation-Heck Reaction of Cyclopentenes to Access Chiral Bicyclo[3.2.1]octenes. Org Lett 2024; 26:8244-8248. [PMID: 39311415 DOI: 10.1021/acs.orglett.4c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A palladium-catalyzed asymmetric tandem carbonylation-Heck reaction of cyclopentenes with carbon monoxide (CO) has been disclosed. This desymmetrization procedure afforded a series of bicyclo[3.2.1]octenes with one chiral quaternary and one tertiary carbon center in good yields with good enantioselectivities. This reaction proceeds via an acyl-palladium intermediate, followed by migratory insertion of the alkenes.
Collapse
Affiliation(s)
- Pengyun Liu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hongyue Dong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Baihui Gong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Chen M, Zhu L, Zheng W, Fu Y, Zhang J, He H, Antilla JC. Catalytic Asymmetric Desymmetrization of Cyclic 1,3-Diketones Using Chiral Boro-phosphates. Org Lett 2024; 26:3951-3956. [PMID: 38678546 DOI: 10.1021/acs.orglett.4c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Herein, we report a chiral boro-phosphate-catalyzed reductive amination for the desymmetrization of 2,2-disubstituted 1,3-cyclopentadiones with pinacolborane as the reducing agent, delivering chiral β-amino ketones with an all-carbon quaternary stereocenter in good yields (≤94%), high enantioselectivities (≤97% ee), and excellent diastereoselectivities (>20:1 dr). This reaction has a broad substrate scope and high functional group tolerance. The importance of the chiral products was also demonstrated through the preparation of multifunctional building blocks and heterocycles.
Collapse
Affiliation(s)
- Minglei Chen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Linfei Zhu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Weitao Zheng
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yili Fu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Junru Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Hualing He
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Jon C Antilla
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
6
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
7
|
Kučera R, Ellis SR, Yamazaki K, Hayward Cooke J, Chekshin N, Christensen KE, Hamlin TA, Dixon DJ. Enantioselective Total Synthesis of (-)-Himalensine A via a Palladium and 4-Hydroxyproline Co-catalyzed Desymmetrization of Vinyl-bromide-tethered Cyclohexanones. J Am Chem Soc 2023; 145:5422-5430. [PMID: 36820616 PMCID: PMC9999414 DOI: 10.1021/jacs.2c13710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Herein, we describe the convergent enantioselective total synthesis of himalensine A in 18 steps, enabled by a highly enantio- and diastereoselective construction of the morphan core via a palladium/hydroxy proline co-catalyzed desymmetrization of vinyl-bromide-tethered cyclohexanones. The reaction pathway was illuminated by density functional theory calculations, which support an intramolecular Heck reaction of an in situ-generated enamine intermediate, where exquisite enantioselectivity arises from intramolecular carboxylate coordination to the vinyl palladium species in the rate- and enantio-determining carbopalladation steps. The reaction tolerates diverse N-derivatives, all-carbon quaternary centers, and trisubstituted olefins, providing access to molecular scaffolds found in a range of complex natural products. Following large-scale preparation of a key substrate and installation of a β-substituted enone moiety, the rapid construction of himalensine A was achieved using a highly convergent strategy based on an amide coupling/Michael addition/allylation/ring-closing metathesis sequence which allowed the introduction of three of the five rings in only three synthetic steps (after telescoping). Moreover, our strategy provides a new enantioselective access to a known tetracyclic late-stage intermediate that has been used previously in the synthesis of many Daphniphyllum alkaloids.
Collapse
Affiliation(s)
- Roman Kučera
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Sam R Ellis
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Ken Yamazaki
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.,Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| | - Jack Hayward Cooke
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Nikita Chekshin
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
8
|
Ma C, Sun Y, Yang J, Guo H, Zhang J. Catalytic Asymmetric Synthesis of Tröger's Base Analogues with Nitrogen Stereocenter. ACS CENTRAL SCIENCE 2023; 9:64-71. [PMID: 36712492 PMCID: PMC9881208 DOI: 10.1021/acscentsci.2c01121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 06/18/2023]
Abstract
Nitrogen stereocenters are common chiral units in natural products, pharmaceuticals, and chiral catalysts. However, their research has lagged largely behind, compared with carbon stereocenters and other heteroatom stereocenters. Herein, we report an efficient method for the catalytic asymmetric synthesis of Tröger's base analogues with nitrogen stereocenters via palladium catalysis and home-developed GF-Phos. It allows rapid construction of a new rigid cleft-like structure with both a C- and a N-stereogenic center in high efficiency and selectivity. A variety of applications as a chiral organocatalyst and metallic catalyst precursors were demonstrated. Furthermore, DFT calculations suggest that the NH···O hydrogen bonding and weak interaction between the substrate and ligand are crucial for the excellent enantioselectivity control.
