1
|
Pandey V, Kundu S, Pyne A, Wang X. Live-cell imaging of single integrin tensions with minimal background fluorescence noise. Biophys J 2025; 124:1085-1094. [PMID: 39935179 PMCID: PMC11993927 DOI: 10.1016/j.bpj.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/11/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
One powerful method for studying cell mechanobiology is to monitor receptor-mediated forces at the single-molecule level in live cells. Hairpin DNA labeled with a quencher-dye pair has been used as a tension probe (TP) to image cellular forces in real time. The TP emits fluorescence when cellular forces unfold the DNA hairpin and de-quench the dye, thereby converting the force signal into fluorescence. However, when applied to monitor cellular forces at the single-molecule level, the TP often suffers from background fluorescent spots (BFSs) due to nonquenched dyes, which interfere with molecular force imaging and analysis. In this work, we identified that the BFSs are primarily caused by missing quenchers in some TP constructs and surface-adsorbed dye-labeled DNA strands. To address these issues, we developed a double-quencher TP (dqTP) and incorporated Tween-20 treatment during surface preparation. These two simple strategies reduced the BFS level by 10-fold, significantly improving the signal/background ratio for single molecular force imaging. We demonstrated the performance of dqTP by monitoring the temporal dynamics of integrin tensions in platelets and HeLa cells, showing that single integrin tensions remain stable for at least 100 s in wild-type HeLa cells. In contrast, with vinculin knocked out, a subpopulation of integrin tensions, especially at cell peripheral regions, exhibited molecular force fluctuations with an average force duration shorter than 10 s. Overall, this work provides a convenient and practical approach to significantly reduce BFS levels on TP surfaces, offering a nearly false-signal-free platform for monitoring single-molecule forces in live cells.
Collapse
Affiliation(s)
- Vivek Pandey
- Research Division in Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Subhankar Kundu
- Research Division in Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Arghajit Pyne
- Research Division in Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Xuefeng Wang
- Research Division in Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
2
|
Karna D, Watanabe S, Sharma G, Sharma A, Zheng Y, Kawamata I, Suzuki Y, Mao H. Logic-Gated Modulation of Cell Migration via Mesoscale Mechanical Uncaging Effects. ACS NANO 2025; 19:8058-8069. [PMID: 39980204 DOI: 10.1021/acsnano.4c16194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Mesoscopic objects ranging from molecular machinery to cells are prevalent in nature. Unlike atomic and nanoscopic objects that do not have pronounced mechanical properties due to their small sizes, mesoscale substances demonstrate their unique mechanical features that can interfere with cell functions, particularly those with a mechanical nature such as cell migrations. Here, we demonstrate mechanical caging/uncaging effects in a DNA origami nanospring system that precisely controls cancer cell migrations. By leveraging DNA as a programming language, our work demonstrates the creation of logic gates (Boolean AND and OR gates) responsive to various miRNA inputs, resulting in mechanical and structural changes in DNA origami nanosprings serving as processors, which uncage the arginyl-glycyl-aspartate (RGD) ligands to interact with integrins on the cell membrane surface. The mechanical uncaging effect inhibits the migration of cancer cells. The strategy can be readily harnessed for targeted drug delivery with minimal off-target effects. Our proof-of-concept mesoscale DNA origami self-assembly highlights the potential for exquisite multimodal control of mechanical functions of cells with future applications in synthetic biology and precision medicine.
Collapse
Affiliation(s)
- Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Shin Watanabe
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu 514-8507, Japan
| | - Grinsun Sharma
- School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Arpit Sharma
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Yaorong Zheng
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Ibuki Kawamata
- Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Suzuki
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu 514-8507, Japan
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
- School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
3
|
Singh N, Sharma A, Goel A, Kumar K, Solanki R, Bhatia D. DNA-based Precision Tools to Probe and Program Mechanobiology and Organ Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410440. [PMID: 39887556 DOI: 10.1002/smll.202410440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/09/2025] [Indexed: 02/01/2025]
Abstract
DNA nanotechnology represents an innovative discipline that combines nanotechnology with biotechnology. It exploits the distinctive characteristics of deoxyribonucleic acid (DNA) to create nanoscale structures and devices with remarkable accuracy and functionality. Researchers may create complex nanostructures with precision and specialized functions using DNA's innate stability, adaptability, and capacity to self-assemble through complementary base-pairing interactions. Integrating multiple disciplines, known as nanobiotechnology, allows the production of sophisticated nanodevices with a broad range of applications. These include precise drug delivery systems, extremely sensitive biosensors, and the construction of intricate tissue scaffolds for regenerative medicine. Moreover, combining DNA nanotechnology with mechanobiology provides a new understanding of how small-scale mechanical stresses and molecular interactions affect cellular activity and tissue development. DNA nanotechnology has the potential to revolutionize molecular diagnostics, tissue engineering, and organ regeneration. This could lead to enormous improvements in biomedicine. This review emphasizes the most recent developments in DNA nanotechnology, explicitly highlighting its significant influence on mechanobiology and its growing involvement in organ engineering. It provides an extensive overview of present trends, obstacles, and future prospects in this fast-progressing area.
Collapse
Affiliation(s)
- Nihal Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Ayushi Sharma
- College of Medicine, Taipei Medical University, Taipei City, 110, Taiwan
| | - Anjana Goel
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, 281406, India
| | - Krishan Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| |
Collapse
|
4
|
Singuru MMR, Tabrizi MA, Bhattacharyya P, Ali AA, You M. Force-Responsive Delivery of Anticancer Drugs via a DNA Mechanical Nanovehicle. NANO LETTERS 2025; 25:336-342. [PMID: 39719379 PMCID: PMC12046514 DOI: 10.1021/acs.nanolett.4c05076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Cellular mechanical dysregulation can lead to diseases and conditions like tumorigenesis. Drug delivery systems that recognize and respond to specific cellular mechanical characteristics are potentially useful for targeted therapy. We report here the creation of a DNA mechanical nanovehicle that is responsive to cell surface receptor-mediated tensile forces, which can then correspondingly deliver an anticancer drug in situ. These DNA mechanical nanovehicles can spontaneously anchor onto cell membranes and enable the real-time visualization of molecular tensions at intercellular junctions. Once a strong intercellular force was detected, a rapid drug release event was followed automatically. Force-triggered targeted cancer cell treatment was demonstrated both in vitro and in a cell mixture. Our results proved a novel cellular force-responsive platform that can be used for highly specific drug delivery, which may potentially lead to smart cancer therapy with enhanced efficacy and safety.
Collapse
Affiliation(s)
| | | | | | - Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Bhattacharyya P, Tian Q, You M. Method for Imaging and Quantifying Molecular Tensions at Cell-Cell Junctions Using DNA-Based Fluorescent Probes. Methods Mol Biol 2025; 2901:131-144. [PMID: 40175872 DOI: 10.1007/978-1-0716-4394-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Mechanical forces play crucial roles in regulating cellular communications. It has been challenging to measure intercellular forces due to the lack of proper tools. We have recently developed lipid-modified DNA probes that can anchor on the cell membranes and detect intercellular tensions through targeting particular cell surface receptors of interest. Herein, we describe the methods to synthesize, characterize, and apply these DNA-based fluorescent probes for imaging and quantifying intercellular forces.
