1
|
Steinmetz M, Schurhammer R, Gourlaouen C, Sémeril D. Hydrogenation Versus Hydrosilylation: The Substantial Impact of a Palladium Capsule on the Catalytic Outcome. Molecules 2024; 29:4910. [PMID: 39459278 PMCID: PMC11510042 DOI: 10.3390/molecules29204910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
A palladium capsule, made of three cavitands, namely P,P-dichlorido{5,17-bis[5-(diphenylphosphanyl)-4(24),6(10),12(16),18(22)-tetramethylenedioxy-2,8,14,20-tetrapentylresorcin[4]arenyl-17-oxymthyl]-4(24),6(10),12(16),18(22)-tetramethylenedioxy-2,8,14,20-tetrapentylresorcin[4]arene}palladium(II) (1), was synthetized by coordination of the corresponding diphosphinated ligand and the palladium precursor [PdCl2(PhCN)2] in 27% yield. The obtained P,P-chelate complex was fully characterized by elemental analysis, NMR and mass spectrometry. Molecular dynamics simulations carried out on the metallo-capsule showed the structure made by the three cavitands was slightly distorted over the 1 μs of the simulation. The evaluation of the palladium capsule 1 in the reaction between arylacetylenes and Et3SiH in undried conditions unequivocally demonstrates a drastic change in chemoselectivity, with the formation of the partially hydrogenation product rather than the hydrosilylation products observed with complexes whose active center is more accessible, for instance [PdCl2(PPh3)2].
Collapse
Affiliation(s)
- Maxime Steinmetz
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177, Institut de Chimie de Strasbourg, Strasbourg University, 67008 Strasbourg, France
| | - Rachel Schurhammer
- Laboratoire de Modélisation et Simulations Moléculaires, UMR-CNRS 7140, Chimie de la Matière Complexe, Strasbourg University, 67008 Strasbourg, France
| | - Christophe Gourlaouen
- Laboratoire de Modélisation et Simulations Moléculaires, UMR-CNRS 7140, Chimie de la Matière Complexe, Strasbourg University, 67008 Strasbourg, France
| | - David Sémeril
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177, Institut de Chimie de Strasbourg, Strasbourg University, 67008 Strasbourg, France
| |
Collapse
|
2
|
Su P, Zhang W, Guo C, Liu H, Xiong C, Tang R, He C, Chen Z, Yu X, Wang H, Li X. Constructing Ultrastable Metallo-Cages via In Situ Deprotonation/Oxidation of Dynamic Supramolecular Assemblies. J Am Chem Soc 2023; 145:18607-18622. [PMID: 37566725 DOI: 10.1021/jacs.3c06211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Coordination-driven self-assembly enables the spontaneous construction of metallo-supramolecules with high precision, facilitated by dynamic and reversible metal-ligand interactions. The dynamic nature of coordination, however, results in structural lability in many metallo-supramolecular assembly systems. Consequently, it remains a formidable challenge to achieve self-assembly reversibility and structural stability simultaneously in metallo-supramolecular systems. To tackle this issue, herein, we incorporate an acid-/base-responsive tridentate ligand into multitopic building blocks to precisely construct a series of metallo-supramolecular cages through coordination-driven self-assembly. These dynamic cagelike assemblies can be transformed to their static states through mild in situ deprotonation/oxidation, leading to ultrastable skeletons that can withstand high temperatures, metal ion chelators, and strong acid/base conditions. This in situ transformation provides a reliable and powerful approach to manipulate the kinetic features and stability of metallo-supramolecules and allows for modulation of encapsulation and release behaviors of metallo-cages when utilizing nanoscale quantum dots (QDs) as guest molecules.
Collapse
Affiliation(s)
- Pingru Su
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, People's Republic of China
| | - Wenjing Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Hong Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chuanhong Xiong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Runxu Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chuanxin He
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, People's Republic of China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
3
|
Xu Y, Zhang H, Su H, Ma J, Yu H, Li K, Shi J, Hao XQ, Wang K, Song B, Wang M. Hourglass-Shaped Nanocages with Concaved Structures Based on Selective Self-Complementary Coordination Ligands and Tunable Hierarchical Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300009. [PMID: 36964988 DOI: 10.1002/smll.202300009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Three-dimensional (3D) structures constructed via coordination-driven self-assemblies have recently garnered increasing attention due to the challenges in structural design and potential applications. In particular, developing new strategy for the convenient and precise self-assemblies of 3D supramolecular structures is of utmost interest. Introducing the concept of self-coordination ligands, herein the design and synthesis of two meta-modified terpyridyl ligands with selective self-complementary coordination moiety are reported and their capability to assemble into two hourglass-shaped nanocages SA and SB is demonstrated. Within these 3D structures, the meta-modified terpyridyl unit preferably coordinates with itself to serve as concave part. By changing the arm length of the ligands, hexamer (SA) and tetramer (SB) are obtained respectively. In-depth studies on the assembly mechanism of SA and SB indicate that the dimers could be formed first via self-complementary coordination and play crucial roles in controlling the final structures. Moreover, both SA and SB can go through hierarchical self-assemblies in solution as well as on solid-liquid interface, which are characterized by transmission electron microscope (TEM) and scanning tunneling microscopy (STM). It is further demonstrated that various higher-order assembly structures can be achieved by tuning the environmental conditions.