Collapse
Affiliation(s)
- Chun Ma
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Yue Sun
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Junfeng Yang
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- Fudan
Zhangjiang Institute, Shanghai 201203, P. R. China
| | - Hao Guo
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- Zhuhai
Fudan Innovation Institute, Zhuhai, 519000, P. R. China
| | - Junliang Zhang
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
9
|
Xu P, Shen C, Xu A, Low K, Huang Z. Desymmetric Cyanosilylation of Acyclic 1,3‐Diketones. Angew Chem Int Ed Engl 2022; 61:e202208443. [DOI: 10.1002/anie.202208443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pan Xu
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Chang Shen
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Aiqing Xu
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Kam‐Hung Low
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Zhongxing Huang
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| |
Collapse
|
10
|
Xu P, Shen C, Xu A, Low KH, Huang Z. Desymmetric Cyanosilylation of Acyclic 1,3‐Diketones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pan Xu
- University of Hong Kong Department of Chemistry HONG KONG
| | - Chang Shen
- University of Hong Kong Department of Chemistry HONG KONG
| | - Aiqing Xu
- University of Hong Kong Department of Chemistry HONG KONG
| | - Kam-Hung Low
- University of Hong Kong Department of Chemistry HONG KONG
| | - Zhongxing Huang
- University of Hong Kong Chemistry RM 608 Chong Yuet Ming Chemistry Building na Hong Kong HONG KONG
| |
Collapse
|
11
|
Li S, Chen Q, Yang J, Zhang J. Palladium‐Catalyzed Enantioselective γ‐Arylation of β,γ‐Unsaturated Butenolides. Angew Chem Int Ed Engl 2022; 61:e202202046. [DOI: 10.1002/anie.202202046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Sanliang Li
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Qiaoyu Chen
- Academy for Engineering and Technology Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junfeng Yang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
12
|
Wang ZH, Liu JH, Zhang YP, Zhao JQ, You Y, Zhou MQ, Han WY, Yuan WC. Cu-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of N-2,2,2-Trifluoroethylisatin Ketimines Enables the Desymmetrization of N-Arylmaleimides: Access to Enantioenriched F 3C-Containing Octahydropyrrolo[3,4- c]pyrroles. Org Lett 2022; 24:4052-4057. [PMID: 35622347 DOI: 10.1021/acs.orglett.2c01510] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With a Cu(OTf)2/chiral ferrocenyl P,N-ligand complex as a catalyst, the enantioselective desymmetrization of N-arylmaleimides was successfully realized by taking advantage of the asymmetric 1,3-dipolar cycloaddition reaction of N-2,2,2-trifluoroethylisatin ketimines. A series of structurally diverse F3C-containing octahydropyrrolo[3,4-c]pyrroles, bearing four contiguous carbon stereocenters and one stereogenic chiral C-N axial bond, were obtained with excellent results (≤99% yield, >20:1 dr, and 99% ee).
Collapse
Affiliation(s)
- Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ji-Hong Liu
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wen-Yong Han
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
13
|
Yu H, Zhang Q, Zi W. Synergistic Pd/Cu-catalyzed enantioselective Csp 2-F bond alkylation of fluoro-1,3-dienes with aldimine esters. Nat Commun 2022; 13:2470. [PMID: 35513394 PMCID: PMC9072389 DOI: 10.1038/s41467-022-30152-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/12/2022] [Indexed: 02/03/2023] Open
Abstract
Due to high bond dissociation energies of Csp2-F bonds, using fluorinated compounds in Csp2-Csp3 cross-coupling is difficult. Here the authors report a protocol for enantioselective Csp2-Csp3 coupling of dienyl fluorides with aldimine esters, enabled by synergistic copper and palladium catalysis. This reaction represents the first example of asymmetric Csp2-Csp3 cross-coupling involving an inert Csp2-F bond and provides expeditious access to chiral α-alkenyl α-amino acids with high enantioselectivity. Control experiments suggest that the Csp2-F bond activation occurs through a pathway involving PdH migratory insertion and subsequent allylic defluorination, rather than by direct oxidative addition of the Csp2-F bond to Pd(0). The detailed mechanism is further investigated by DFT calculation and the enantioselectivity is rationalized.