Collapse
Affiliation(s)
| | - Qian Tian
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
6
|
Pal K. Unravelling molecular mechanobiology using DNA-based fluorogenic tension sensors. J Mater Chem B 2024; 13:37-53. [PMID: 39564891 DOI: 10.1039/d4tb01858c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Investigations of the biological system have revealed many principles that govern regular life processes. Recently, the analysis of tiny mechanical forces associated with many biological processes revealed their significance in understanding biological functions. Consequently, this piqued the interest of researchers, and a series of technologies have been developed to understand biomechanical cues at the molecular level. Notable techniques include single-molecule force spectroscopy, traction force microscopy, and molecular tension sensors. Well-defined double-stranded DNA structures could possess programmable mechanical characteristics, and hence, they have become one of the central molecules in molecular tension sensor technology. With the advancement of DNA technology, DNA or nucleic acid-based robust tension sensors offer the possibility of understanding mechanobiology in the bulk to single-molecule level range with desired spatiotemporal resolution. This review presents a comprehensive account of molecular tension sensors with a special emphasis on DNA-based fluorogenic tension sensors. Along with a detailed discussion on irreversible and reversible DNA-based tension sensors and their application in super-resolution microscopy, a discussion on biomolecules associated with cellular mechanotransduction and key findings in the field are included. This review ends with an elaborate discussion on the current challenges and future prospects of molecular tension sensors.
Collapse
Affiliation(s)
- Kaushik Pal
- Biophysical Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu, Tirupati, AP-517619, India.
| |
Collapse
|
7
|
Nishida K, Ishizuka M, Kobatake E, Mie M. Cholesterol- and ssDNA-binding fusion protein-mediated DNA tethering on the plasma membrane. Biomater Sci 2024; 13:299-309. [PMID: 39552531 DOI: 10.1039/d4bm01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
DNA modification of the plasma membrane is an excellent approach for controlling membrane-protein interactions, modulating cell-cell/cell-biomolecule interactions, and extending the biosensing field. The hydrophobic insertion of DNA conjugated with hydrophobic anchoring molecules is utilized for tethering DNA on the cell membrane. In this study, we developed an alternative approach to tether DNA on the plasma membrane based on ssDNA- and cholesterol-binding proteins. We designed a fusion protein (Rep-ALOD4) composed of domain 4 of anthrolysin O (ALOD4), which binds to cholesterol in the plasma membrane, and a replication initiator protein derived from porcine circovirus type 2 (Rep), which forms covalent bonds with single-stranded DNA (ssDNA) with a Rep recognition sequence. Rep-ALOD4 conjugates ssDNA to Rep and binds to the plasma membrane via cholesterol, thus tethering ssDNA to the cells. Quartz crystal microbalance measurements showed that membrane cholesterol binding of Rep-ALOD4 to the lipid bilayer containing cholesterol was accelerated above 20% (w/w) cholesterol in the lipid bilayer. Rep-ALOD4 was conjugated to fluorescein-labeled ssDNA (S-FITC-Rep-ALOD4) and used to treat human cervical tumor HeLa cells. The green signal assigned to S-FITC-Rep-ALOD4 was detected along HeLa cells, whereas diminished by cholesterol removal with methyl β-cyclodextrins. Moreover, ssDNA-conjugated Rep-ALOD4 tethered ssDNA-conjugated functional proteins on the HeLa cell plasma membrane via complementary base pairing. Collectively, Rep-ALOD4 has the potential as an ssDNA-tethering material via plasma membrane cholesterol to extend cell surface engineering.
Collapse
Affiliation(s)
- Kei Nishida
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| | - Minon Ishizuka
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| | - Masayasu Mie
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
8
|
Wang Z, Wang X, He Y, Wu H, Mao R, Wang H, Qiu L. Exploring Framework Nucleic Acids: A Perspective on Their Cellular Applications. JACS AU 2024; 4:4110-4128. [PMID: 39610738 PMCID: PMC11600171 DOI: 10.1021/jacsau.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/30/2024]
Abstract
Cells are fundamental units of life. The coordination of cellular functions and behaviors relies on a cascade of molecular networks. Technologies that enable exploration and manipulation of specific molecular events in living cells with high spatiotemporal precision would be critical for pathological study, disease diagnosis, and treatment. Framework nucleic acids (FNAs) represent a novel class of nucleic acid materials characterized by their monodisperse and rigid nanostructure. Leveraging their exceptional programmability, convenient modification property, and predictable atomic-level architecture, FNAs have attracted significant attention in diverse cellular applications such as cell recognition, imaging, manipulation, and therapeutic interventions. In this perspective, we will discuss the utilization of FNAs in living cell systems while critically assessing the opportunities and challenges presented in this burgeoning field.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Xin Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yao He
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wu
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Rui Mao
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Haiyuan Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
9
|
Wang XH, Wang M, Pan JB, Zhu JM, Cheng H, Dong HZ, Bi WJ, Yang SW, Chen YY, Xu F, Duan XJ. Fluorescent probe for imaging intercellular tension: molecular force approach. RSC Adv 2024; 14:22877-22881. [PMID: 39035717 PMCID: PMC11258865 DOI: 10.1039/d4ra02647k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Cellular mechanical force plays a crucial role in numerous biological processes, including wound healing, cell development, and metastasis. To enable imaging of intercellular tension, molecular tension probes were designed, which offer a simple and efficient method for preparing Au-DNA intercellular tension probes with universal applicability. The proposed approach utilizes gold nanoparticles linked to DNA hairpins, enabling sensitive visualization of cellular force in vitro. Specifically, the designed Au-DNA intercellular tension probe includes a molecular spring flanked by a fluorophore-quencher pair, which is anchored between cells. As intercellular forces open the hairpin, the fluorophore is de-quenched, allowing for visualization of cellular force. The effectiveness of this approach was demonstrated by imaging the cellular force in living cells using the designed Au-DNA intercellular tension probe.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Ming Wang
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Jin-Miao Zhu
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Hu Cheng
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Hua-Ze Dong
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Wen-Jie Bi
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Shi-Wei Yang
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Yuan-Yuan Chen
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Fan Xu
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Xiao-Jing Duan
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| |
Collapse
|
10
|
Tinker J, Anees P, Krishnan Y. Quantitative Chemical Imaging of Organelles. Acc Chem Res 2024; 57:1906-1917. [PMID: 38916405 DOI: 10.1021/acs.accounts.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
DNA nanodevices are nanoscale assemblies, formed from a collection of synthetic DNA strands, that may perform artificial functions. The pioneering developments of a DNA cube by Nadrian Seeman in 1991 and a DNA nanomachine by Turberfield and Yurke in 2000 spawned an entire generation of DNA nanodevices ranging from minimalist to rococo architectures. Since our first demonstration in 2009 that a DNA nanodevice can function autonomously inside a living cell, it became clear that this molecular scaffold was well-placed to probe living systems. Its water solubility, biocompatibility, and engineerability to yield molecularly identical assemblies predisposed it to probe and program biology.Since DNA is a modular scaffold, one can integrate independent or interdependent functionalities onto a single assembly. Work from our group has established a new class of organelle-targeted, DNA-based fluorescent reporters. These reporters comprise three to four oligonucleotides that each display a specific motif or module with a specific function. Given the 1:1 stoichiometry of Watson-Crick-Franklin base pairing, all modules are present in a fixed ratio in every DNA nanodevice. These modules include an ion-sensitive dye or a detection module and a normalizing dye for ratiometry that along with detection module forms a "measuring module". The third module is an organelle-targeting module that engages a cognate protein so that the whole assembly is trafficked to the lumen of a target organelle. Together, these modules allow us to measure free ion concentrations with accuracies that were previously unattainable, in subcellular locations that were previously inaccessible, and at single organelle resolution. By revealing that organelles exist in different chemical states, DNA nanodevices are providing new insights into organelle biology. Further, the ability to deliver molecules with cell-type and organelle level precision in animal models is leading to biomedical applications.This Account outlines the development of DNA nanodevices as fluorescent reporters for chemically mapping or modulating organelle function in real time in living systems. We discuss the technical challenges of measuring ions within endomembrane organelles and show how the unique properties of DNA nanodevices enable organelle targeting and chemical mapping. Starting from the pioneering finding that an autonomous DNA nanodevice could map endolysosomal pH in cells, we chart the development of strategies to target organelles beyond the endolysosomal pathway and expanding chemical maps to include all the major ions in physiology, reactive species, enzyme activity, and voltage. We present a series of vignettes highlighting the new biology unlocked with each development, from the discovery of chemical heterogeneity in lysosomes to identifying the first protein importer of Ca2+ into lysosomes. Finally, we discuss the broader applicability of targeting DNA nanodevices organelle-specifically beyond just reporting ions, namely using DNA nanodevices to modulate organelle state, and thereby cell state, with potential therapeutic applications.