Collapse
Affiliation(s)
- Yaping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Haixin Zhang
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Haoyue Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Jianjun Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xin-Qi Hao
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kun Wang
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS, 39762, USA
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Bo Song
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
4
|
Li K, Zhang S, Hu Y, Kang S, Yu X, Wang H, Wang M, Li X. Shape-Dependent Complementary Ditopic Terpyridine Pair with Two Levels of Self-Recognition for Coordination-Driven Self-Assembly. Macromol Rapid Commun 2023; 44:e2200303. [PMID: 35666548 DOI: 10.1002/marc.202200303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/28/2022] [Indexed: 01/11/2023]
Abstract
Molecular recognition in biological systems plays a vital role in the precise construction of biomacromolecules and the corresponding biological activities. Such recognition mainly relies on the highly specific binding of complementary molecular pairs with complementary sizes, shapes, and intermolecular forces. It still remains challenging to develop artificial complementary motif pairs for coordination-driven self-assembly. Herein, a series of shape-dependent complementary motif pairs, based on ditopic 2,2':6',2″-terpyridine (TPY) backbone, are designed and synthesized. The fidelity degrees of self-assemblies from these motifs are carefully evaluated by multi-dimensional mass spectrometry, nuclear magnetic resonance spectroscopy, and molecular modeling. In addition, two levels of self-recognition in both homoleptic and heteroleptic assembly are discovered in the assembled system. Through finely tuning the shape and size of the ligands, a complementary pair is developed with error-free narcissistically self-sorting at two levels of self-recognition, and the intrinsic principle is carefully investigated.
Collapse
Affiliation(s)
- Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China.,College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shunran Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Yaqi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shimin Kang
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
5
|
Drug delivery assessment of an iron-doped fullerene cage towards thiotepa anticancer drug. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Self-assembly of a photoluminescent metal-organic cage and its spontaneous aggregation in dilute solutions enabling time-dependent emission enhancement. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1245-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Wang J, Wang F, Dong Q, Chen M, Jiang Z, Zhao H, Liu D, Jiang Z, Su P, Li Y, Liu Q, Liu H, Wang P. Tetratopic Terpyridine Building Unit as a Precursor to Wheel-Like Metallo-Supramolecules. Inorg Chem 2022; 61:5343-5351. [PMID: 35324194 DOI: 10.1021/acs.inorgchem.2c00123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an effort to construct molecules with distinct shapes and functions, the design and synthesis of multitopic ligands are often able to play an important role. Here, we report the synthesis of a novel tetratopic organic ligand LA, which can be viewed as a bis-tenon with successive angular orientations in space. The particular ligand has been treated with different tailored metal-organic ligands to afford new members of the molecular wheel family (multi-rhomboidal-shaped wheel and bis-trapezium-shaped wheel) that show enhanced stability. Two-dimensional (2D) diffusion nuclear magnetic resonance (NMR) spectroscopy (DOSY), electrospray ionization (ESI) mass spectrometry, traveling wave ion mobility (TWIM), and gradient tandem mass spectrometry (gMS2) experiments, as well as molecular modeling, have been employed to provide structural information and differentiate the isomeric separation process. In addition, considering that LA has rotational properties, it is expected to open the door to functional supramolecules and stimuli-responsive materials.
Collapse
Affiliation(s)
- Jun Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Feng Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Qiangqiang Dong
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - He Zhao
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Qianqian Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
8
|
Xu Y, Su H, Bai Q, Fang F, Ma J, Zhang Z, Hao XQ, Shi J, Wang P, Wang M. Design and Self-Assembly of Macrocycles with Metals at the Corners Based on Dissymmetric Terpyridine Ligands. Chem Asian J 2022; 17:e202200071. [PMID: 35212169 DOI: 10.1002/asia.202200071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Indexed: 11/11/2022]
Abstract
Terpyridine-based discrete supramolecular architectures with metal ions in the corners have rarely been reported. Herein, we report two dissymmetric terpyridyl ligands LA and LB decorated at the 5-position and 4-position of terpyridine respectively. The complexes constructed by the self-assembly of LA and LB with Zn(II) exhibit hand-circle-like structures. Moreover, all Zn(II) are successfully fixed in the corners. A series of dimeric to hexameric macrocycles is obtained by head-to-tail connections with changing concentration. This work will pave the way for preparation of more elaborate self-assembled structures based on dissymetric ligands.