Collapse
Affiliation(s)
- Huimin Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China.
| |
Collapse
|
14
|
Li S, Chen Q, Yang J, Zhang J. Palladium‐Catalyzed Enantioselective γ‐Arylation of β,γ‐Unsaturated Butenolides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sanliang Li
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Qiaoyu Chen
- Academy for Engineering and Technology Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junfeng Yang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
15
|
Dai L, Xu D, Mao Y, Zhu J, Yang M. Structures and Synthetic Strategies of Chiral Oxazolinyl Ferrocene Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Orlandi M, Escudero-Casao M, Licini G. Transition-Metal-Catalyzed Enantioselective α-Arylation of Carbonyl Compounds to Give Tertiary Stereocenters. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1560-5245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractEnantioenriched α-aryl carbonyl compounds are ubiquitous in natural products and biologically active compounds. Their synthesis has been explored over the last few decades and several methods now exist that allow for the enantioselective formation of a C(sp3)-C(sp2) bond in the α-position to a carbonyl group. However, although the formation of quaternary stereocenters has been fairly well established, the enantioselective formation of tertiary stereocenters proved more challenging due to facile product post-reaction racemization. In this short review, we summarize the methods reported to date for the asymmetric α-arylation of enolates and analogues that rely on transition-metal catalysis.1 Introduction2 Nucleophile Pre-activation3 Activation via Aminocatalysis4 Formation of Constrained Stereocenters5 Concluding Remarks
Collapse
|
18
|
Zhang D, Li M, Li J, Lin A, Yao H. Rhodium-catalyzed intermolecular enantioselective Alder-ene type reaction of cyclopentenes with silylacetylenes. Nat Commun 2021; 12:6627. [PMID: 34785658 PMCID: PMC8595345 DOI: 10.1038/s41467-021-26955-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
The Alder-ene type reaction between alkenes and alkynes provides an efficient and atom-economic method for the construction of C-C bond, which has been widely employed in the synthesis of natural products and other functional molecules. The intramolecular enantioselective Alder-ene cycloisomerization reactions of 1,n-enynes have been extensively investigated. However, the intermolecular asymmetric version has not been reported, and remains a challenging task. Herein, we describe a rhodium-catalyzed intermolecular enantioselective Alder-ene type reaction of cyclopentenes with silylacetylenes. A variety of chiral (E)-vinylsilane tethered cyclopentenes bearing one quaternary carbon and one tertiary carbon stereocenters are achieved in high yields and enantioselectivities. The reaction undergoes carbonyl-directed migratory insertion, β-H elimination and desymmetrization of prochiral cyclopentenes processes.
Collapse
Affiliation(s)
- Dongquan Zhang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Miaomiao Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jiajia Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.
| |
Collapse
|
19
|
Wang G, Zhang M, Guan Y, Zhang Y, Hong X, Wei C, Zheng P, Wei D, Fu Z, Chi YR, Huang W. Desymmetrization of Cyclic 1,3-Diketones under N-Heterocyclic Carbene Organocatalysis: Access to Organofluorines with Multiple Stereogenic Centers. RESEARCH 2021; 2021:9867915. [PMID: 34549186 PMCID: PMC8422277 DOI: 10.34133/2021/9867915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
Symmetric 1,3-diketones with fluorine or fluorinated substituents on the prochiral carbon remain to be established. Herein, we have developed a novel prochiral fluorinated oxindanyl 1,3-diketone and successfully applied these substrates in carbene-catalyzed asymmetric desymmetrization. Accordingly, a versatile strategy for asymmetric generation of organofluorines with fluorine or fluorinated methyl groups has been developed. Multiple stereogenic centers were selectively constructed with satisfactory outcomes. Structurally diverse enantioenriched organofluorines were generated with excellent results in terms of yields, diastereoselectivities, and enantioselectivities. Notably, exchanging fluorinated methyl groups to fluorine for this prochiral 1,3-diketones leads to switchable stereoselectivity. Mechanistic aspects and origin of stereoselectivity were studied by DFT calculations. Notably, some of the prepared organofluorines demonstrated competitive antibacterial activities.
