1
|
Zhang MR, Wang HR, Shan HM, Xi LL, Lu CJ, Du XM, Sun C, Xu LP, Liu RR. Copper-catalysed dynamic kinetic asymmetric C-O cross-coupling to access chiral aryl oxime ethers and diaryl ethers. Nat Commun 2025; 16:2505. [PMID: 40082430 PMCID: PMC11906793 DOI: 10.1038/s41467-025-57804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
Dynamic kinetic resolution (DKR) has emerged as an elegant and powerful tool for enantioselective synthesis, enabling the transformation of racemic compounds into enantiomerically enriched products with theoretically quantitative yields. Despite its widespread success, the dynamic kinetic asymmetric C-O cross-coupling has presented significant challenges and remains unexplored. In this study, we report a dynamic kinetic asymmetric C-O cross-coupling of oximes and phenols via copper/BOX-catalysed enantioselective O-arylation with diaryliodonium salts. This method efficiently produces a wide range of inherently chiral oxime ethers, as well as axially chiral styrenes, with high yields and excellent regio- and enantioselectivities. Through controlled experiments and Density Functional Theory (DFT) studies, we have elucidated the dynamic kinetic resolution process and gained insights into the origins of regio- and enantioselectivity.
Collapse
Affiliation(s)
- Mei-Ru Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Hao-Ran Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Hui-Mei Shan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| | - Long-Long Xi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Xiao-Man Du
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Che Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China.
- College of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Adams HK, Kadarauch M, Hodson NJ, Lit AR, Phipps RJ. Design Approaches That Utilize Ionic Interactions to Control Selectivity in Transition Metal Catalysis. Chem Rev 2025; 125:2846-2907. [PMID: 40020185 PMCID: PMC11907411 DOI: 10.1021/acs.chemrev.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The attractive force between two oppositely charged ions can constitute a powerful design tool in selective catalysis. Enzymes make extensive use of ionic interactions alongside a variety of other noncovalent interactions; recent years have seen synthetic chemists begin to seriously explore these interactions in catalyst designs that also incorporate a reactive transition metal. In isolation, a single ionic interaction exhibits low directionality, but in many successful systems they exist alongside additional interactions which can provide a high degree of organization at the selectivity-determining transition state. Even in situations with a single key interaction, low directionality is not always detrimental, and can even be advantageous, conferring generality to a single catalyst. This Review explores design approaches that utilize ionic interactions to control selectivity in transition metal catalysis. It is divided into two halves: in the first, the ionic interaction occurs in the outer sphere of the metal complex, using a ligand which is charged or bound to an anion; in the second, the metal bears a formal charge, and the ionic interaction is with an associated counterion.
Collapse
Affiliation(s)
- Hannah K Adams
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Max Kadarauch
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Nicholas J Hodson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Arthur R Lit
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
3
|
Aho JS, Mannisto JK, Mattila SPM, Hallamaa M, Deska J. Guanidium Unmasked: Repurposing Common Amide Coupling Reagents for the Synthesis of Pentasubstituted Guanidine Bases. J Org Chem 2025; 90:2636-2643. [PMID: 39932480 PMCID: PMC11852210 DOI: 10.1021/acs.joc.4c02645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/21/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Guanidines make up a class of compounds with important applications in catalysis and medicinal chemistry. In this systematic study, we report on the guanylation of aliphatic amines, anilines, (sulfon)amides, ureas, and carbamates by repurposing HATU, a common amide coupling reagent. The products are 2-substituted 1,1,3,3-tetramethylguanidines (TMGs), a group of sterically hindered superbases. The reaction of a guanidinium salt with aliphatic amines has been regarded as an unwanted side-reaction in amide coupling, yet the exact mechanistic details have been unclear. Our mechanistic investigation shows that the guanylation is highly dependent on the nature of the nitrogen nucleophile. Our findings were applied on two fronts: minimizing guanylation in competing amide coupling reactions as well as maximizing guanylation in a simple one-step synthesis of a broad variety of 2-substituted TMGs, including the late-stage functionalization of pharmaceuticals.