Collapse
Affiliation(s)
- JoAnn Tinker
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Kim SH, Li ITS. Altering Cell Junctional Tension in Spheroids through E-Cadherin Engagement Modulation. ACS APPLIED BIO MATERIALS 2024; 7:3766-3776. [PMID: 38729097 DOI: 10.1021/acsabm.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Cadherin-mediated tension at adherens junctions (AJs) is fundamental for cell-cell adhesion and maintaining epithelial integrity. Despite the importance of manipulating AJs to dissect cell-cell interactions, existing three-dimensional (3D) multicellular models have not adequately addressed the precise manipulation of these junctions. To fill this gap, we introduce E-cadherin-modified tension gauge tethers (TGTs) at the junctions within spheroids. The system enables both quantification and modulation of junctional tension with specific DNA triggers. Using rupture-induced fluorescence, we successfully measure mechanical forces in 3D spheroids. Furthermore, mechanically strong TGTs can maintain normal E-cadherin-mediated adhesion. Employing toehold-mediated strand displacement allowed us to disrupt E-cadherin-specific cell-cell adhesion, consequently altering intracellular tension within the spheroids. Our methodology offers a robust and precise way to manipulate cell-cell adhesion and intracellular mechanics in spheroid models.
Collapse
Affiliation(s)
- Seong Ho Kim
- Department of Chemistry, The University of British Columbia, Kelowna, British Columbia V1 V 1 V7, Canada
| | - Isaac T S Li
- Department of Chemistry, The University of British Columbia, Kelowna, British Columbia V1 V 1 V7, Canada
| |
Collapse
|
12
|
Chen H, Wang S, Cao Y, Lei H. Molecular Force Sensors for Biological Application. Int J Mol Sci 2024; 25:6198. [PMID: 38892386 PMCID: PMC11173168 DOI: 10.3390/ijms25116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The mechanical forces exerted by cells on their surrounding microenvironment are known as cellular traction forces. These forces play crucial roles in various biological processes, such as tissue development, wound healing and cell functions. However, it is hard for traditional techniques to measure cellular traction forces accurately because their magnitude (from pN to nN) and the length scales over which they occur (from nm to μm) are extremely small. In order to fully understand mechanotransduction, highly sensitive tools for measuring cellular forces are needed. Current powerful techniques for measuring traction forces include traction force microscopy (TFM) and fluorescent molecular force sensors (FMFS). In this review, we elucidate the force imaging principles of TFM and FMFS. Then we highlight the application of FMFS in a variety of biological processes and offer our perspectives and insights into the potential applications of FMFS.
Collapse
Affiliation(s)
- Huiyan Chen
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Shouhan Wang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou 310027, China
- Institute for Advanced Study in Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Huang Y, Chen T, Chen X, Chen X, Zhang J, Liu S, Lu M, Chen C, Ding X, Yang C, Huang R, Song Y. Decoding Biomechanical Cues Based on DNA Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310330. [PMID: 38185740 DOI: 10.1002/smll.202310330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Biological systems perceive and respond to mechanical forces, generating mechanical cues to regulate life processes. Analyzing biomechanical forces has profound significance for understanding biological functions. Therefore, a series of molecular mechanical techniques have been developed, mainly including single-molecule force spectroscopy, traction force microscopy, and molecular tension sensor systems, which provide indispensable tools for advancing the field of mechanobiology. DNA molecules with a programmable structure and well-defined mechanical characteristics have attached much attention to molecular tension sensors as sensing elements, and are designed for the study of biomechanical forces to present biomechanical information with high sensitivity and resolution. In this work, a comprehensive overview of molecular mechanical technology is presented, with a particular focus on molecular tension sensor systems, specifically those based on DNA. Finally, the future development and challenges of DNA-based molecular tension sensor systems are looked upon.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ting Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaodie Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ximing Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Menghao Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chong Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiangyu Ding
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruiyun Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
14
|
Zhao B, Kamanzi A, Zhang Y, Chan KYT, Robertson M, Leslie S, Cullis PR. Determination of the interior pH of lipid nanoparticles using a pH-sensitive fluorescent dye-based DNA probe. Biosens Bioelectron 2024; 251:116065. [PMID: 38330772 DOI: 10.1016/j.bios.2024.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Lipid nanoparticles (LNPs) containing ionizable cationic lipids are proven delivery systems for therapeutic nucleic acids, such as small interfering RNA (siRNA). It is important to understand the relationship between the interior pH of LNPs and the pH of the external environment to understand LNP formulation and function. Here, we developed a simple and rapid approach for determining the pH of the LNP core using a pH-sensitive fluorescent dye-based DNA probe. LNP siRNA systems containing pH-responsive DNA probes (LNP-siRNA&DNA) were generated by rapid mixing of lipids in ethanol and pH 4 aqueous buffer containing siRNA and DNA probes. We demonstrated that DNA probes were readily encapsulated in LNP systems and were sequestered into an environment at a high concentration as evidenced by an inter-probe FRET signal. It was shown that the pH of LNP encapsulated probes closely follows the pH increase or decrease of the external environment. This indicates that the clinically approved LNP RNA systems with similar lipid compositions (e.g., Onpattro and Comirnaty) are highly permeable to protons and that the pH of the interior environment closely mirrors the external environment. The pH-dependent response of the probe in LNPs was also confirmed under buffer conditions at various pHs. Furthermore, we showed that the pH-sensitive DNA probe can be incorporated into LNP systems at levels that allow the pH response to be monitored at a single LNP level using convex lens-induced confinement (CLiC) confocal microscopy. Direct visualization of the internal pH of single particles with the fluorescent DNA probe was achieved by CLiC for LNP-siRNA&DNA systems formulated under both high and normal ionic strength conditions.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Albert Kamanzi
- Michael Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Yao Zhang
- Michael Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Karen Y T Chan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Madelaine Robertson
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Sabrina Leslie
- Michael Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
15
|
Wang Y, Xiong Y, Shi K, Effah CY, Song L, He L, Liu J. DNA nanostructures for exploring cell-cell communication. Chem Soc Rev 2024; 53:4020-4044. [PMID: 38444346 DOI: 10.1039/d3cs00944k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The process of coordinating between the same or multiple types of cells to jointly execute various instructions in a controlled and carefully regulated environment is a very appealing field. In order to provide clearer insight into the role of cell-cell interactions and the cellular communication of this process in their local communities, several interdisciplinary approaches have been employed to enhance the core understanding of this phenomenon. DNA nanostructures have emerged in recent years as one of the most promising tools in exploring cell-cell communication and interactions due to their programmability and addressability. Herein, this review is dedicated to offering a new perspective on using DNA nanostructures to explore the progress of cell-cell communication. After briefly outlining the anchoring strategy of DNA nanostructures on cell membranes and the subsequent dynamic regulation of DNA nanostructures, this paper highlights the significant contribution of DNA nanostructures in monitoring cell-cell communication and regulating its interactions. Finally, we provide a quick overview of the current challenges and potential directions for the application of DNA nanostructures in cellular communication and interactions.