Collapse
Affiliation(s)
- Guanjie Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Min Zhang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yezhi Guan
- School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ye Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xianfang Hong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chenlong Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Pengcheng Zheng
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Donghui Wei
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.,Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
20
|
Wang M, Wang W, Li D, Wang WJ, Zhan R, Shao LD. α-C(sp 3)-H Arylation of Cyclic Carbonyl Compounds. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:379-404. [PMID: 34097248 PMCID: PMC8275813 DOI: 10.1007/s13659-021-00312-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
α-C(sp3)-H arylation is an important type of C-H functionalization. Various biologically significant natural products, chemical intermediates, and drugs have been effectively prepared via C-H functionalization. Cyclic carbonyl compounds comprise of cyclic ketones, enones, lactones, and lactams. The α-C(sp3)-H arylation of these compounds have been exhibited high efficiency in forming C(sp3)-C(sp2) bonds, played a crucial role in organic synthesis, and attracted majority of interests from organic and medicinal communities. This review focused on the most significant advances including methods, mechanism, and applications in total synthesis of natural products in the field of α-C(sp3)-H arylations of cyclic carbonyl compounds in recent years.
Collapse
Affiliation(s)
- Mei Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Wei Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Dashan Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Wen-Jing Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Rui Zhan
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650050, China.
| | - Li-Dong Shao
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China.
| |
Collapse
|
21
|
Zhang J, Wang X, Xu T. Regioselective activation of benzocyclobutenones and dienamides lead to anti-Bredt bridged-ring systems by a [4+4] cycloaddition. Nat Commun 2021; 12:3022. [PMID: 34021154 PMCID: PMC8140143 DOI: 10.1038/s41467-021-23344-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
To the best of our knowledge, bridgehead carbon benzofused-bridged ring systems have previously not been accessible to the synthetic community. Here, we describe a formal type-II [4 + 4] cycloaddition approach that provides fully sp2-carbon embedded anti-Bredt bicyclo[5.3.1] skeletons through the Rh-catalyzed C1-C8 activation of benzocyclobutenones (BCBs) and their coupling with pedant dienamides. Variously substituted dienamides have been coupled with BCBs to provide a range of complex bicyclo[5.3.1] scaffolds (>20 examples, up to 89% yield). The bridged rings were further converted to polyfused hydroquinoline-containing tetracycles via a serendipitously discovered transannular 1,5-hydride shift/Prins-like cyclization/Schmidt rearrangement cascade.
Collapse
Affiliation(s)
- Jianyu Zhang
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xi Wang
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Tao Xu
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Laboratory for Marine Drugs and Bioproducts and Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
22
|
Wu T, Zhou Q, Tang W. Enantioselective α-Carbonylative Arylation for Facile Construction of Chiral Spirocyclic β,β'-Diketones. Angew Chem Int Ed Engl 2021; 60:9978-9983. [PMID: 33599064 DOI: 10.1002/anie.202101668] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 01/03/2023]
Abstract
We herein describe the first enantioselective α-carbonylative arylation, providing a diverse set of chiral spiro β,β'-diketones bearing various ring sizes and functionalities in high yields and good to excellent enantioselectivities. Calculations suggest the transformation proceeds through reductive elimination instead of nucleophilic addition pathway.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China
| | - Qinghai Zhou
- College of Chemistry and Materials Science, Shanghai Normal University, 106 Guilin Road, Shanghai, 200233, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
23
|
Wu T, Zhou Q, Tang W. Enantioselective α‐Carbonylative Arylation for Facile Construction of Chiral Spirocyclic β,β′‐Diketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| | - Qinghai Zhou
- College of Chemistry and Materials Science Shanghai Normal University 106 Guilin Road Shanghai 200233 China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
24
|
Liao Z, Zhang J, Cao T, Zhu S. Copper-Catalyzed Asymmetric Synthesis of Bicyclo[3. n.1]alkenones. J Org Chem 2021; 86:5388-5400. [PMID: 33754724 DOI: 10.1021/acs.joc.1c00146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of highly strained bicyclo[3.n.1]alkenones have been successfully constructed in good-to-excellent enantioselectivities and moderate-to-good yields via copper-catalyzed formal [3+3] cycloaddition. The versatile chiral cycloadducts could be selectively converted into various valuable bridge systems, which hold considerable potential for the construction of natural and bioactive compounds containing a [3.n.1] moiety.