Collapse
Affiliation(s)
- Juhana
A. S. Aho
- Department of Chemistry, University
of Helsinki, Helsinki 00560, Finland
| | - Jere K. Mannisto
- Department of Chemistry, University
of Helsinki, Helsinki 00560, Finland
| | - Saku P. M. Mattila
- Department of Chemistry, University
of Helsinki, Helsinki 00560, Finland
| | - Marleen Hallamaa
- Department of Chemistry, University
of Helsinki, Helsinki 00560, Finland
| | - Jan Deska
- Department of Chemistry, University
of Helsinki, Helsinki 00560, Finland
| |
Collapse
|
4
|
Liu C, Yang Y, Hong W, Ma JA, Zhu Y. Ion Hydration Enables Generality in Asymmetric Catalysis: Desymmetrization to P-Stereogenic Triarylphosphine Derivatives. Angew Chem Int Ed Engl 2025; 64:e202417827. [PMID: 39714434 DOI: 10.1002/anie.202417827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Asymmetric synthesis relies on seamless transmission of stereochemical information from a chiral reagent/catalyst to a prochiral substrate. The disruption by substrates' structural changes presents a hurdle in innovating generality-oriented asymmetric catalysis. Here, we report a strategy for substrate adaptability by exploiting a fundamental physicochemical phenomenon-ion hydration, in developing remote desymmetrization to access P-stereogenic triarylphosphine oxides and sulfides. Compared to existing methods, this approach does not require pre-installed ortho substituents and avoids the use of Grignard/organolithium reagents. Simply tuning the water/ion ratio in the reaction media tailors the water-mediated ionic substrate-catalyst preorganization to counterbalance the structural changes in the substrates, thus further increasing the diversity of enantioenriched P-stereogenic compounds. This study shows that it is viable and practical to precisely manipulate ionic interactions through tuning the dynamic ion hydration in situ, thereby adding a distinctive dimension to catalyst engineering in the pursuit of substrate generality in asymmetric catalysis.
Collapse
Affiliation(s)
- Chi Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore
| | - Yang Yang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore
| | - Wenyang Hong
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore
| | - Jun-An Ma
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemistry, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Ye Zhu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore
| |
Collapse
|
5
|
Xu W, Yamakawa T, Huang M, Tian P, Jiang Z, Xu MH. Conformational Locking Induced Enantioselective Diarylcarbene Insertion into B-H and O-H Bonds Using a Cationic Rh(I)/Diene Catalyst. Angew Chem Int Ed Engl 2024; 63:e202412193. [PMID: 39022851 DOI: 10.1002/anie.202412193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Transition-metal-catalyzed enantioselective transformations of aryl/aryl carbene are inherently challenging due to the difficulty in distinguishing between two arene rings in the reaction process thus remain largely less explored. The few successful examples reported so far, without exception, have all been catalyzed by Rh(II)-complexes. Herein, we describe our successful development of a novel cationic Rh(I)/chiral diene catalytic system capable of efficient enantioselective B-H and O-H insertions with diaryl diazomethanes, allowing the access to a broad range of gem-diarylmethine boranes and gem-diarylmethine ethers in good yields with high enantioselectivities. Notably, previously unattainable asymmetric diarylcarbene insertion into the O-H bond was achieved for the first time. A remarkable feature of this newly designed Rh(I)/diene catalyst bearing two ortho-amidophenyl substitutents is that it can distinguish between two arene rings of the diaryl carbene through a stereochemically selective control of π-π stacking interactions. DFT calculations indicate that the rotation-restricted conformation of Rh(I)/diene complex played an important role in the highly enantioselective carbene transformations. This work provides an interesting and unprecedented stereocontrol mode in diaryl metal carbene transformations.
Collapse
Affiliation(s)
- Weici Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Takeshi Yamakawa
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Meiling Huang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peilin Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhigen Jiang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
6
|
Zhang R, Zhou Q, Wang X, Xu L, Ma D. Copper-Catalyzed Asymmetric Arylation of α-Substituted Cyanoacetates Enabled by Chiral Amide Ligands. Angew Chem Int Ed Engl 2023; 62:e202312383. [PMID: 37870538 DOI: 10.1002/anie.202312383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
The (S)-nobin-embodied picolinamide and L-hydroxyproline-derived amide are effective ligands for Cu-catalyzed enantioselective coupling reaction of (hetero)aryl iodides with α-alkyl substituted cyanoacetates. This arylation reaction gave α-(heteroaryl)-α-alkyl cyanoacetates in good to excellent enantioselectivities (up to 95 % ee). A variety of functionalized (hetero)aryl and alkyl groups could be introduced to the quaternary center and therefore provided a valuable tool for preparing enantioenriched compounds with an all-carbon quaternary center tethered with convertible functional groups. The size of both α-alkyl and ester groups was proven as the key factor for asymmetric induction.