Collapse
Affiliation(s)
- Ya Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Yamin Xiong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kangqi Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Clement Yaw Effah
- The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450003, China
| | - Lulu Song
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| |
Collapse
|
16
|
Ali AA, Tabrizi MA, You M. Forced rewiring of RTK signaling. Nat Chem Biol 2024:10.1038/s41589-024-01604-6. [PMID: 38637612 DOI: 10.1038/s41589-024-01604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Affiliation(s)
- Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA.
| |
Collapse
|
17
|
Wu S, Tang W, Wang Z, Tang Z, Zheng P, Chen Z, Zhu JJ. High Dynamic Range Probing of Single-Molecule Mechanical Force Transitions at Cell-Matrix Adhesion Bonds by a Plasmonic Tension Nanosensor. JACS AU 2024; 4:1155-1165. [PMID: 38559721 PMCID: PMC10976601 DOI: 10.1021/jacsau.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 04/04/2024]
Abstract
Mechanical signals in animal tissues are complex and rapidly changed, and how the force transduction emerges from the single-cell adhesion bonds remains unclear. DNA-based molecular tension sensors (MTS), albeit successful in cellular force probing, were restricted by their detection range and temporal resolution. Here, we introduced a plasmonic tension nanosensor (PTNS) to make straight progress toward these shortcomings. Contrary to the fluorescence-based MTS that only has specific force response thresholds, PTNS enabled the continuous and reversible force measurement from 1.1 to 48 pN with millisecond temporal resolution. We used the PTNS to visualize the high dynamic range single-molecule force transitions at cell-matrix adhesions during adhesion formation and migration. Time-resolved force traces revealed that the lifetime and duration of stepwise force transitions of molecular clutches are strongly modulated by the traction force through filamentous actin. The force probing technique is sensitive, fast, and robust and constitutes a potential tool for single-molecule and single-cell biophysics.
Collapse
Affiliation(s)
| | | | - Ziyi Wang
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhuodong Tang
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Peng Zheng
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
18
|
Yang S, Wang M, Tian D, Zhang X, Cui K, Lü S, Wang HH, Long M, Nie Z. DNA-functionalized artificial mechanoreceptor for de novo force-responsive signaling. Nat Chem Biol 2024:10.1038/s41589-024-01572-x. [PMID: 38448735 DOI: 10.1038/s41589-024-01572-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Synthetic signaling receptors enable programmable cellular responses coupling with customized inputs. However, engineering a designer force-sensing receptor to rewire mechanotransduction remains largely unexplored. Herein, we introduce nongenetically engineered artificial mechanoreceptors (AMRs) capable of reprogramming non-mechanoresponsive receptor tyrosine kinases (RTKs) to sense user-defined force cues, enabling de novo-designed mechanotransduction. AMR is a modular DNA-protein chimera comprising a mechanosensing-and-transmitting DNA nanodevice grafted on natural RTKs via aptameric anchors. AMR senses intercellular tensile force via an allosteric DNA mechano-switch with tunable piconewton-sensitive force tolerance, actuating a force-triggered dynamic DNA assembly to manipulate RTK dimerization and activate intracellular signaling. By swapping the force-reception ligands, we demonstrate the AMR-mediated activation of c-Met, a representative RTK, in response to the cellular tensile forces mediated by cell-adhesion proteins (integrin, E-cadherin) or membrane protein endocytosis (CI-M6PR). Moreover, AMR also allows the reprogramming of FGFR1, another RTK, to customize mechanobiological function, for example, adhesion-mediated neural stem cell maintenance.
Collapse
Affiliation(s)
- Sihui Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China
| | - Miao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China
| | - Dawei Tian
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiqing Cui
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China.
| |
Collapse
|
19
|
Qian R, Wu M, Yang Z, Wu Y, Guo W, Zhou Z, Wang X, Li D, Lu Y. Rectifying artificial nanochannels with multiple interconvertible permeability states. Nat Commun 2024; 15:2051. [PMID: 38448408 PMCID: PMC10918189 DOI: 10.1038/s41467-024-46312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Transmembrane channels play a vital role in regulating the permeation process, and have inspired recent development of biomimetic channels. Herein, we report a class of artificial biomimetic nanochannels based on DNAzyme-functionalized glass nanopipettes to realize delicate control of channel permeability, whereby the surface wettability and charge can be tuned by metal ions and DNAzyme-substrates, allowing reversible conversion between different permeability states. We demonstrate that the nanochannels can be reversibly switched between four different permeability states showing distinct permeability to various functional molecules. By embedding the artificial nanochannels into the plasma membrane of single living cells, we achieve selective transport of dye molecules across the cell membrane. Finally, we report on the advanced functions including gene silencing of miR-21 in single cancer cells and selective transport of Ca2+ into single PC-12 cells. In this work, we provide a versatile tool for the design of rectifying artificial nanochannels with on-demand functions.
Collapse
Affiliation(s)
- Ruocan Qian
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Mansha Wu
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Weijie Guo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Zerui Zhou
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiaoyuan Wang
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Dawei Li
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
20
|
Hang X, Huang Z, He S, Wang Z, Dong Z, Chang L. A Nano-Electroporation-DNA Tensioner Platform Enhances Intracellular Delivery and Mechanical Analysis Toward Rapid Drug Assessment. SMALL METHODS 2024; 8:e2300915. [PMID: 37994267 DOI: 10.1002/smtd.202300915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/12/2023] [Indexed: 11/24/2023]
Abstract
In vitro, drug assessment holds tremendous potential to success in novel drug development and precision medicine. Traditional techniques for drug assessment, however, face remarkable challenges to achieve high speed, as limited by incubation-based drug delivery (>several hours) and cell viability measurements (>1 d), which significantly compromise the efficacy in clinical trials. In this work, a nano-electroporation-DNA tensioner platform is reported that shortens the time of drug delivery to less than 3 s, and that of cellular mechanical force analysis to 30 min. The platform adopts a nanochannel structure to localize a safe electric field for cell perforation, while enhancing delivery speed by 103 times for intracellular delivery, as compared to molecular diffusion in coculture methods. The platform is further equipped with a DNA tensioner to detect cellular mechanical force for quantifying cell viability after drug treatment. Systematic head-to-head comparison, by analyzing FDA (food and drug administration)-approved drugs (paclitaxel, doxorubicin), demonstrated the platform with high speed, efficiency, and safety, showing a simple yet powerful tool for clinical drug screening and development.
Collapse
Affiliation(s)
- Xinxin Hang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhaocun Huang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Shiqi He
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhiying Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zaizai Dong
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
21
|
He S, Mierke CT, Sun Y, Eyckmans J, Guo M. Editorial: Mechanobiology of organoid systems. Front Cell Dev Biol 2024; 12:1369713. [PMID: 38352858 PMCID: PMC10861786 DOI: 10.3389/fcell.2024.1369713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- Shijie He
- Clinical and Translational Epidemiology Unit, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
| | - Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Jeroen Eyckmans
- Kilachand Center for Life Sciences and Engineering, Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
22
|
Tabrizi MA, Bhattacharyya P, Zheng R, You M. Electrochemical DNA-based sensors for measuring cell-generated forces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569814. [PMID: 38106148 PMCID: PMC10723317 DOI: 10.1101/2023.12.03.569814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mechanical forces play an important role in cellular communication and signaling. We developed in this study novel electrochemical DNA-based force sensors for measuring cell-generated adhesion forces. Two types of DNA probes, i.e., tension gauge tether and DNA hairpin, were constructed on the surface of a smartphone-based electrochemical device to detect piconewton-scale cellular forces at tunable levels. Upon experiencing cellular tension, the unfolding of DNA probes induces the separation of redox reporters from the surface of the electrode, which results in detectable electrochemical signals. Using integrin-mediated cell adhesion as an example, our results indicated that these electrochemical sensors can be used for highly sensitive, robust, simple, and portable measurement of cell-generated forces.
Collapse
Affiliation(s)
| | | | - Ru Zheng
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
23
|
Almeida‐Pinto J, Lagarto MR, Lavrador P, Mano JF, Gaspar VM. Cell Surface Engineering Tools for Programming Living Assemblies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304040. [PMID: 37823678 PMCID: PMC10700290 DOI: 10.1002/advs.202304040] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Breakthroughs in precision cell surface engineering tools are supporting the rapid development of programmable living assemblies with valuable features for tackling complex biological problems. Herein, the authors overview the most recent technological advances in chemically- and biologically-driven toolboxes for engineering mammalian cell surfaces and triggering their assembly into living architectures. A particular focus is given to surface engineering technologies for enabling biomimetic cell-cell social interactions and multicellular cell-sorting events. Further advancements in cell surface modification technologies may expand the currently available bioengineering toolset and unlock a new generation of personalized cell therapeutics with clinically relevant biofunctionalities. The combination of state-of-the-art cell surface modifications with advanced biofabrication technologies is envisioned to contribute toward generating living materials with increasing tissue/organ-mimetic bioactivities and therapeutic potential.