Collapse
Affiliation(s)
- Zhehui Liao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jiantao Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, People's Republic of China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
25
|
Li Q, Pan R, Wang M, Yao H, Lin A. Ligand-Controlled, Palladium-Catalyzed Asymmetric [4+4] and [2+4] Cycloadditions. Org Lett 2021; 23:2292-2297. [PMID: 33683909 DOI: 10.1021/acs.orglett.1c00420] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ligand-controlled, palladium-catalyzed asymmetric [4+4] and [2+4] cycloaddition reactions of benzofuran-derived azadienes have been developed. Taking advantage of chiral P,N-ligand (S,Rp)-PPFA, we obtained a variety of benzofuro[2,3-c][1,5] oxazocines in good yields with excellent enantioselectivities via [4+4] cycloaddition reactions. Employing chiral P,P-ligand (S)-Cl-MeO-BIPHEP, the chemo- and regioselectivities were switched to synthesize tetrahydropyran-fused spirocyclic compounds in good efficiency via [2+4] cycloaddition reactions.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Rui Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Meihui Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
26
|
Yang B, Dai J, Luo Y, Lau KK, Lan Y, Shao Z, Zhao Y. Desymmetrization of 1,3-Diones by Catalytic Enantioselective Condensation with Hydrazine. J Am Chem Soc 2021; 143:4179-4186. [DOI: 10.1021/jacs.1c01366] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Binmiao Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, No. 2 North Cuihu Road, 650091 Kunming, China
| | - Jun Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, No. 2 North Cuihu Road, 650091 Kunming, China
| | - Yixin Luo
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Kai Kiat Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Republic of Singapore, 117543
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, No. 2 North Cuihu Road, 650091 Kunming, China
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Republic of Singapore, 117543
| |
Collapse
|
27
|
Wu T, Tang W. Construction of Bridged Polycyclic Skeletons via Transition-Metal Catalyzed Carbon-Carbon Bond-Forming Reactions. Chemistry 2021; 27:3944-3956. [PMID: 32918298 DOI: 10.1002/chem.202003863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Transition-metal catalysis has become one of most important methods for constructing molecules with diverse architectures. Bridged polycyclic skeletons are often considered one of most challenging structures in organic synthesis. This Minireview summarizes the recent progress on synthesis of bridged polycyclic skeletons by transition-metal-catalyzed carbon-carbon bond-forming reaction. Four main ring-forming strategies including connection via olefin or carbonyl functionality, enolate intermediacy, C-H functionality, and aryl functionality are detailed and some effective methods are discussed with particular emphasis on reaction design and mechanism.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Materials Science Hangzhou Institute for, Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
28
|
Wu XX, Ye H, Li M, Qian J, Dai H, Shi Y. Selective synthesis of acylated caprolactam via sequential Michael addition/palladium-catalyzed alpha-arylation of ketones. Org Chem Front 2021. [DOI: 10.1039/d0qo01323d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A formal [6 + 1] annulation reaction provides an efficient route enabling rapid access to diverse caprolactams by the double C–C bond formation of the same site from methyl ketones.
Collapse
Affiliation(s)
- Xin-Xing Wu
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
- Nantong Key Lab of Intelligent and New Energy Materials
| | - Hao Ye
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Jianing Qian
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Hong Dai
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Yujun Shi
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| |
Collapse
|
29
|
Nguyen K, Clement HA, Bernier L, Coe JW, Farrell W, Helal CJ, Reese MR, Sach NW, Lee JC, Hall DG. Catalytic Enantioselective Synthesis of a cis-β-Boronyl Cyclobutylcarboxyester Scaffold and Its Highly Diastereoselective Nickel/Photoredox Dual-Catalyzed Csp3–Csp2 Cross-Coupling to Access Elusive trans-β-Aryl/Heteroaryl Cyclobutylcarboxyesters. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kevin Nguyen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Helen A. Clement
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Louise Bernier
- Pfizer Worldwide Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Jotham W. Coe
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - William Farrell
- Pfizer Worldwide Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Christopher J. Helal
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew R. Reese
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Neal W. Sach
- Pfizer Worldwide Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Jack C. Lee
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dennis G. Hall
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
30
|
Construction of three stereocenters via hydrogenative desymmetrization of 2,2,5-trisubstituted cyclohexane-1,3-diones. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9873-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Lapuh MI, Mazeh S, Besset T. Chiral Transient Directing Groups in Transition-Metal-Catalyzed Enantioselective C–H Bond Functionalization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03317] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maria I. Lapuh
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Sara Mazeh
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
32
|
Morja MI, Patel JJ, Chauhan PM, Chikhalia KH. An efficient synthesis of strained thio-bridged compounds via Pd(0) catalyzed intramolecular Csp2(aryl)-Csp3(alkyl) cross dehydrohalogenative coupling reaction. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Arthurs RA, Hughes DL, Richards CJ. Planar chiral palladacycle precatalysts for asymmetric synthesis. Org Biomol Chem 2020; 18:5466-5472. [PMID: 32643748 DOI: 10.1039/d0ob01331e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chiral non-racemic palladacycles were employed as precatalysts for Pd(0) mediated asymmetric synthesis. Addition of HPAr2/base to a ferrocenyloxazoline planar chiral palladacycle resulted in ligand synthesis and palladium capture to give a bidentate Phosferrox/Pd(0) complex. A series of these complexes were generated in situ and applied successfully as catalysts for asymmetric allylic alkylation.