Collapse
Affiliation(s)
- Rongxing Zhang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuang Lu, Shanghai, 200062, China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang, 110016, China
| | - Lanting Xu
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Dawei Ma
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
7
|
Morack T, Myers TE, Karas LJ, Hardy MA, Mercado BQ, Sigman MS, Miller SJ. An Asymmetric Aromatic Finkelstein Reaction: A Platform for Remote Diarylmethane Desymmetrization. J Am Chem Soc 2023; 145:22322-22328. [PMID: 37788150 PMCID: PMC10591928 DOI: 10.1021/jacs.3c08727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A first-of-its-kind enantioselective aromatic Finkelstein reaction is disclosed for the remote desymmetrization of diarylmethanes. The reaction operates through a copper-catalyzed C-I bond-forming event, and high levels of enantioselectivity are achieved through the deployment of a tailored guanidinylated peptide ligand. Strategic use of transition-metal-mediated reactions enables the chemoselective modification of the aryl iodide products; thus, the synthesis of a diverse set of otherwise difficult-to-access diarylmethanes with excellent levels of selectivity is realized from a common intermediate. A mixed experimental/computational analysis of steric parameters and substrate conformations identifies the importance of remote conformational effects as a key to achieving high enantioselectivity in this desymmetrization reaction.
Collapse
Affiliation(s)
- Tobias Morack
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Tyler E. Myers
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Lucas J. Karas
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Melissa A. Hardy
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
8
|
Wei J, Gandon V, Zhu Y. Amino Acid-Derived Ionic Chiral Catalysts Enable Desymmetrizing Cross-Coupling to Remote Acyclic Quaternary Stereocenters. J Am Chem Soc 2023; 145:16796-16811. [PMID: 37471696 PMCID: PMC10401725 DOI: 10.1021/jacs.3c04877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Synthetic application of asymmetric catalysis relies on strategic alignment of bond construction to creation of chirality of a target molecule. Remote desymmetrization offers distinctive advantages of spatial decoupling of catalytic transformation and generation of a stereogenic element. However, such spatial separation presents substantial difficulties for the chiral catalyst to discriminate distant enantiotopic sites through a reaction three or more bonds away from a prochirality center. Here, we report a strategy that establishes acyclic quaternary carbon stereocenters through cross-coupling reactions at distal positions of aryl substituents. The new class of amino acid-derived ionic chiral catalysts enables desymmetrizing (enantiotopic-group-selective) Suzuki-Miyaura reaction, Sonogashira reaction, and Buchwald-Hartwig amination between diverse diarylmethane scaffolds and aryl, alkynyl, and amino coupling partners, providing rapid access to enantioenriched molecules that project substituents to widely spaced positions in the three-dimensional space. Experimental and computational investigations reveal electrostatic steering of substrates by the C-terminus of chiral ligands through ionic interactions. Cooperative ion-dipole interactions between the catalyst's amide group and potassium cation aid in the preorganization that transmits asymmetry to the product. This study demonstrates that it is practical to achieve precise long-range stereocontrol through engineering the spatial arrangements of the ionic catalysts' substrate-recognizing groups and metal centers.
Collapse
Affiliation(s)
- Junqiang Wei
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Paris-Saclay University, bâtiment Hesnri Moissan, 17 avenue des sciences, 91400 Orsay, France
| | - Ye Zhu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
9
|
Cu-catalysed enantioselective radical heteroatomic S-O cross-coupling. Nat Chem 2023; 15:395-404. [PMID: 36575341 DOI: 10.1038/s41557-022-01102-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/27/2022] [Indexed: 12/29/2022]
Abstract
The transition-metal-catalysed cross-coupling reaction has established itself as one of the most reliable and practical synthetic tools for the efficient construction of carbon-carbon/heteroatom (p-block elements other than carbon) bonds in both racemic and enantioselective manners. In contrast, development of the corresponding heteroatom-heteroatom cross-couplings has so far remained elusive, probably due to the under-investigated and often challenging heteroatom-heteroatom reductive elimination. Here we demonstrate the use of single-electron reductive elimination as a strategy for developing enantioselective S-O coupling under Cu catalysis, based on both experimental and theoretical results. The reaction manifests its synthetic potential by the ready preparation of challenging chiral alcohols featuring congested stereocentres, the expedient valorization of the biomass-derived feedstock glycerol, and the remarkable catalytic 4,6-desymmetrization of inositol. These results demonstrate the potential of enantioselective radical heteroatomic cross-coupling as a general chiral heteroatom-heteroatom formation strategy.