Collapse
Affiliation(s)
- José Almeida‐Pinto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Matilde R. Lagarto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Pedro Lavrador
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - João F. Mano
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Vítor M. Gaspar
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
24
|
Tian Q, Yang F, Jiang H, Bhattacharyya P, Xie T, Ali AA, Sun Y, You M. Imaging and detecting intercellular tensile forces in spheroids and embryoid bodies using lipid-modified DNA probes. Front Cell Dev Biol 2023; 11:1220079. [PMID: 37920824 PMCID: PMC10619156 DOI: 10.3389/fcell.2023.1220079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Cells continuously experience and respond to different physical forces that are used to regulate their physiology and functions. Our ability to measure these mechanical cues is essential for understanding the bases of various mechanosensing and mechanotransduction processes. While multiple strategies have been developed to study mechanical forces within two-dimensional (2D) cell culture monolayers, the force measurement at cell-cell junctions in real three-dimensional (3D) cell models is still pretty rare. Considering that in real biological systems, cells are exposed to forces from 3D directions, measuring these molecular forces in their native environment is thus highly critical for the better understanding of different development and disease processes. We have recently developed a type of DNA-based molecular probe for measuring intercellular tensile forces in 2D cell models. Herein, we will report the further development and first-time usage of these molecular tension probes to visualize and detect mechanical forces within 3D spheroids and embryoid bodies (EBs). These probes can spontaneously anchor onto live cell membranes via the attached lipid moieties. By varying the concentrations of these DNA probes and their incubation time, we have first characterized the kinetics and efficiency of probe penetration and loading onto tumor spheroids and stem cell EBs of different sizes. After optimization, we have further imaged and measured E-cadherin-mediated forces in these 3D spheroids and EBs for the first time. Our results indicated that these DNA-based molecular tension probes can be used to study the spatiotemporal distributions of target mechanotransduction processes. These powerful imaging tools may be potentially applied to fill the gap between ongoing research of biomechanics in 2D systems and that in real 3D cell complexes.
Collapse
Affiliation(s)
- Qian Tian
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, United States
| | - Feiyu Yang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Han Jiang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Priyanka Bhattacharyya
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, United States
| | - Tianfa Xie
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, United States
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Mingxu You
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
25
|
Gubu A, Zhang X, Lu A, Zhang B, Ma Y, Zhang G. Nucleic acid amphiphiles: Synthesis, properties, and applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:144-163. [PMID: 37456777 PMCID: PMC10345231 DOI: 10.1016/j.omtn.2023.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Nucleic acid amphiphiles, referring to nucleic acids modified with large hydrophobic groups, have been widely used in programmable bioengineering. Since nucleic acids are intrinsically hydrophilic, the hydrophobic groups endow nucleic acid amphiphiles with unique properties, such as self-assembling, interactions with artificial or biological membranes, and transmembrane transport. Importantly, the hybridization or target binding capability of oligonucleotide itself supplies nucleic acid amphiphiles with excellent programmability. As a result, this type of molecule has attracted considerable attention in academic studies and has enormous potential for further applications. For a comprehensive understanding of nucleic acid amphiphiles, we review the reported research on nucleic acid amphiphiles from their molecular design to final applications, in which we summarize the synthetic strategies for nucleic acid amphiphiles and draw much attention to their unique properties in different contexts. Finally, a summary of the applications of nucleic acid amphiphiles in drug development, bioengineering, and bioanalysis are critically discussed.
Collapse
Affiliation(s)
- Amu Gubu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Aptacure Therapeutics Limited, Kowloon, Hong Kong SAR, China
| | - Xueli Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| |
Collapse
|
26
|
Zhang C, Paluzzi VE, Sha R, Jonoska N, Mao C. Implementing Logic Gates by DNA Crystal Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302345. [PMID: 37220213 DOI: 10.1002/adma.202302345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/03/2023] [Indexed: 05/25/2023]
Abstract
DNA self-assembly computation is attractive for its potential to perform massively parallel information processing at the molecular level while at the same time maintaining its natural biocompatibility. It has been extensively studied at the individual molecule level, but not as much as ensembles in 3D. Here, the feasibility of implementing logic gates, the basic computation operations, in large ensembles: macroscopic, engineered 3D DNA crystals is demonstrated. The building blocks are the recently developed DNA double crossover-like (DXL) motifs. They can associate with each other via sticky-end cohesion. Common logic gates are realized by encoding the inputs within the sticky ends of the motifs. The outputs are demonstrated through the formation of macroscopic crystals that can be easily observed. This study points to a new direction of construction of complex 3D crystal architectures and DNA-based biosensors with easy readouts.
Collapse
Affiliation(s)
- Cuizheng Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Victoria E Paluzzi
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Natasha Jonoska
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL, 33620, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
27
|
Rashid SA, Dong Y, Ogasawara H, Vierengel M, Essien ME, Salaita K. All-Covalent Nuclease-Resistant and Hydrogel-Tethered DNA Hairpin Probes Map pN Cell Traction Forces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33362-33372. [PMID: 37409737 PMCID: PMC10360067 DOI: 10.1021/acsami.3c04826] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Cells sense and respond to the physical properties of their environment through receptor-mediated signaling, a process known as mechanotransduction, which can modulate critical cellular functions such as proliferation, differentiation, and survival. At the molecular level, cell adhesion receptors, such as integrins, transmit piconewton (pN)-scale forces to the extracellular matrix, and the magnitude of the force plays a critical role in cell signaling. The most sensitive approach to measuring integrin forces involves DNA hairpin-based sensors, which are used to quantify and map forces in living cells. Despite the broad use of DNA hairpin sensors to study a variety of mechanotransduction processes, these sensors are typically anchored to rigid glass slides, which are orders of magnitude stiffer than the extracellular matrix and hence modulate native biological responses. Here, we have developed nuclease-resistant DNA hairpin probes that are all covalently tethered to PEG hydrogels to image cell traction forces on physiologically relevant substrate stiffness. Using HeLa cells as a model cell line, we show that the molecular forces transmitted by integrins are highly sensitive to the bulk modulus of the substrate, and cells cultured on the 6 and 13 kPa gels produced a greater number of hairpin unfolding events compared to the 2 kPa substrates. Tension signals are spatially colocalized with pY118-paxillin, confirming focal adhesion-mediated probe opening. Additionally, we found that integrin forces are greater than 5.8 pN but less than 19 pN on 13 kPa gels. This work provides a general strategy to integrate molecular tension probes into hydrogels, which can better mimic in vivo mechanotransduction.
Collapse
Affiliation(s)
- Sk Aysha Rashid
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yixiao Dong
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hiroaki Ogasawara
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Maia Vierengel
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mark Edoho Essien
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
28
|
Hu Y, Duan Y, Velusamy A, Narum S, Rogers J, Salaita K. DNA Origami Tension Sensors (DOTS) to study T cell receptor mechanics at membrane junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548279. [PMID: 37503090 PMCID: PMC10369911 DOI: 10.1101/2023.07.09.548279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The T cell receptor (TCR) is thought to be a mechanosensor, meaning that it transmits mechanical force to its antigen and leverages the force to amplify the specificity and magnitude of TCR signaling. The past decade has witnessed the development of molecular probes which have revealed many aspects of receptor mechanotransduction. However, most force probes are immobilized on hard substrates, thus failing to reveal mechanics in the physiological context of cell membranes. In this report, we developed DNA origami tension sensors (DOTS) which bear force sensors on a DNA origami breadboard and allow mapping of TCR mechanotransduction at dynamic intermembrane junctions. We demonstrate that TCR-antigen bonds experience 5-10 pN forces, and the mechanical events are dependent on cell state, antigen mobility, antigen potency, antigen height and F-actin activity. We tethered DOTS onto a microparticle to mechanically screen antigen in high throughput using flow cytometry. Finally, DOTS were anchored onto live B cell membranes thus producing the first quantification of TCR mechanics at authentic immune cell-cell junctions.