Collapse
Affiliation(s)
- Ross A Arthurs
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK.
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK.
| | - Christopher J Richards
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK.
| |
Collapse
|
34
|
Zhang L, Yamazaki K, Leitch JA, Manzano R, Atkinson VAM, Hamlin TA, Dixon DJ. Dual catalytic enantioselective desymmetrization of allene-tethered cyclohexanones. Chem Sci 2020; 11:7444-7450. [PMID: 34123026 PMCID: PMC8159440 DOI: 10.1039/d0sc02878a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/23/2020] [Indexed: 11/30/2022] Open
Abstract
The construction of enantioenriched azabicyclo[3.3.1]nonan-6-one heterocycles via an enantioselective desymmetrization of allene-linked cyclohexanones, enabled through a dual catalytic system, that provides synchronous activation of the cyclohexanone with a chiral prolinamide and the allene with a copper(i) co-catalyst to deliver the stereodefined bicyclic core, is described. Successful application to oxygen analogues was also achieved, thereby providing a new enantioselective synthetic entry to architecturally complex bicyclic ethereal frameworks. The mechanistic pathway and the origin of enantio- and diastereoselectivities has been uncovered using density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford UK
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford UK
| | - Jamie A Leitch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford UK
| | - Ruben Manzano
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford UK
| | - Victoria A M Atkinson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford UK
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford UK
| |
Collapse
|
35
|
Xiao LJ, Hong K, Luo F, Hu L, Ewing WR, Yeung KS, Yu JQ. Pd II -Catalyzed Enantioselective C(sp 3 )-H Arylation of Cyclobutyl Ketones Using a Chiral Transient Directing Group. Angew Chem Int Ed Engl 2020; 59:9594-9600. [PMID: 32155313 PMCID: PMC7269848 DOI: 10.1002/anie.202000532] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/11/2020] [Indexed: 02/05/2023]
Abstract
The use of chiral transient directing groups (TDGs) is a promising approach for developing PdII -catalyzed enantioselective C(sp3 )-H activation reactions. However, this strategy is challenging because the stereogenic center on the TDG is often far from the C-H bond, and both TDG covalently attached to the substrate and free TDG are capable of coordinating to PdII centers, which can result in a mixture of reactive complexes. We report a PdII -catalyzed enantioselective β-C(sp3 )-H arylation reaction of aliphatic ketones using a chiral TDG. A chiral trisubstituted cyclobutane was efficiently synthesized from a mono-substituted cyclobutane through sequential C-H arylation reactions, thus demonstrating the utility of this method for accessing structurally complex products from simple starting materials. The use of an electron-deficient pyridone ligand is crucial for the observed enantioselectivity. Interestingly, employing different silver salts can reverse the enantioselectivity.