Collapse
|
10
|
Khromova OV, Emelyanov MA, Stoletova NV, Bodunova EE, Prima DO, Smol’yakov AF, Eremenko IL, Maleev VI, Larionov VA. Post-Modification of Octahedral Chiral-at-Metal Cobalt(III) Complexes by Suzuki–Miyaura Cross-Coupling and Evaluation of Their Catalytic Activity. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Olga V. Khromova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Mikhail A. Emelyanov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Nadezhda V. Stoletova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Ekaterina E. Bodunova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
- Higher Chemical College of the Russian Academy of Sciences, Miusskaya sq. 9, 125047 Moscow, Russian Federation
| | - Darya O. Prima
- Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander F. Smol’yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Igor L. Eremenko
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 31, 119991 Moscow, Russian Federation
| | - Victor I. Maleev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Vladimir A. Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
11
|
Chen G, Xu B. Hydrogen Bond Donor and Unbalanced Ion Pair Promoter-Assisted Gold-Catalyzed Carbon–Oxygen Cross-Coupling of (Hetero)aryl Iodides with Alcohols. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Guifang Chen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
12
|
Zhang Y, Wu J, Ning L, Chen Q, Feng X, Liu X. Enantioselective synthesis of tetrasubstituted allenes via addition/arylation tandem reaction of 2-activated 1,3-enynes. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Zhang D, Shao YB, Xie W, Chen Y, Liu W, Bao H, He F, Xue XS, Yang X. Remote Enantioselective Desymmetrization of 9,9-Disubstituted 9,10-Dihydroacridines through Asymmetric Aromatic Aminations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dekun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying-Bo Shao
- College of Chemistry, Nankai University, Tianjin 300071, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wansen Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hanyang Bao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Faqian He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024 China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
14
|
Li M, Chia XL, Tian C, Zhu Y. Mechanically planar chiral rotaxanes through catalytic desymmetrization. Chem 2022. [DOI: 10.1016/j.chempr.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Yoon H, Galls A, Rozema SD, Miller SJ. Atroposelective Desymmetrization of Resorcinol-Bearing Quinazolinones via Cu-Catalyzed C-O Bond Formation. Org Lett 2022; 24:762-766. [PMID: 35007090 PMCID: PMC8968294 DOI: 10.1021/acs.orglett.1c04266] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Enantioselective Cu-catalyzed C-O cross coupling reactions yielding atropisomeric resorcinol-bearing quinazolinones have been developed. Utilizing a new guanidinylated dimeric peptidic ligand, a set of products were generated in good yields with excellent stereocontrol. The transformation was readily scalable, and a range of product derivatizations were performed.
Collapse
Affiliation(s)
- Hyung Yoon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Alexandra Galls
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Soren D Rozema
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
16
|
Lou Y, Wei J, Li M, Zhu Y. Distal Ionic Substrate-Catalyst Interactions Enable Long-Range Stereocontrol: Access to Remote Quaternary Stereocenters through a Desymmetrizing Suzuki-Miyaura Reaction. J Am Chem Soc 2022; 144:123-129. [PMID: 34979078 PMCID: PMC9549467 DOI: 10.1021/jacs.1c12345] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spatial distancing of a substrate's reactive group and nonreactive catalyst-binding group from its pro-stereogenic element presents substantial hurdles in asymmetric catalysis. In this context, we report a desymmetrizing Suzuki-Miyaura reaction that establishes chirality at a remote quaternary carbon. The anionic, chiral catalyst exerts stereocontrol through electrostatic steering of substrates, even as the substrate's reactive group and charged catalyst-binding group become increasingly distanced. This study demonstrates that precise long-range stereocontrol is achievable by engaging ionic substrate-ligand interactions at a distal position.
Collapse
Affiliation(s)
- Yazhou Lou
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Junqiang Wei
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Mingfeng Li
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Ye Zhu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
17
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Tamaribuchi K, Tian J, Akagawa K, Kudo K. Enantioselective Nitro‐Michael Addition Catalyzed by N‐Terminal Guanidinylated Helical Peptide. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kenya Tamaribuchi
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Jiaqi Tian
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Kengo Akagawa
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Kazuaki Kudo
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
19
|
Chirality-matched catalyst-controlled macrocyclization reactions. Proc Natl Acad Sci U S A 2021; 118:2113122118. [PMID: 34599107 DOI: 10.1073/pnas.2113122118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
Macrocycles, formally defined as compounds that contain a ring with 12 or more atoms, continue to attract great interest due to their important applications in physical, pharmacological, and environmental sciences. In syntheses of macrocyclic compounds, promoting intramolecular over intermolecular reactions in the ring-closing step is often a key challenge. Furthermore, syntheses of macrocycles with stereogenic elements confer an additional challenge, while access to such macrocycles are of great interest. Herein, we report the remarkable effect peptide-based catalysts can have in promoting efficient macrocyclization reactions. We show that the chirality of the catalyst is essential for promoting favorable, matched transition-state relationships that favor macrocyclization of substrates with preexisting stereogenic elements; curiously, the chirality of the catalyst is essential for successful reactions, even though no new static (i.e., not "dynamic") stereogenic elements are created. Control experiments involving either achiral variants of the catalyst or the enantiomeric form of the catalyst fail to deliver the macrocycles in significant quantity in head-to-head comparisons. The generality of the phenomenon, demonstrated here with a number of substrates, stimulates analogies to enzymatic catalysts that produce naturally occurring macrocycles, presumably through related, catalyst-defined peripheral interactions with their acyclic substrates.