Collapse
Affiliation(s)
- Yaping Xu
- Jilin University, College of Chemistry, CHINA
| | - Haoyue Su
- Jilin University, College of Chemistry, CHINA
| | - Qixia Bai
- Guangzhou University, Institute of Environmental Research at Greater Bay Area, CHINA
| | - Fang Fang
- Shenzhen University, Instrumental Analysis Center of Shenzhen University, CHINA
| | - Jianjun Ma
- Jilin University, College of Chemistry, CHINA
| | - Zhe Zhang
- Guangzhou University, Institute of Environmental Research at Greater Bay Area, CHINA
| | - Xin-Qi Hao
- Zhengzhou University, College of Chemistry and Green Catalysis Center, CHINA
| | - Junjuan Shi
- Jilin University, College of Chemistry, CHINA
| | - Pingshan Wang
- Guangzhou University, Institute of Environmental Research at Greater Bay Area, CHINA
| | - Ming Wang
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, No 2699 Qianjin Street, 130012, changhcun, CHINA
| |
Collapse
|
9
|
Yu X, Guo C, Lu S, Chen Z, Wang H, Li X. Terpyridine-Based 3D Discrete Metallosupramolecular Architectures. Macromol Rapid Commun 2022; 43:e2200004. [PMID: 35167147 DOI: 10.1002/marc.202200004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Terpyridine (tpy)-based 3D discrete metallosupramolecular architectures, which are often inspired by polyhedral geometry and the biological structures found in nature, have drawn significant attention from the community of metallosupramolecular chemistry. Because of the linear tpy-M(II)-tpy connectivity, the creation of sophisticated 3D metallosupramolecules based on tpy remains a formidable synthetic challenge. Nevertheless, with recent advancement in ligand design and self-assembly, diverse 3D metallosupramolecular polyhedrons, such as Platonic solids, Archimedean solids, prims as well as Johnson solids, have been constructed and their potential applications have been explored. This review summarizes the progress on tpy-based discrete 3D metallosupramolecules, aiming to shed more light on the design and construction of novel discrete architectures with molecular-level precision through coordination-driven self-assembly.
Collapse
Affiliation(s)
- Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
10
|
Shi J, Wang M. Self-Assembly Methods for Recently Reported Discrete Supramolecular Structures Based on Terpyridine. Chem Asian J 2021; 16:4037-4048. [PMID: 34672098 DOI: 10.1002/asia.202101136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/18/2021] [Indexed: 01/10/2023]
Abstract
In this Review, self-assembly methods of discrete metallo-supramolecules based on 2,2' : 6',2''-terpyridine (tpy) are comprehensively summarized. With the development of self-assembly, strategies for discrete 2D and 3D supramolecular architectures have boomed, including the geometry-directed method, template-driven method, and stepwise method. Ligand geometry-directed method mainly depends on the geometry of ligands (i. e., angle, geometric strain, and rigidity), and it is suitable for dual-component systems, while the template-driven method can guide the self-assembly of predesigned supramolecules by the introduction of specific templates. Meanwhile, stepwise method, breaking the inherent self-sorting of ligands and reducing the probability of mismatch, is suitable for multicomponent systems to yield predesigned supramolecules. This review focuses on self-assembly methods and aims to provide a guideline for constructing supramolecular architectures using a suitable approach.
Collapse
Affiliation(s)
- Junjuan Shi
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Ming Wang
- College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
11
|
Designing narcissistic self-sorting terpyridine moieties with high coordination selectivity for complex metallo-supramolecules. Commun Chem 2021; 4:136. [PMID: 36697787 PMCID: PMC9814872 DOI: 10.1038/s42004-021-00577-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 01/28/2023] Open
Abstract
Coordination-driven self-assembly is a powerful approach for the construction of metallosupramolecules, but designing coordination moieties that can drive the self-assembly with high selectivity and specificity remains a challenge. Here we report two ortho-modified terpyridine ligands that form head-to-tail coordination complexes with Zn(II). Both complexes show narcissistic self-sorting behaviour. In addition, starting from these ligands, we obtain two sterically congested multitopic ligands and use them to construct more complex metallo-supramolecules hexagons. Because of the non-coaxial structural restrictions in the rotation of terpyridine moieties, these hexagonal macrocycles can hierarchically self-assemble into giant cyclic nanostructures via edge-to-edge stacking, rather than face-to-face stacking. Our design of dissymmetrical coordination moieties from congested coordination pairs show remarkable self-assembly selectivity and specificity.
Collapse
|
12
|
Wu T, Jiang Z, Bai Q, Li Y, Mao S, Yu H, Wojtas L, Tang Z, Chen M, Zhang Z, Xie TZ, Wang M, Li X, Wang P. Supramolecular triangular orthobicupola: Self-assembly of a giant Johnson solid J27. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Liu CL, Bobylev EO, Fu Y, Poole DA, Robeyns K, Fustin CA, Garcia Y, Reek JNH, Singleton ML. Balancing Ligand Flexibility versus Rigidity for the Stepwise Self-Assembly of M 12 L 24 via M 6 L 12 Metal-Organic Cages. Chemistry 2020; 26:11960-11965. [PMID: 32378754 DOI: 10.1002/chem.202001399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 11/11/2022]
Abstract
Non-covalent interactions are important for directing protein folding across multiple intermediates and can even provide access to multiple stable structures with different properties and functions. Herein, we describe an approach for mimicking this behavior in the self-assembly of metal-organic cages. Two ligands, the bend angles of which are controlled by non-covalent interactions and one ligand lacking the above-mentioned interactions, were synthesized and used for self-assembly with Pd2+ . As these weak interactions are easily broken, the bend angles have a controlled flexibility giving access to M2 (L1)4 , M6 (L2)12 , and M12 (L2)24 cages. By controlling the self-assembly conditions this process can be directed in a stepwise fashion. Additionally, the multiple endohedral hydrogen-bonding sites on the ligand were found to play a role in the binding and discrimination of neutral guests.