Collapse
Affiliation(s)
- Li-Jun Xiao
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kai Hong
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Fan Luo
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Liang Hu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - William R Ewing
- Discovery Chemistry, Bristol-Myers Squibb, PO Box 4000, Princeton, NJ, 08543, USA
| | - Kap-Sun Yeung
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, 100 Binney Street, Cambridge, MA, 02142, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
36
|
Wada Y, Murata R, Fujii Y, Asano K, Matsubara S. Enantio- and Diastereoselective Construction of Contiguous Tetrasubstituted Chiral Carbons in Organocatalytic Oxadecalin Synthesis. Org Lett 2020; 22:4710-4715. [DOI: 10.1021/acs.orglett.0c01501] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuuki Wada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Ryuichi Murata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Yuki Fujii
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Keisuke Asano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
37
|
Wu T, Kang X, Bai H, Xiong W, Xu G, Tang W. Enantioselective Construction of Spiro Quaternary Carbon Stereocenters via Pd-Catalyzed Intramolecular α-Arylation. Org Lett 2020; 22:4602-4607. [DOI: 10.1021/acs.orglett.0c01129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Xuehua Kang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Heng Bai
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Wenrui Xiong
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Guangqing Xu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
38
|
Yuan Z, Zeng Y, Feng Z, Guan Z, Lin A, Yao H. Constructing chiral bicyclo[3.2.1]octanes via palladium-catalyzed asymmetric tandem Heck/carbonylation desymmetrization of cyclopentenes. Nat Commun 2020; 11:2544. [PMID: 32439921 PMCID: PMC7242361 DOI: 10.1038/s41467-020-16221-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transition-metal-catalyzed tandem Heck/carbonylation reaction has emerged as a powerful tool for the synthesis of structurally diverse carbonyl molecules, as well as natural products and pharmaceuticals. However, the asymmetric version was rarely reported, and remains a challenging topic. Herein, we describe a palladium-catalyzed asymmetric tandem Heck/carbonylation desymmetrization of cyclopentenes. Alcohols, phenols and amines are employed as versatile coupling reagents for the construction of multifunctional chiral bicyclo[3.2.1]octanes with one all-carbon quaternary and two tertiary carbon stereogenic centers in high diastereo- and enantioselectivities. This study represents an important progress in both the asymmetric tandem Heck/carbonylation reactions and enantioselective difunctionalization of internal alkenes.
Collapse
Affiliation(s)
- Zhenbo Yuan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yuye Zeng
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Ziwen Feng
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Zhe Guan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| |
Collapse
|
39
|
Xiao L, Hong K, Luo F, Hu L, Ewing WR, Yeung K, Yu J. Pd
II
‐Catalyzed Enantioselective C(sp
3
)–H Arylation of Cyclobutyl Ketones Using a Chiral Transient Directing Group. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Li‐Jun Xiao
- Department of ChemistryThe Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Kai Hong
- Department of ChemistryThe Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Fan Luo
- Department of ChemistryThe Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Liang Hu
- Department of ChemistryThe Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - William R. Ewing
- Discovery ChemistryBristol-Myers Squibb PO Box 4000 Princeton NJ 08543 USA
| | - Kap‐Sun Yeung
- Discovery ChemistryBristol-Myers Squibb Research and Development 100 Binney Street Cambridge MA 02142 USA
| | - Jin‐Quan Yu
- Department of ChemistryThe Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
40
|
Chen X, Zhou Y, Jin J, Farshadfar K, Ariafard A, Rao W, Chan PWH. Gold Catalyzed Cyclopropanation/[5+3] Cycloaddition of 1,4,9‐ and 1,4,10‐Allenenynes to Bicyclo[3.3.1]nonane Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xianxiao Chen
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Yuanyuan Zhou
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Jianwen Jin
- School of Chemistry Monash University Clayton, Victoria 3800 Australia
| | - Kaveh Farshadfar
- Department of Chemistry Islamic Azad University, Poonak Tehran Iran
| | - Alireza Ariafard
- Department of Chemistry Islamic Azad University, Poonak Tehran Iran
- School of Physical Sciences-Chemistry University of Tasmania Hobart, Tasmania 7001 Australia
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | | |
Collapse
|
41
|
Zhou P, XU T. Nickel-catalyzed intramolecular desymmetrization addition of aryl halides to 1,3-diketones. Chem Commun (Camb) 2020; 56:8194-8197. [DOI: 10.1039/d0cc00457j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A nickel-catalyzed intramolecular addition of aryl halides to 1,3-diketones was first developed to afford a polycyclic framework with two tetrasubstituted carbons in excellent diastereoselectivity. Moderate enantioselectivities were also achieved.