Collapse
Affiliation(s)
- Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Arventh Velusamy
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Steven Narum
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
29
|
Zhang J, Huang Y, Sun M, Song T, Wan S, Yang C, Song Y. Mechanosensing view of SARS-CoV-2 infection by a DNA nano-assembly. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101048. [PMID: 36157982 PMCID: PMC9490855 DOI: 10.1016/j.xcrp.2022.101048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The mechanical force between a virus and its host cell plays a critical role in viral infection. However, characterization of the virus-cell mechanical force at the whole-virus level remains a challenge. Herein, we develop a platform in which the virus is anchored with multivalence-controlled aptamers to achieve transfer of the virus-cell mechanical force to a DNA tension gauge tether (Virus-TGT). When the TGT is ruptured, the complex of binding module-virus-cell is detached from the substrate, accompanied by decreased host cell-substrate adhesion, thus revealing the mechanical force between whole-virus and cell. Using Virus-TGT, direct evidence about the biomechanical force between SARS-CoV-2 and the host cell is obtained. The relative mechanical force gap (<10 pN) at the cellular level between the wild-type virus to cell and a variant virus to cell is measured, suggesting a possible positive correlation between virus-cell mechanical force and infectivity. Overall, this strategy provides a new perspective to probe the SARS-CoV-2 mechanical force.
Collapse
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ting Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
30
|
Wang XH, Liu Y, Kang B, Xu JJ, Chen HY. Cell mechanics and energetic costs of collective cell migration under confined microchannels. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Abstract
Lipid-DNA conjugates have emerged as highly useful tools to modify the cell membranes. These conjugates generally consist of a lipid anchor for membrane modification and a functional DNA nanostructure for membrane analysis or regulation. There are several unique properties of these lipid-DNA conjugates, especially including their programmability, fast and efficient membrane insertion, and precise sequence-specific assembly. These unique properties have enabled a broad range of biophysical applications on live cell membranes. In this review, we will mainly focus on recent tremendous progress, especially during the past three years, in regulating the biophysical features of these lipid-DNA conjugates and their key applications in studying cell membrane biophysics. Some insights into the current challenges and future directions of this interdisciplinary field have also been provided.
Collapse
Affiliation(s)
| | | | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
32
|
Abstract
Cellular processes and functions can be regulated by mechanical forces. Nanodevices that can measure and manipulate these forces are critical tools in chemical and cellular biology. Synthetic DNA oligonucleotides have been used to develop a wide range of powerful nanodevices due to their programmable nature and precise and predictable self-assembly. In recent years, various types of DNA-based mechanical nanodevices have been engineered for studying molecular-level forces. With the help of these nanodevices, our understanding of cellular responses to physical forces has been significantly advanced. In this article, we have reviewed some recent developments in DNA-based mechanical sensors and regulators for application in the characterization of cellular biomechanics and the manipulation of cellular morphology, motion and other functions. The design principles discussed in this article can be further used to inspire other types of powerful DNA-based mechanical nanodevices.
Collapse
Affiliation(s)
- Qian Tian
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
33
|
Hang X, He S, Dong Z, Li Y, Huang Z, Zhang Y, Sun H, Lin L, Li H, Wang Y, Liu B, Wu N, Ren T, Fan Y, Lou J, Yang R, Jiang L, Chang L. High-Throughput DNA Tensioner Platform for Interrogating Mechanical Heterogeneity of Single Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106196. [PMID: 35322558 DOI: 10.1002/smll.202106196] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Cell mechanical forces play fundamental roles in regulating cellular responses to environmental stimulations. The shortcomings of conventional methods, including force resolution and cellular throughput, make them less accessible to mechanical heterogeneity at the single-cell level. Here, a DNA tensioner platform is introduced with high throughput (>10 000 cells per chip) and pN-level resolution. A microfluidic-based cell array is trapped on "hairpin-structured" DNA tensioners that enable transformation of the mechanical information of living cells into fluorescence signals. By using the platform, one can identify enhanced mechanical forces of drug-resistant cells as compared to their drug-sensitive counterparts, and mechanical differences between metastatic tumor cells in pleural effusion and nonmetastatic histiocytes. Further genetic analysis traces two genes, VEGFA and MINK1, that may play deterministic roles in regulating mechanical heterogeneities. In view of the ubiquity of cells' mechanical forces in the extracellular microenvironment (ECM), this platform shows wide potential to establish links of cellular mechanical heterogeneity to genetic heterogeneity.
Collapse
Affiliation(s)
- Xinxin Hang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Shiqi He
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zaizai Dong
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yun Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Zheng Huang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yanruo Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, No. 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Hong Sun
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Long Lin
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hu Li
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yang Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Tianling Ren
- Beijing National Research Center for Information Science and Technology (BNRist), Institute of Microelectronics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, No. 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Ruiguo Yang
- Nebraska Center for Integrated Biomolecular Communication, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lan Jiang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- College of Future Technology, and Sino-Danish College, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Lingqian Chang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| |
Collapse
|
34
|
Pal K, Tu Y, Wang X. Single-Molecule Force Imaging Reveals That Podosome Formation Requires No Extracellular Integrin-Ligand Tensions or Interactions. ACS NANO 2022; 16:2481-2493. [PMID: 35073043 PMCID: PMC9129048 DOI: 10.1021/acsnano.1c09105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Podosomes are integrin-mediated cell adhesion units involved in many cellular and physiological processes. Integrins likely transmit tensions critical for podosome functions, but such force remains poorly characterized. DNA-based tension sensors are powerful in visualizing integrin tensions but subject to degradation by podosomes which ubiquitously recruit DNase. Here, using a DNase-resistant tension sensor based on a DNA/PNA (peptide nucleic acid) duplex, we imaged podosomal integrin tensions (PIT) in the adhesion rings of podosomes on solid substrates with single molecular tension sensitivity. PIT was shown to be generated by both actomyosin contractility and actin polymerization in podosomes. Importantly, by monitoring PIT and podosome structure in parallel, we showed that extracellular integrin-ligand tensions, despite being critical for the formation of focal adhesions, are dispensable for podosome formation, as PIT reduction or elimination has an insignificant impact on structure formation and FAK (focal adhesion kinase) phosphorylation in podosomes. We further verified that even integrin-ligand interaction is dispensable for podosome formation, as macrophages form podosomes normally on passivated surfaces that block integrin-ligand interaction but support macrophage adhesion through electrostatic adsorption or Fc receptor-immunoglobin G interaction. In contrast, focal adhesions are unable to form on these passivated surfaces.