Collapse
Affiliation(s)
- Cui-Lian Liu
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| | - Eduard O Bobylev
- Van''t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Yang Fu
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| | - David A Poole
- Van''t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| | - Charles-André Fustin
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| | - Joost N H Reek
- Van''t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Michael L Singleton
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| |
Collapse
|
14
|
Wang J, Zhao H, Chen M, Jiang Z, Wang F, Liu D, Jiang Z, Xie TZ, Zhang Z, Wang P. A parallelogram metallomacrocycle bearing self-catenation and its derivative supramolecular isomerism. Chem Commun (Camb) 2020; 56:8444-8447. [PMID: 32583836 DOI: 10.1039/d0cc02877k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Macrocycle-based architectures are of importance in synthetic chemistry. Here, a novel parallelogram metallomacrocycle Fe2(LA)2 with reversible structural transformation was designed and synthesized. The template-free metalla[2]catenane [Fe2(LA)2]2 could be obtained by changing the concentration and has been monitored on the basis of NMR analysis. By redesigning the metallo-ligand, a catenane-like intersected parallelogram assembly with two shape-persistent supramolecular isomers was achieved. This work develops the field of terpyridine-based macrocycle system research and is valuable for obtaining other types of supramolecular isomerism.
Collapse
Affiliation(s)
- Jun Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - He Zhao
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Feng Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China. and Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Wang G, Chen M, Wang J, Jiang Z, Liu D, Lou D, Zhao H, Li K, Li S, Wu T, Jiang Z, Sun X, Wang P. Reinforced Topological Nanoassemblies: 2D Hexagon-Fused Wheel to 3D Prismatic Metallo-Lamellar Structure with Molecular Weight of 119 K Daltons. J Am Chem Soc 2020; 142:7690-7698. [PMID: 32208693 DOI: 10.1021/jacs.0c00754] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
By a precise metallo-ligand design, the advanced coordination-driven self-assembly could succeed in the preparation of giant molecular weight of the metallo-architectures. However, the synthesis of a single discrete high-molecular-weight (>100 K Da) structure has not been demonstrated due to the insurmountable synthetic challenge. Herein, we present a two-dimensional wheel structure (W1) and a gigantic three-dimensional dodecagonal prism-like architecture (P1), which were generated by multicomponent self-assembly of two similar metallo-organic ligands and a core ligand with metal ions, respectively. The giant 2D-suprastructure W1 with six hexagonal metallacycles that fused to the central spoke wheel was first achieved in nearly quantitative yield, and then, directed by introducing a meta-substituted coordination site into the key ligand, the supercharged (36 Ru2+ and 48 Cd2+ ions) double-decker prismatic structure P1 with two wheel structure W1s serve as the surfaces and 12 <Tpy-Cd2+-Tpy> connectivities serve as the edges, where a molecular weight up to 119 498.18 Da was accomplished. The expected molecular composition and size morphology was unequivocally characterized by nuclear magnetic resonance, mass spectrometry, and transmission electron microscopy investigations. The introduction of a wheel structure is able to add considerable stability and complexity to the final architecture. These well-defined scaffolds are expected to play an important role in the functional materials field, such as molecular encapsulation and medicine sustained release.
Collapse
Affiliation(s)
- Guotao Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Jun Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Dongyang Lou
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - He Zhao
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Kaixiu Li
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Suqing Li
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Xiaoyi Sun
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
16
|
Wang L, Song B, Khalife S, Li Y, Ming LJ, Bai S, Xu Y, Yu H, Wang M, Wang H, Li X. Introducing Seven Transition Metal Ions into Terpyridine-Based Supramolecules: Self-Assembly and Dynamic Ligand Exchange Study. J Am Chem Soc 2020; 142:1811-1821. [PMID: 31910337 PMCID: PMC7375339 DOI: 10.1021/jacs.9b09497] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In coordination-driven self-assembly, 2,2':6',2″-terpyridine (tpy) has gained extensive attention in constructing supramolecular architectures on the basis of ⟨tpy-M-tpy⟩ connectivity. In direct self-assembly of large discrete structures, however, the metal ions were mainly limited to Cd(II), Zn(II), and Fe(II) ions. Herein, we significantly broaden the spectrum of metal ions with seven divalent transition metal ions M(II) (M = Mn, Fe, Co, Ni, Cu, Zn, Cd) to assemble a series of supramolecular fractals. In particular, Mn(II), Co(II), Ni(II), and Cu(II) were reported for the first time to form such large and discrete structures with ⟨tpy-M-tpy⟩ connectivity. In addition, the structural stabilities of those supramolecules in the gas phase and the kinetics of the ligand exchange process in solution were investigated using mass spectrometry. Such a fundamental study gave the relative order of structural stability in the gas phase and revealed the inertness of coordination in solution depending on the metal ions. Those results would guide the future study in tpy-based supramolecular chemistry in terms of self-assembly, characterization, property, and application.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Bo Song