Collapse
|
20
|
Fang G, Wang H, Zheng C, Pan L, Zhao G. Enantioselectivity switch in asymmetric Michael addition reactions using phosphonium salts. Org Biomol Chem 2021; 19:6334-6340. [PMID: 34231639 DOI: 10.1039/d1ob01027a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient access to two enantiomers of one chiral compound is critical for the discovery of drugs. However, it is still a challenging problem owing to the difficulty in obtaining two enantiomers of one chiral catalyst. Here, we report a general method to obtain both enantiomeric products via fine tuning the hydrogen-bonding interactions of phosphonium salts. Amino acid derived phosphonium salts and dipeptide derived phosphonium salts exhibited different properties for controlling the transition state, which could efficiently promote the Michael addition reaction to give opposite configurations of products with high yields and enantioselectivities. Preliminary investigations on the mechanism of the reaction and applications of the products were also performed.
Collapse
Affiliation(s)
- Guosheng Fang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Hongyu Wang
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Changwu Zheng
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Lu Pan
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Gang Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China. and Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| |
Collapse
|
21
|
Ghosh B, Balhara R, Jindal G, Mukherjee S. Catalytic Enantioselective Desymmetrizing Fischer Indolization through Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2021; 60:9086-9092. [PMID: 33555647 DOI: 10.1002/anie.202017268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 12/14/2022]
Abstract
The first catalytic enantioselective Fischer indolization of prochiral diketones containing enantiotopic carbonyl groups is developed and shown to proceed through dynamic kinetic resolution (DKR). Catalyzed by the combination of a spirocyclic chiral phosphoric acid and ZnCl2 (Lewis acid assisted Brønsted acid), this direct approach combines 2,2-disubstituted cyclopentane-1,3-diones with N-protected phenylhydrazines to furnish cyclopenta[b]indole derivatives containing an all-carbon quaternary stereocenter with good to excellent enantioselectivities.
Collapse
Affiliation(s)
- Biki Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Reena Balhara
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
22
|
Ghosh B, Balhara R, Jindal G, Mukherjee S. Catalytic Enantioselective Desymmetrizing Fischer Indolization through Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Biki Ghosh
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| | - Reena Balhara
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| | - Garima Jindal
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| | - Santanu Mukherjee
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| |
Collapse
|
23
|
Trouvé J, Gramage-Doria R. Beyond hydrogen bonding: recent trends of outer sphere interactions in transition metal catalysis. Chem Soc Rev 2021; 50:3565-3584. [DOI: 10.1039/d0cs01339k] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The implementation of interactions beyond hydrogen bonding in the 2nd coordination sphere of transition metal catalysts is rare. However, it has already shown great promise in last 5 years, providing new tools to control the activity and selectivity as here reviewed.
Collapse
|
24
|
Golding WA, Schmitt HL, Phipps RJ. Systematic Variation of Ligand and Cation Parameters Enables Site-Selective C-C and C-N Cross-Coupling of Multiply Chlorinated Arenes through Substrate-Ligand Electrostatic Interactions. J Am Chem Soc 2020; 142:21891-21898. [PMID: 33332114 DOI: 10.1021/jacs.0c11056] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Use of attractive noncovalent interactions between ligand and substrate is an emerging strategy for controlling positional selectivity. A key question relates to whether fine control on molecules with multiple, closely spaced reactive positions is achievable using typically less directional electrostatic interactions. Herein, we apply a 10-piece "toolkit" comprising of two closely related sulfonated phosphine ligands and five bases, each possessing varying cation size, to the challenge of site-selective cross-coupling of multiply chlorinated arenes. The fine tuning provided by these ligand/base combinations is effective for Suzuki-Miyaura coupling and Buchwald-Hartwig coupling on a range of isomeric dichlorinated and trichlorinated arenes, substrates that would produce intractable mixtures when typical ligands are used. This study develops a practical solution for site-selective cross-coupling to generate complex, highly substituted arenes.