Collapse
Affiliation(s)
- Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- Molecular, Cellular, and Developmental Biology interdepartmental program, Ames, IA 50011, USA
- To whom correspondence may be addressed. Xuefeng Wang, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
35
|
Guo Z, Zhang L, Yang Q, Peng R, Yuan X, Xu L, Wang Z, Chen F, Huang H, Liu Q, Tan W. Manipulation of Multiple Cell–Cell Interactions by Tunable DNA Scaffold Networks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhenzhen Guo
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Lili Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Qiuxia Yang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| | - Xi Yuan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Liujun Xu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Huidong Huang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- Institute of Molecular Medicine (IMM) Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
36
|
Wu Z, Xiao M, Lai W, Sun Y, Li L, Hu Z, Pei H. Nucleic Acid-Based Cell Surface Engineering Strategies and Their Applications. ACS APPLIED BIO MATERIALS 2022; 5:1901-1915. [DOI: 10.1021/acsabm.1c01126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
37
|
DNA-Based Molecular Engineering of the Cell Membrane. MEMBRANES 2022; 12:membranes12020111. [PMID: 35207033 PMCID: PMC8876765 DOI: 10.3390/membranes12020111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/27/2023]
Abstract
The cell membrane serves as a barrier and gatekeeper to regulate the cellular transportation of substances and information. It plays a significant role in protecting the cell from the extracellular environment, maintaining intracellular homeostasis, and regulating cellular function and behaviors. The capability to engineer the cell membrane with functional modules that enable dynamic monitoring and manipulating the cell-surface microenvironment would be critical for studying molecular mechanisms underlying various biological processes. To meet this goal, DNA, with intrinsic advantages of high versatility, programmability, and biocompatibility, has gained intense attention as a molecular tool for cell-surface engineering. The past three decades have witnessed the rapid advances of diverse nucleic acid materials, including functional nucleic acids (FNAs), dynamic DNA circuits, and exquisite DNA nanostructures. In this mini review, we have summarized the recent progress of DNA technology for cell membrane engineering, particularly focused on their applications for molecular sensing and imaging, precise cell identification, receptor activity regulation, and artificial membrane structures. Furthermore, we discussed the challenge and outlook on using nucleic acid materials in this specific research area.
Collapse
|
38
|
Guo Z, Zhang L, Yang Q, Peng R, Yuan X, Xu L, Wang Z, Chen F, Huang H, Liu Q, Tan W. Manipulation of Multiple Cell-Cell Interactions by Tunable DNA Scaffold Networks. Angew Chem Int Ed Engl 2021; 61:e202111151. [PMID: 34873818 DOI: 10.1002/anie.202111151] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/15/2022]
Abstract
Manipulation of cell-cell interactions via cell surface engineering has potential biomedical applications in tissue engineering and cell therapy. However, manipulation of the comprehensive and multiple intercellular interactions remains a challenge and missing elements. Herein, utilizing a DNA triangular prism (TP) and a branched polymer (BP) as functional modules, we fabricate tunable DNA scaffold networks on the cell surface. The responsiveness of cell-cell recognition, aggregation and dissociation could be modulated by aptamer-functionalized DNA scaffold networks with high accuracy and specificity. By regulating the DNA scaffold networks coated on the cell surface, controlled intercellular molecular transportation is achieved. Our tunable network provides a simple and extendible strategy which addresses a current need in cell surface engineering to precisely manipulate cell-cell interactions and shows promise as a general tool for controllable cell behavior.
Collapse
Affiliation(s)
- Zhenzhen Guo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Lili Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Qiuxia Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xi Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Liujun Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Huidong Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
39
|
Zhang SY, Zhou ZR, Qian RC. Recent Progress and Perspectives on Cell Surface Modification. Chem Asian J 2021; 16:3250-3258. [PMID: 34427996 DOI: 10.1002/asia.202100852] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Indexed: 11/11/2022]
Abstract
The cell membrane is a biological interface consisting of phospholipid bilayer, saccharides and proteins that maintains a stable metabolic intracellular environment as well as regulating and controlling the exchange of substances inside and outside the cell. Cell membranes provide a highly complex biological surface carrying a variety of essential surfaces ligands and receptors for cells to receive various stimuli of external signals, thereby inducing corresponding cell responses regulating the life activities of the cell. These surface receptors can be manipulated via cell surface modification to regulate cellular functions and behaviors Thus, cell surface modification has attracted considerable attention due to its significance in cell fate control, cell engineering and cell therapy. In this minireview, we describe the recent developments and advances of cell surface modification, and summarize the main modification methods with corresponding functions and applications. Finally, the prospect for the future development of the modification of the living cell membrane is discussed.
Collapse
Affiliation(s)
- Shi-Yi Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
40
|
Abstract
Invention of DNA origami has transformed the fabrication and application of biological nanomaterials. In this review, we discuss DNA origami nanoassemblies according to their four fundamental mechanical properties in response to external forces: elasticity, pliability, plasticity and stability. While elasticity and pliability refer to reversible changes in structures and associated properties, plasticity shows irreversible variation in topologies. The irreversible property is also inherent in the disintegration of DNA nanoassemblies, which is manifested by its mechanical stability. Disparate DNA origami devices in the past decade have exploited the mechanical regimes of pliability, elasticity, and plasticity, among which plasticity has shown its dominating potential in biomechanical and physiochemical applications. On the other hand, the mechanical stability of the DNA origami has been used to understand the mechanics of the assembly and disassembly of DNA nano-devices. At the end of this review, we discuss the challenges and future development of DNA origami nanoassemblies, again, from these fundamental mechanical perspectives.
Collapse
Affiliation(s)
- Jiahao Ji
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| | - Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| |
Collapse
|
41
|
Wu Q, Liu C, Cui C, Li L, Yang L, Liu Y, Safari Yazd H, Xu S, Li X, Chen Z, Tan W. Plasmon Coupling in DNA-Assembled Silver Nanoclusters. J Am Chem Soc 2021; 143:14573-14580. [PMID: 34464111 DOI: 10.1021/jacs.1c04949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quantum-size metal clusters with multiple delocalized electrons could support collective plasmon excitation, and thus, theoretically, coupling of plasmons in the few-atom limit might exist between assembled metal clusters, while currently few experimental observations about this phenomenon have been reported. Here we examined the optical absorption of DNA-templated Ag nanoclusters (DNA-AgNCs) assembled through DNA hybridization and found their absorption peaks were sensitive to the assembled distances, which share common characteristics with classical plasmon coupling. Dipolar charge distribution, multiple transition contributed optical absorption, and strongly enhanced electric field simulated by time-dependent density functional theory (TDDFT) indicated the origin of the absorption of individual DNA-AgNCs is a plasmon. The consistency of the peak-shifting trend between experimental and simulation results for assembled DNA-AgNCs suggested the possible presence of plasmon coupling. Our data imply the possibility for quantum-size structures to support plasmon coupling and also show that DNA-AgNCs possess the potential to be promising materials for construction of plasmon-coupling devices with ultrasmall size, site-specific and stoichiometric binding abilities, and biocompatibility.
Collapse
Affiliation(s)
- Qiong Wu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Chengcheng Liu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Cheng Cui
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Long Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Lu Yang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Yuan Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Hoda Safari Yazd
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Shujuan Xu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Xiang Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
42
|
Keshri P, Zhao B, Xie T, Bagheri Y, Chambers J, Sun Y, You M. Quantitative and Multiplexed Fluorescence Lifetime Imaging of Intercellular Tensile Forces. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Puspam Keshri
- Department of Chemistry University of Massachusetts, Amherst Amherst MA 01003 USA
| | - Bin Zhao
- Department of Chemistry University of Massachusetts, Amherst Amherst MA 01003 USA
| | - Tianfa Xie
- Department of Mechanical & Industrial Engineering University of Massachusetts, Amherst Amherst MA 01003 USA
| | - Yousef Bagheri
- Department of Chemistry University of Massachusetts, Amherst Amherst MA 01003 USA
| | - James Chambers
- Institute for Applied Life Sciences University of Massachusetts, Amherst Amherst MA 01003 USA
| | - Yubing Sun
- Department of Mechanical & Industrial Engineering University of Massachusetts, Amherst Amherst MA 01003 USA
- Institute for Applied Life Sciences University of Massachusetts, Amherst Amherst MA 01003 USA
| | - Mingxu You
- Department of Chemistry University of Massachusetts, Amherst Amherst MA 01003 USA
- Institute for Applied Life Sciences University of Massachusetts, Amherst Amherst MA 01003 USA
| |
Collapse
|
43
|
Keshri P, Zhao B, Xie T, Bagheri Y, Chambers J, Sun Y, You M. Quantitative and Multiplexed Fluorescence Lifetime Imaging of Intercellular Tensile Forces. Angew Chem Int Ed Engl 2021; 60:15548-15555. [PMID: 33961329 DOI: 10.1002/anie.202103986] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/21/2021] [Indexed: 01/03/2023]
Abstract
Mechanical interactions between cells have been shown to play critical roles in regulating cell signaling and communications. However, the precise measurement of intercellular forces is still quite challenging, especially considering the complex environment at cell-cell junctions. In this study, we report a fluorescence lifetime-based approach to image and quantify intercellular molecular tensions. Using this method, tensile forces among multiple ligand-receptor pairs can be measured simultaneously. We first validated our approach and developed lifetime measurement-based DNA tension probes to image E-cadherin-mediated tension on epithelial cells. These probes were then further applied to quantify the correlations between E-cadherin and N-cadherin tensions during an epithelial-mesenchymal transition process. The modular design of these probes can potentially be used to study the mechanical features of various physiological and pathological processes.