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Sandra Khalife
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Yiming Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Li-June Ming
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Shi Bai
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Yaping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Heng Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
- College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen , Guangdong 518055 , China
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
17
|
Yin S, Wang X, Jiang J, Xiao H, Li X. Synthesis of terpyridine-containing Pd(II) complexes and evaluation of their catalytic activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Zhao FJ, Wang H, Li K, Wang XD, Zhang N, Zhu X, Zhang W, Wang M, Hao XQ, Song MP, Li X. Ditopic Chiral Pineno-Fused 2,2':6',2″-Terpyridine: Synthesis, Self-Assembly, and Optical Properties. Inorg Chem 2019; 58:15039-15044. [PMID: 31682430 DOI: 10.1021/acs.inorgchem.9b02657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The syntheses of 4'-substituted chiral 2,2':6',2″-terpyridine (tpy) ligands with predetermined configurations and directionalities are rather limited in the supramolecular chemistry field. In this study, a carbazole-linked ditopic chiral ligand L was synthesized using 4'-bromo-substituted pineno-fused tpy 5 as the precursor. Upon complexation with Cd(NO3)2·4H2O and Zn(NO3)2·6H2O, two enantiomerically pure metallosupramolecules, [Cd3L3] and [Zn4L4], have been self-assembled and characterized by NMR, electrospray ionization-mass spectrometry, traveling wave ion mobility-mass spectrometry, and DOSY analysis. In addition, their optical properties are characterized by UV-vis, fluorescence, circular dichroism, and circularly polarized luminescence, suggesting an efficiency transmission and amplification of chirality from the ligand to metal center via self-assembly.
Collapse
Affiliation(s)
- Fu-Jie Zhao
- College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Heng Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , P. R. China
| | - Xiao-Die Wang
- College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Ning Zhang
- College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Xinju Zhu
- College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Wenjing Zhang
- College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , P. R. China
| | - Xin-Qi Hao
- College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Mao-Ping Song
- College of Chemistry , Zhengzhou University , Zhengzhou , Henan 450001 , P. R. China
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
19
|
Chen M, Liu D, Huang J, Li Y, Wang M, Li K, Wang J, Jiang Z, Li X, Wang P. Trefoiled Propeller-Shaped Spiral Terpyridyl Metal-Organic Architectures. Inorg Chem 2019; 58:11146-11154. [PMID: 31361129 DOI: 10.1021/acs.inorgchem.9b01701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Constructing exquisite and intricate molecular architectures is always the pursuit of chemists. In this report, the propeller-shaped trefoil structures S1 and S2 were successfully prepared by the stepwise self-assembly of predesigned tripodal metal-organic ligands, which consist of bis(terpyridine)s-Ru2+-tris(terpyridine)s connectivities for the following complexation with Fe2+. The complexes can be described as racemic spiral assemblies with three-fold spiralism. These unique discrete metal-organic architectures were fully characterized by 1H NMR, 2D NMR spectroscopy (COSY and NOESY), diffusion-ordered NMR spectroscopy (DOSY), ESI-MS, TWIM-MS, and TEM, and their photophysical and electrochemical properties were also investigated. Further, hybrid trefoiled structure [Fe3L1L2] was detected by taking advantage of the flexibility of metal-organic ligands.
Collapse
Affiliation(s)
- Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education , Guangzhou University , Guangzhou , 510006 , China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education , Guangzhou University , Guangzhou , 510006 , China
| | - Jian Huang
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan , 410083 , China
| | - Yiming Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33640 , United States
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin , 130012 , China
| | - Kaixiu Li
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan , 410083 , China
| | - Jun Wang
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan , 410083 , China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education , Guangzhou University , Guangzhou , 510006 , China
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33640 , United States
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education , Guangzhou University , Guangzhou , 510006 , China.,College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan , 410083 , China
| |
Collapse
|
20
|
Alvariño C, Heinrich B, Donnio B, Deschenaux R, Therrien B. Supramolecular Arene-Ruthenium Metallacycle with Thermotropic Liquid-Crystalline Properties. Inorg Chem 2019; 58:9505-9512. [PMID: 31247839 DOI: 10.1021/acs.inorgchem.9b01532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionalization of 1,4-di(4-pyridinyl)benzene with poly(arylester) dendrimers bearing cyanobiphenyl end-groups gives a bidentate dendromesogenic ligand (L) that exhibits thermotropic liquid-crystalline properties. Combination of the diruthenium complex [Ru2(p-cymene)2(donq)][DDS]2 (M) with L, by coordination-driven self-assembly, affords the discrete and well-defined metallacycle M2L2. Like L, this supramolecular dendritic system displays mesomorphic properties above 50 °C. Both compounds L and M2L2 show smectic phases, characterized by a multilayered organization of the multiple components.