Collapse
Affiliation(s)
- William A Golding
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Hendrik L Schmitt
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Robert J Phipps
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
25
|
Yuan Z, Liu X, Liu C, Zhang Y, Rao Y. Recent Advances in Rapid Synthesis of Non-proteinogenic Amino Acids from Proteinogenic Amino Acids Derivatives via Direct Photo-Mediated C-H Functionalization. Molecules 2020; 25:E5270. [PMID: 33198166 PMCID: PMC7696505 DOI: 10.3390/molecules25225270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Non-proteinogenic amino acids have attracted tremendous interest for their essential applications in the realm of biology and chemistry. Recently, rising C-H functionalization has been considered an alternative powerful method for the direct synthesis of non-proteinogenic amino acids. Meanwhile, photochemistry has become popular for its predominant advantages of mild conditions and conservation of energy. Therefore, C-H functionalization and photochemistry have been merged to synthesize diverse non-proteinogenic amino acids in a mild and environmentally friendly way. In this review, the recent developments in the photo-mediated C-H functionalization of proteinogenic amino acids derivatives for the rapid synthesis of versatile non-proteinogenic amino acids are presented. Moreover, postulated mechanisms are also described wherever needed.
Collapse
Affiliation(s)
- Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (X.L.); (C.L.)
| | - Xuanzhong Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (X.L.); (C.L.)
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (X.L.); (C.L.)
| | - Yan Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China;
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Y.); (X.L.); (C.L.)
| |
Collapse
|
26
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
27
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
28
|
Fanourakis A, Docherty PJ, Chuentragool P, Phipps RJ. Recent Developments in Enantioselective Transition Metal Catalysis Featuring Attractive Noncovalent Interactions between Ligand and Substrate. ACS Catal 2020; 10:10672-10714. [PMID: 32983588 PMCID: PMC7507755 DOI: 10.1021/acscatal.0c02957] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Enantioselective transition metal catalysis is an area very much at the forefront of contemporary synthetic research. The development of processes that enable the efficient synthesis of enantiopure compounds is of unquestionable importance to chemists working within the many diverse fields of the central science. Traditional approaches to solving this challenge have typically relied on leveraging repulsive steric interactions between chiral ligands and substrates in order to raise the energy of one of the diastereomeric transition states over the other. By contrast, this Review examines an alternative tactic in which a set of attractive noncovalent interactions operating between transition metal ligands and substrates are used to control enantioselectivity. Examples where this creative approach has been successfully applied to render fundamental synthetic processes enantioselective are presented and discussed. In many of the cases examined, the ligand scaffold has been carefully designed to accommodate these attractive interactions, while in others, the importance of the critical interactions was only elucidated in subsequent computational and mechanistic studies. Through an exploration and discussion of recent reports encompassing a wide range of reaction classes, we hope to inspire synthetic chemists to continue to develop asymmetric transformations based on this powerful concept.
Collapse
Affiliation(s)
- Alexander Fanourakis
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Philip J. Docherty
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Padon Chuentragool
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Robert J. Phipps
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
29
|
Beleh OM, Miller E, Toste FD, Miller SJ. Catalytic Dynamic Kinetic Resolutions in Tandem to Construct Two-Axis Terphenyl Atropisomers. J Am Chem Soc 2020; 142:16461-16470. [PMID: 32857500 DOI: 10.1021/jacs.0c08057] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The defined structure of molecules bearing multiple stereogenic axes is of increasing relevance to materials science, pharmaceuticals, and catalysis. However, catalytic enantioselective approaches to control multiple stereogenic axes remain synthetically challenging. We report the catalytic synthesis of two-axis terphenyl atropisomers, with complementary strategies to both chlorinated and brominated variants, formed with high diastereo- and enantioselectivity. The chemistry proceeds through a sequence of two distinct dynamic kinetic resolutions: first, an atroposelective ring opening of Bringmann-type lactones produces a product with one established axis of chirality, and second, a stereoselective arene halogenation delivers the product with the second axis of chirality established. In order to achieve these results, a class of Brønsted basic guanidinylated peptides, which catalyze an efficient atroposelective chlorination, is reported for the first time. In addition, a complementary bromination is reported, which also establishes the second stereogenic axis. These bromo-terphenyls are accessible following the discovery that chiral anion phase transfer catalysis by C2-symmetric phosphoric acids allows catalyst control in the second stereochemistry-determining event. Accordingly, we established the fully catalyst-controlled stereodivergent synthesis of all possible chlorinated stereoisomers while also demonstrating diastereodivergence in the brominated variants, with significant levels of enantioselectivity in all cases.
Collapse
Affiliation(s)
- Omar M Beleh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Edward Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
30
|
Chinn AJ, Hwang J, Kim B, Parish CA, Krska SW, Miller SJ. Application of High-Throughput Competition Experiments in the Development of Aspartate-Directed Site-Selective Modification of Tyrosine Residues in Peptides. J Org Chem 2020; 85:9424-9433. [PMID: 32614587 DOI: 10.1021/acs.joc.0c01147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein we report a Cu-catalyzed, site-selective functionalization of peptides that employs an aspartic acid (Asp) as a native directing motif, which directs the site of O-arylation at a proximal tyrosine (Tyr) residue. Through a series of competition studies conducted in high-throughput reaction arrays, effective conditions were identified that gave high selectivity for the proximal Tyr in Asp-directed Tyr modification. Good levels of site-selectivity were achieved in the O-arylation at a proximal Tyr residue in a number of cases, including a peptide-small molecule hybrid.