Collapse
Affiliation(s)
- Puspam Keshri
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Bin Zhao
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Tianfa Xie
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Yousef Bagheri
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - James Chambers
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Yubing Sun
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, Amherst, MA, 01003, USA.,Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA, 01003, USA.,Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
44
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
45
|
Qian RC, Zhou ZR, Guo W, Wu Y, Yang Z, Lu Y. Cell Surface Engineering Using DNAzymes: Metal Ion Mediated Control of Cell–Cell Interactions. J Am Chem Soc 2021; 143:5737-5744. [DOI: 10.1021/jacs.1c00060] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | | | | | | | | |
Collapse
|
46
|
Blanchard AT, Salaita K. Multivalent molecular tension probes as anisotropic mechanosensors: concept and simulation. Phys Biol 2021; 18:034001. [PMID: 33316784 DOI: 10.1088/1478-3975/abd333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cells use protein-based mechanosensors to measure the physical properties of their surroundings. Synthetic tension sensors made of proteins, DNA, and other molecular building blocks have recently emerged as tools to visualize and perturb the mechanics of these mechanosensors. While almost all synthetic tension sensors are designed to exhibit orientation-independent force responses, recent work has shown that biological mechanosensors often function in a manner that is highly dependent on force orientation. Accordingly, the design of synthetic mechanosensors with orientation-dependent force responses can provide a means to study the role of orientation in mechanosensation. Furthermore, the process of designing anisotropic force responses may yield insight into the physical basis for orientation-dependence in biological mechanosensors. Here, we propose a DNA-based molecular tension sensor design wherein multivalency is used to create an orientation-dependent force response. We apply chemomechanical modeling to show that multivalency can be used to create synthetic mechanosensors with force response thresholds that vary by tens of pN with respect to force orientation.
Collapse
Affiliation(s)
- Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, United States of America
| | | |
Collapse
|
47
|
Schoenit A, Cavalcanti-Adam EA, Göpfrich K. Functionalization of Cellular Membranes with DNA Nanotechnology. Trends Biotechnol 2021; 39:1208-1220. [PMID: 33722382 DOI: 10.1016/j.tibtech.2021.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Due to its versatility and programmability, DNA nanotechnology has greatly expanded the experimental toolbox for biomedical research. Recent advances allow reliable and efficient functionalization of cellular plasma membranes with a variety of synthetic DNA constructs, ranging from single strands to complex 3D DNA origami. The scope for applications, which probe biophysical parameters or equip cells with novel functions, is rapidly increasing. These applications extend from programmed cellular connectivity and tissue engineering to molecular force measurements, controlled receptor-ligand interactions, membrane-anchored biosensors, and artificial transmembrane structures. Here, we give guidance on different strategies to functionalize cellular membranes with DNA nanotechnology and summarize current trends employing membrane-anchored DNA as a tool in biophysics, cell biology, and synthetic biology.
Collapse
Affiliation(s)
- Andreas Schoenit
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany; Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany.
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany; Department of Physics and Astronomy, Heidelberg University, D-69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Saminathan A, Devany J, Veetil AT, Suresh B, Pillai KS, Schwake M, Krishnan Y. A DNA-based voltmeter for organelles. NATURE NANOTECHNOLOGY 2021; 16:96-103. [PMID: 33139937 PMCID: PMC8513801 DOI: 10.1038/s41565-020-00784-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/21/2020] [Indexed: 05/16/2023]
Abstract
The role of membrane potential in most intracellular organelles remains unexplored because of the lack of suitable tools. Here, we describe Voltair, a fluorescent DNA nanodevice that reports the absolute membrane potential and can be targeted to organelles in live cells. Voltair consists of a voltage-sensitive fluorophore and a reference fluorophore for ratiometry, and acts as an endocytic tracer. Using Voltair, we could measure the membrane potential of different organelles in situ in live cells. Voltair can potentially guide the rational design of biocompatible electronics and enhance our understanding of how membrane potential regulates organelle biology.
Collapse
Affiliation(s)
- Anand Saminathan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL, USA
| | - Aneesh Tazhe Veetil
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Bhavyashree Suresh
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | | | - Michael Schwake
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Biochemistry III/Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, Bielefeld, Germany
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
49
|
Tian Q, Bagheri Y, Keshri P, Wu R, Ren K, Yu Q, Zhao B, You M. Efficient and selective DNA modification on bacterial membranes. Chem Sci 2020; 12:2629-2634. [PMID: 34164031 PMCID: PMC8179310 DOI: 10.1039/d0sc06630c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With highly precise self-assembly and programmability, DNA has been widely used as a versatile material in nanotechnology and synthetic biology. Recently, DNA-based nanostructures and devices have been engineered onto eukaryotic cell membranes for various exciting applications in the detection and regulation of cell functions. While in contrast, the potential of applying DNA nanotechnology for bacterial membrane studies is still largely underexplored, which is mainly due to the lack of tools to modify DNA on bacterial membranes. Herein, using lipid–DNA conjugates, we have developed a simple, fast, and highly efficient system to engineer bacterial membranes with designer DNA molecules. We have constructed a small library of synthetic lipids, conjugated with DNA oligonucleotides, and characterized their membrane insertion properties on various Gram-negative and Gram-positive bacteria. Simply after incubation, these lipid–DNA conjugates can be rapidly and efficiently inserted onto target bacterial membranes. Based on the membrane selectivity of these conjugates, we have further demonstrated their applications in differentiating bacterial strains and potentially in pathogen detection. These lipid–DNA conjugates are promising tools to facilitate the possibly broad usage of DNA nanotechnology for bacterial membrane analysis, functionalization, and therapy. A lipid-based approach to effectively modify DNA molecules onto various types of bacterial membranes after simple incubation.![]()
Collapse
Affiliation(s)
- Qian Tian
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Yousef Bagheri
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Rigumula Wu
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Kewei Ren
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Qikun Yu
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Bin Zhao
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| |
Collapse
|
50
|
Wang XH, Yang F, Pan JB, Kang B, Xu JJ, Chen HY. Quantitative Imaging of pN Intercellular Force and Energetic Costs during Collective Cell Migration in Epithelial Wound Healing. Anal Chem 2020; 92:16180-16187. [PMID: 33253543 DOI: 10.1021/acs.analchem.0c03935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Collective cell migration plays a key role in tissue repair, metastasis, and development. Cellular tension is a vital mechanical regulator during the force-driven cell movements. However, the contribution and mechanism of cell-cell force interaction and energetic costs during cell migration are yet to be understood. Here, we attempted to unfold the mechanism of collective cell movement through quantification of the intercellular tension and energetic costs. The measurement of pN intercellular force is based on a "spring-like" DNA-probe and a molecular tension fluorescence microscopy. During the process of wound healing, the intercellular force along with the cell monolayer mainly originates from actin polymerization, which is strongly related to the cellular energy metabolism level. Intracellular force at different spatial regions of wound and the energetic costs of leader and follower cells were measured. The maximum force and energy consumption are mainly concentrated at the wound edge and dynamically changed along with different stages of wound healing. These results indicated the domination of leader cells other than follower cells during the collective cell migration.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fan Yang
- College of Textile and Clothing, Dezhou University, Dezhou 253023, China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|