Collapse
Affiliation(s)
- Cristina Alvariño
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 , CNRS-Université de Strasbourg , 23 rue du Loess, BP43 , Strasbourg cedex 2 67034 , France
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 , CNRS-Université de Strasbourg , 23 rue du Loess, BP43 , Strasbourg cedex 2 67034 , France
| | - Robert Deschenaux
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| | - Bruno Therrien
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| |
Collapse
|
21
|
Wang J, Xue X, Chen M, Wu T, Wang SC, Zhao H, Jiang Z, Yan J, Jiang Z, Chan YT, Wang P. Geometrically Complementary Self-Assembly of a Hexarhomboid Architecture from Two Ruthenium(II)-Organic Building Blocks. Inorg Chem 2019; 58:7662-7666. [PMID: 31150212 DOI: 10.1021/acs.inorgchem.9b00867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A shape-persistent metallosupramolecular multirhomboid that inlays a hexarhomboid polygon in a three-lobed flat structure was prepared by means of coordination-driven self-assembly. The key ligands were synthesized by a "reaction on complex" strategy that becomes accessible to troublesome metalloorganic ligand L3. The formation here consists of four different starting components and two metal ions. Complementarity of the shape and size drives molecular puzzling and results in the multicomponent, quantitative self-assembled construct.
Collapse
Affiliation(s)
- Jun Wang
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University (CSU) , Changsha , Hunan 410083 , China
| | - Xiaobo Xue
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University (CSU) , Changsha , Hunan 410083 , China
| | - Mingzhao Chen
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University (CSU) , Changsha , Hunan 410083 , China
| | - Tun Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area , Guangzhou University , Guangzhou 510006 , China
| | - Shi-Cheng Wang
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - He Zhao
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University (CSU) , Changsha , Hunan 410083 , China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University (CSU) , Changsha , Hunan 410083 , China
| | - Jun Yan
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University (CSU) , Changsha , Hunan 410083 , China
| | - Zhilong Jiang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area , Guangzhou University , Guangzhou 510006 , China
| | - Yi-Tsu Chan
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University (CSU) , Changsha , Hunan 410083 , China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay Area , Guangzhou University , Guangzhou 510006 , China
| |
Collapse
|
22
|
Wei C, He Y, Shi X, Song Z. Terpyridine-metal complexes: Applications in catalysis and supramolecular chemistry. Coord Chem Rev 2019; 385:1-19. [PMID: 30962650 PMCID: PMC6450557 DOI: 10.1016/j.ccr.2019.01.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As an NNN-tridentate ligand, the 2,2':6',2"-terpyridine plays an important role in coordination chemistry. With three coordination sites and low LUMO, terpyridine and its derivatives are one of the typical Pincer ligand and/or non-innocent ligands in transition metal catalysis. Interesting catalytic reactivities have been obtained with these tpy-metal complexes targeting some challenging transformations, such as C-C bond formation and hydrofunctionalization. On the other hand, terpyridine ligands can form "closed-shell" octahedral complexes, which provide a linear and stable linkage in supramolecular chemistry. Numerous supramolecular architectures have been achieved using modified terpyridine ligands including Sierpiński triangles, hexagonal gasket and supramolecular rosettes. This review presents a summary of recent progress regarding transition metal-terpyridine complexes with the focus on their applications in catalysis and supramolecular structure construction. Facile synthesis of terpyridine derivatives is also described. We hope this article can serve to provide some general perspectives of the terpyridine ligand and their applications in coordination chemistry.
Collapse
Affiliation(s)
- Chiyu Wei
- Department of Chemistry, University of South Florida, Tampa, 33620 FL, USA
| | - Ying He
- Department of Chemistry, University of South Florida, Tampa, 33620 FL, USA
| | - Xiaodong Shi
- Department of Chemistry, Jilin University, Changchun, Jilin 130021, China
- Department of Chemistry, University of South Florida, Tampa, 33620 FL, USA
| | - Zhiguang Song
- Department of Chemistry, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
23
|
Structural controlled pure metallo-triangular assembly through bisterpyridinyl Dibenzo[b,d]thiophene, Dibenzo[b,d]furan and Dibenzo[b,d]carbazole. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Li H, Wang R, Hong Y, Liang Z, Shen Y, Nishiyama Y, Miyoshi T, Liu T. Tuning the Intercage Distance in Charge‐Regulated Blackberry‐Type Assemblies through Host–Guest Chemistry. Chemistry 2019; 25:5803-5808. [DOI: 10.1002/chem.201900800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Hui Li
- Department of Polymer Science The University of Akron Akron OH 44325-3909 USA
| | - Ruifu Wang
- Department of Polymer Science The University of Akron Akron OH 44325-3909 USA
| | - You‐lee Hong
- RIKEN CLST-JEOL Collaboration Center Yokohama Kanagawa 230-0045 Japan
| | - Zihao Liang
- Department of Polymer Science The University of Akron Akron OH 44325-3909 USA
| | - Yidan Shen
- Department of Polymer Science The University of Akron Akron OH 44325-3909 USA
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center Yokohama Kanagawa 230-0045 Japan
- JEOL RESONANCE Inc. Tokyo 196-8558 Japan
| | - Toshikazu Miyoshi
- Department of Polymer Science The University of Akron Akron OH 44325-3909 USA
| | - Tianbo Liu
- Department of Polymer Science The University of Akron Akron OH 44325-3909 USA
| |
Collapse
|
25
|
Electronic Peculiarities of a Self-Assembled M 12L 24 Nanoball (M = Pd +2, Cr, or Mo). MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24040771. [PMID: 30795515 PMCID: PMC6412375 DOI: 10.3390/molecules24040771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 11/16/2022]
Abstract
We use molecular mechanics and DFT calculations to analyze the particular electronic behavior of a giant nanoball. This nanoball is a self-assembled M12L24 nanoball; with M equal to Pd+2; Cr; and Mo. These systems present an extraordinarily large cavity; similar to biological giant hollow structures. Consequently, it is possible to use these nanoballs to trap smaller species that may also become activated. Molecular orbitals, molecular hardness, and Molecular Electrostatic Potential enable us to define their potential chemical properties. Their hardness conveys that the Mo system is less reactive than the Cr system. Eigenvalues indicate that electron transfer from the system with Cr to other molecules is more favorable than from the system with Mo. Molecular Electrostatic Potential can be either positive or negative. This means that good electron donor molecules have a high possibility of reacting with positive regions of the nanoball. Each of these nanoballs can trap 12 molecules, such as CO. The nanoball that we are studying has large pores and presents electronic properties that make it an apposite target of study.