Collapse
Affiliation(s)
- Pan Zhou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| | - Tao XU
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| |
Collapse
|
42
|
Hao YJ, Hu XS, Zhou Y, Zhou J, Yu JS. Catalytic Enantioselective α-Arylation of Carbonyl Enolates and Related Compounds. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04480] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yong-Jia Hao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People’s Republic of China
| | - Xiao-Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People’s Republic of China
| | - Jian Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People’s Republic of China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| |
Collapse
|
43
|
Unsymmetrical 1-oxazolinyl 1’,2-Bisphosphine ferrocene silyl ether: Preparation and lithiation mechanism. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Wei Q, Cai J, Hu XD, Zhao J, Cong H, Zheng C, Liu WB. Enantioselective Access to γ-All-Carbon Quaternary Center-Containing Cyclohexanones by Palladium-Catalyzed Desymmetrization. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qiang Wei
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Jinhui Cai
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Xu-Dong Hu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Jing Zhao
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Hengjiang Cong
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
45
|
Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Catalytic Enantioselective Methylene C(sp 3 )-H Amidation of 8-Alkylquinolines Using a Cp*Rh III /Chiral Carboxylic Acid System. Angew Chem Int Ed Engl 2019; 58:18154-18158. [PMID: 31593365 DOI: 10.1002/anie.201911268] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Indexed: 12/22/2022]
Abstract
Catalytic enantioselective directed methylene C(sp3 )-H amidation reactions of 8-alkylquinolines using a Cp*RhIII /chiral carboxylic acid (CCA) hybrid catalytic system are described. A binaphthyl-based chiral carboxylic acid efficiently differentiates between the enantiotopic methylene C-H bonds, which leads to the formation of C-N bonds with good enantioselectivity.
Collapse
Affiliation(s)
- Seiya Fukagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
46
|
Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Catalytic Enantioselective Methylene C(sp
3
)−H Amidation of 8‐Alkylquinolines Using a Cp*Rh
III
/Chiral Carboxylic Acid System. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911268] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Seiya Fukagawa
- Faculty of Pharmaceutical SciencesHokkaido University, Kita-ku Sapporo 060-0812 Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical SciencesHokkaido University, Kita-ku Sapporo 060-0812 Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical SciencesHokkaido University, Kita-ku Sapporo 060-0812 Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical SciencesHokkaido University, Kita-ku Sapporo 060-0812 Japan
| |
Collapse
|
47
|
Xu Y, Sun Q, Tan T, Yang M, Yuan P, Wu S, Lu X, Hong X, Ye L. Organocatalytic Enantioselective Conia‐Ene‐Type Carbocyclization of Ynamide Cyclohexanones: Regiodivergent Synthesis of Morphans and Normorphans. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908495] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yin Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Qing Sun
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Tong‐De Tan
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Ming‐Yang Yang
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Peng Yuan
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Shao‐Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Xin Hong
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
48
|
Xu Y, Sun Q, Tan TD, Yang MY, Yuan P, Wu SQ, Lu X, Hong X, Ye LW. Organocatalytic Enantioselective Conia-Ene-Type Carbocyclization of Ynamide Cyclohexanones: Regiodivergent Synthesis of Morphans and Normorphans. Angew Chem Int Ed Engl 2019; 58:16252-16259. [PMID: 31444882 DOI: 10.1002/anie.201908495] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Described herein is an organocatalytic enantioselective desymmetrizing cycloisomerization of arylsulfonyl-protected ynamide cyclohexanones, representing the first metal-free asymmetric Conia-ene-type carbocyclization. This method allows the highly efficient and atom-economical construction of a range of valuable morphans with wide substrate scope and excellent enantioselectivity (up to 97 % ee). In addition, such a cycloisomerization of alkylsulfonyl-protected ynamide cyclohexanones can lead to the divergent synthesis of normorphans as the main products with high enantioselectivity (up to 90 % ee). Moreover, theoretical calculations are employed to elucidate the origins of regioselectivity and enantioselectivity.
Collapse
Affiliation(s)
- Yin Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qing Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tong-De Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ming-Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Peng Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shao-Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
49
|
Liu T, Feng J, Chen C, Deng Z, Kotagiri R, Zhou G, Zhang X, Cai Q. Copper(I)-Catalyzed Intramolecular Asymmetric Double C-Arylation for the Formation of Chiral Spirocyclic Bis-oxindoles. Org Lett 2019; 21:4505-4509. [PMID: 31184179 DOI: 10.1021/acs.orglett.9b01373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ting Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Jiajie Feng
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chen Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zhuoji Deng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Rajendraprasad Kotagiri
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Guangxiong Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Qian Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, China
| |
Collapse
|
50
|
Pan JL, Liu C, Chen C, Liu TQ, Wang M, Sun Z, Zhang SY. Dual Directing-Groups-Assisted Redox-Neutral Annulation and Ring Opening of N-Aryloxyacetamides with 1-Alkynylcyclobutanols via Rhodium(III)-Catalyzed C–H/C–C Activations. Org Lett 2019; 21:2823-2827. [DOI: 10.1021/acs.orglett.9b00812] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jin-Long Pan
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chang Liu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chao Chen
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tuan-Qing Liu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Man Wang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhenliang Sun
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People’s Hospital South Campus, Shanghai 201499, China
| | - Shu-Yu Zhang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|