Collapse
Affiliation(s)
- Alex J Chinn
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Jaeyeon Hwang
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Byoungmoo Kim
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Craig A Parish
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Shane W Krska
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
31
|
Storch G, van den Heuvel N, Miller SJ. Site-Selective Nitrene Transfer to Conjugated Olefins Directed by Oxazoline Peptide Ligands. Adv Synth Catal 2020; 362:289-294. [PMID: 32256275 PMCID: PMC7108786 DOI: 10.1002/adsc.201900631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 11/06/2022]
Abstract
Site-selective nitrene transfer to di- and polyene substrates has been achieved using designed peptide-embedded bioxazoline ligands capable of binding copper. In model 1,3-diene substrates, the olefinic position proximal to a directing group was selectively functionalized. Additional studies indicate that this selectivity stems from non-covalent substrate-catalyst interactions. The peptide-mediated nitrene transfer was also applied to polyene natural product retinol and selective proximal functionalization allowed access to a cis-pyrroline modified retinoid.
Collapse
Affiliation(s)
- Golo Storch
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| |
Collapse
|
32
|
Metrano AJ, Miller SJ. Peptide-Based Catalysts Reach the Outer Sphere through Remote Desymmetrization and Atroposelectivity. Acc Chem Res 2019; 52:199-215. [PMID: 30525436 PMCID: PMC6335614 DOI: 10.1021/acs.accounts.8b00473] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Nature’s catalytic machinery has provided
endless inspiration
for chemists. While the enzymatic ideal has yet to be fully realized,
the field has made tremendous strides toward synthetic, small-molecule
catalysts for a wide array of transformations, often drawing upon
biological concepts in their design. One strategy that has been particularly
influenced by enzymology is peptide catalysis, wherein oligopeptides
are implemented as chiral catalysts in synthetically relevant reactions.
The fundamental goal has been to mimic enzymatic active sites by taking
advantage of secondary structures that allow for multifunctional activation
of substrates within a framework of significantly reduced molecular
complexity. Our group has now been studying peptide-based catalysis
for over
two decades. At the outset, there were many reasons to be concerned
that general contributions might not be possible. Precedents existed,
including the Juliá–Colonna epoxidations mediated by
helical oligopeptides, among others. However, we sought to explore
whether peptide catalysts could find broad applications in organic
synthesis despite what was expected to be their principal liability:
conformational flexibility. Over time, we have been able to identify
peptidic catalysts for a variety of site- and enantioselective transformations
ranging from hydroxyl group and arene functionalizations to redox
and C–C bond forming reactions. The peptides often exhibited
excellent catalytic activities, in many cases enabling never-before-seen
patterns of selectivity. Recent studies even suggest that, in certain
situations, the conformational flexibility of these catalysts may
be advantageous for asymmetric induction. In the course of our
studies, opportunities to employ peptide-based
catalysis to solve long-standing and stereochemically intriguing problems
in asymmetric synthesis presented themselves. For example, we have
found that peptides provide exceptional enantiotopic group differentiation
in catalytic desymmetrization reactions. Early results with symmetrical
polyol substrates, such as myo-inositols and glycerols,
eventually spurred the development of remote desymmetrizations of
diarylmethanes, in which the enantiotopic groups are separated from
the prochiral center by ∼6 Å and from one another by nearly
1 nm. Various hydroxyl group functionalizations and electrophilic
brominations, as well as C–C, C–O, and C–N cross-coupling
reactions using peptidic ligands on copper(I) have now been developed
within this reaction archetype. Additionally, the preponderance of
axially chiral, atropisomeric compounds as ligands, organocatalysts,
and pharmacophores encouraged us to employ peptides as atroposelective
catalysts. We have developed peptide-catalyzed brominations of pharmaceutically
relevant biaryl, non-biaryl, and hetero-biaryl atropisomers that take
advantage of dynamic kinetic resolution schemes. These projects have
vastly expanded the reach of our original hypotheses and raised new
questions about peptide-based catalysts and the extent to which they
might mimic enzymes. Herein, we recount the development and
optimization of these stereochemically
complex reactions, with a particular focus on structural and mechanistic
aspects of the peptide-based catalysts that make them well-suited
for their respective functions. The ability of these peptides to address
important yet fundamentally challenging issues in asymmetric catalysis,
combined with their modularity and ease-of-synthesis, make them primed
for future use in organic synthesis.