Collapse
|
26
|
Chang X, Zhou Z, Shang C, Wang G, Wang Z, Qi Y, Li ZY, Wang H, Cao L, Li X, Fang Y, Stang PJ. Coordination-Driven Self-Assembled Metallacycles Incorporating Pyrene: Fluorescence Mutability, Tunability, and Aromatic Amine Sensing. J Am Chem Soc 2019; 141:1757-1765. [PMID: 30608681 DOI: 10.1021/jacs.8b12749] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Constructing polycyclic aromatics-based, highly emissive fluorophores with good solubility and tunable aggregated structures and properties is of great importance for film fabrication, solution processing, and relevant functionality studies. Herein, we describe a general strategy to endow conventional organic fluorophores with enhanced solubility and modulated fluorescent properties via their incorporation into coordination-driven self-assembled metallacycles. A widely used fluorophore, pyrene, was decorated with two pyridyl groups to yield functionalized pyrene 4. Mixing 4 with three aromatic dicarboxylates with different lengths and a 90° Pt(II) metal acceptor in a 2:2:4 stoichiometric ratio resulted in the formation of three metallacycles, 1, 2, and 3. The metallacycles display good solubility in polar organic solvents, highly aggregation-dependent fluorescence, and size-dependent emissions at higher concentrations. Moreover, metallacycle 2-based, silica-gel-supported film as fabricated not only is more emissive than the ligand 4-based one but also displays much improved sensing properties for amines in the vapor state, as demonstrated by significantly increased response speed and decreased recovery time. The enhanced solubility, unique fluorescence behavior, and multi-factor modulation character show that coordination-driven self-assembly can be utilized for the development of new fluorophores through simple modification of conventional fluorophores. The fluorophores synthesized this way possess not only complex topological structures but also good modularity and tunability in fluorescence behavior, which are important for grafting multi-stage energy-transfer systems necessary for the development of high-performance sensing materials.
Collapse
Affiliation(s)
- Xingmao Chang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China.,Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Zhixuan Zhou
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Congdi Shang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Yanyu Qi
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Zhong-Yu Li
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Heng Wang
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States
| | - Liping Cao
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
27
|
Zhang Z, Wang H, Shi J, Xu Y, Wang L, Shihadeh S, Zhao FJ, Hao XQ, Wang P, Liu C, Wang M, Li X. Stepwise Self-Assembly and Dynamic Exchange of Supramolecular Nanocages Based on Terpridine Building Blocks. Macromol Rapid Commun 2018; 39:e1800404. [PMID: 30062806 PMCID: PMC6345590 DOI: 10.1002/marc.201800404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/29/2018] [Indexed: 12/22/2022]
Abstract
Coordination-driven self-assembly as a powerful bottom-up approach has been extensively used to construct multifarious supramolecular architectures with increasing complexity and functionality. Due to the unique cavity structures and precisely controllable dimensions, 3D supramolecules display unprecedented properties and functions in catalysis, sensing, gas storage, and smart materials. Herein, we have built two 3D nanocages with different sizes by changing the length of the organic ligand arms. The structures were characterized by 1D and 2D NMR spectroscopy, electrospray ionization-mass spectrometry (ESI-MS), traveling wave ion mobility-mass spectrometry (TWIM-MS), gradient tandem-mass spectrometry (gMS2 ), and transmission electron microscopy (TEM). Furthermore, the intermolecular dynamic exchange of two 3D nanocages was conducted to construct a series of hybrid 3D structures as evidenced by mass spectrometry.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Environmental Research at Great Bay, Guangzhou University, Guangzhou, 510006, P. R. China
- Department of Chemistry, University of South Florida, Tampa, 33620, USA
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Heng Wang
- Department of Chemistry, University of South Florida, Tampa, 33620, USA
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yaping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lei Wang
- Department of Chemistry, University of South Florida, Tampa, 33620, USA
| | - Sammy Shihadeh
- Department of Chemistry, University of South Florida, Tampa, 33620, USA
| | - Fu-Jie Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Pingshan Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Environmental Research at Great Bay, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Changlin Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, 33620, USA
| |
Collapse
|
28
|
Wang L, Liu R, Gu J, Song B, Wang H, Jiang X, Zhang K, Han X, Hao XQ, Bai S, Wang M, Li X, Xu B, Li X. Self-Assembly of Supramolecular Fractals from Generation 1 to 5. J Am Chem Soc 2018; 140:14087-14096. [PMID: 30289702 PMCID: PMC6348470 DOI: 10.1021/jacs.8b05530] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the seeking of molecular expression of fractal geometry, chemists have endeavored in the construction of molecules and supramolecules during the past few years, while only a few examples were reported, especially for the discrete architectures. We herein designed and constructed five generations of supramolecular fractals (G1-G5) based on the coordination-driven self-assembly of terpyridine ligands. All the ligands were synthesized from triphenylamine motif, which played a central role in geometry control. Different approaches based on direct Sonogashira coupling and/or ⟨tpy-Ru(II)-tpy⟩ connectivity were employed to prepare complex Ru(II)-organic building blocks. Fractals G1-G5 were obtained in high yields by precise coordination of organic or Ru(II)-organic building blocks with Zn(II) ions. Characterization of those architectures were accomplished by 1D and 2D NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), traveling-wave ion mobility mass spectrometry (TWIM-MS), and transmission electron microscopy (TEM). Furthermore, the two largest fractals also hierarchically self-assemble into ordered supramolecular nanostructures either at solid/liquid interface or in solution on the basis of their well-defined scaffolds.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Ran Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics , Shandong Normal University , Jinan 250358 , China
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Jiali Gu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Bo Song
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Heng Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Keren Zhang
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Xin Han
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Shi Bai
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Xiaohong Li
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
29
|
Chen M, Wang J, Wang SC, Jiang Z, Liu D, Liu Q, Zhao H, Yan J, Chan YT, Wang P. Truncated Sierpiński Triangular Assembly from a Molecular Mortise-Tenon Joint. J Am Chem Soc 2018; 140:12168-12174. [PMID: 30153008 DOI: 10.1021/jacs.8b07248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The amalgamation of different components into a giant and intricate structure that makes quantitative and spontaneous assembly through molecular design is indispensable but challenging. To construct novel metallo-supramolecular architectures, here we present an architectural design principle based on multicomponent self-assembly. Using a carefully designed hexatopic terpyridine-based metallo-organic ligand (MOL), [Ru2T2K], we report on the formation of supramolecular trapezoid Zn5[Ru2T2K]V2, hollow hexagon Zn15[Ru2T2K]3K3, and giant star-shaped supramolecule Zn18[Ru2T2K]3[Ru2X2V]3, all of which were assembled by one-pot, nearly quantitative assembly of [Ru2T2K] with the ditopic 60°-directed bisterpyridine V, tetrakisterpyridine K, and MOL [Ru2X2V], respectively. The complementary ligands were selected on the basis of the size- and shape-fit principles, actually similar to the mortise-tenon joint that aligns and locks the two complementary wood components. This strategy is expected to open the door to sophisticated designer supramolecules and nonbiological materials. The multivalent connections within the mutual ligands give rise to the formation of stable assemblies, which are unambiguously characterized by NMR, ESI-MS, TWIM-MS, and TEM analyses.
Collapse
Affiliation(s)
- Mingzhao Chen
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P. R. China
| | - Jun Wang
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P. R. China
| | - Shi-Cheng Wang
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Zhilong Jiang
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P. R. China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Institute of Environmental Research at Greater Area , Guangzhou University , Guangzhou 510006 , P. R. China
| | - Die Liu
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P. R. China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Institute of Environmental Research at Greater Area , Guangzhou University , Guangzhou 510006 , P. R. China
| | - Qianqian Liu
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P. R. China
| | - He Zhao
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P. R. China
| | - Jun Yan
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P. R. China
| | - Yi-Tsu Chan
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P. R. China.,Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Institute of Environmental Research at Greater Area , Guangzhou University , Guangzhou 510006 , P. R. China
| |
Collapse
|
30
|
Lee YH, He L, Chan YT. Stimuli-Responsive Supramolecular Gels Constructed by Hierarchical Self-Assembly Based on Metal-Ligand Coordination and Host-Guest Recognition. Macromol Rapid Commun 2018; 39:e1800465. [DOI: 10.1002/marc.201800465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/02/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Yin-Hsuan Lee
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
| | - Lipeng He
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
| |
Collapse
|
31
|
Chakraborty S, Newkome GR. Terpyridine-based metallosupramolecular constructs: tailored monomers to precise 2D-motifs and 3D-metallocages. Chem Soc Rev 2018; 47:3991-4016. [DOI: 10.1039/c8cs00030a] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Comprehensive summary of the recent developments in the growing field of terpyridine-based, discrete metallosupramolecular architectures.
Collapse
Affiliation(s)
| | - George R. Newkome
- Department of Polymer Science
- University of Akron
- Akron
- USA
- Departments of Chemistry
| |
Collapse
|