Collapse
Affiliation(s)
- Anthony J. Metrano
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
33
|
Cui XY, Tan CH, Leow D. Metal-catalysed reactions enabled by guanidine-type ligands. Org Biomol Chem 2019; 17:4689-4699. [DOI: 10.1039/c8ob02240b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A review of metal–guanidine complexes, which are selective and powerful catalysts for organic transformations, asymmetric synthesis, and polymerisation.
Collapse
Affiliation(s)
- Xi-Yang Cui
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| | - Dasheng Leow
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| |
Collapse
|
34
|
Guo S, Dong P, Chen Y, Feng X, Liu X. Chiral Guanidine/Copper Catalyzed Asymmetric Azide‐Alkyne Cycloaddition/[2+2] Cascade Reaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Songsong Guo
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Pei Dong
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Yushuang Chen
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| |
Collapse
|
35
|
Guo S, Dong P, Chen Y, Feng X, Liu X. Chiral Guanidine/Copper Catalyzed Asymmetric Azide‐Alkyne Cycloaddition/[2+2] Cascade Reaction. Angew Chem Int Ed Engl 2018; 57:16852-16856. [DOI: 10.1002/anie.201810679] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/21/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Songsong Guo
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Pei Dong
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Yushuang Chen
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| |
Collapse
|
36
|
Golding WA, Pearce-Higgins R, Phipps RJ. Site-Selective Cross-Coupling of Remote Chlorides Enabled by Electrostatically Directed Palladium Catalysis. J Am Chem Soc 2018; 140:13570-13574. [DOI: 10.1021/jacs.8b08686] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- William A. Golding
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Robert Pearce-Higgins
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Robert J. Phipps
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
37
|
Cui XY, Ge Y, Tan SM, Jiang H, Tan D, Lu Y, Lee R, Tan CH. (Guanidine)copper Complex-Catalyzed Enantioselective Dynamic Kinetic Allylic Alkynylation under Biphasic Condition. J Am Chem Soc 2018; 140:8448-8455. [DOI: 10.1021/jacs.7b12806] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xi-Yang Cui
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yicen Ge
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Siu Min Tan
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Huan Jiang
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Davin Tan
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Richmond Lee
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
38
|
Kwon Y, Chinn AJ, Kim B, Miller SJ. Divergent Control of Point and Axial Stereogenicity: Catalytic Enantioselective C-N Bond-Forming Cross-Coupling and Catalyst-Controlled Atroposelective Cyclodehydration. Angew Chem Int Ed Engl 2018; 57:6251-6255. [PMID: 29637680 PMCID: PMC5964046 DOI: 10.1002/anie.201802963] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Indexed: 01/24/2023]
Abstract
Catalyst control over reactions that produce multiple stereoisomers is a challenge in synthesis. Control over reactions that involve stereogenic elements remote from one another is particularly uncommon. Additionally, catalytic reactions that address both stereogenic carbon centers and an element of axial chirality are also rare. Reported herein is a catalytic approach to each stereoisomer of a scaffold containing a stereogenic center remote from an axis of chirality. Newly developed peptidyl copper complexes catalyze an unprecedented remote desymmetrization involving enantioselective C-N bond-forming cross-coupling. Then, chiral phosphoric acid catalysts set an axis of chirality through an unprecedented atroposelective cyclodehydration to form a heterocycle with high diastereoselectivity. The application of chiral copper complexes and phosphoric acids provides access to each stereoisomer of a framework with two different elements of stereogenicity.
Collapse
Affiliation(s)
- Yongseok Kwon
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, USA
| | - Alex J Chinn
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, USA
| | - Byoungmoo Kim
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, USA
| | - Scott J Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, USA
| |
Collapse
|
39
|
Kwon Y, Chinn AJ, Kim B, Miller SJ. Divergent Control of Point and Axial Stereogenicity: Catalytic Enantioselective C−N Bond‐Forming Cross‐Coupling and Catalyst‐Controlled Atroposelective Cyclodehydration. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802963] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yongseok Kwon
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06520-8107 USA
| | - Alex J. Chinn
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06520-8107 USA
| | - Byoungmoo Kim
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06520-8107 USA
| | - Scott J. Miller
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06520-8107 USA
| |
Collapse
|
40
|
Dong S, Feng X, Liu X. Chiral guanidines and their derivatives in asymmetric synthesis. Chem Soc Rev 2018; 47:8525-8540. [DOI: 10.1039/c7cs00792b] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This article reviews current achievements of chiral guanidines and their derivatives in organocatalysis, and updates versatile guanidine–metal salt combinations in asymmetric catalytic reactions.
Collapse
Affiliation(s)
- Shunxi Dong
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| |
Collapse
|