1
|
Liu X, Zhang J. Progress in Double Dearomatization Reactions. Chemistry 2025; 31:e202404640. [PMID: 39887834 DOI: 10.1002/chem.202404640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
Dearomatization reactions are among the most straightforward and efficient methods for creating sp3-rich cyclic systems from simple, readily available arenes. These reactions have been widely applied in the total synthesis of natural products, medicinal chemistry, and material sciences. The fruitful development of dearomatization strategies and methodologies targeting single aromatic substrate over the past decades has paved the way for more sophisticated multiple dearomatization processes, which offer greater advantages in constructing molecular complexity. Double dearomatization reactions have made significant pioneering strides in recent years. This review will provide an overview of the strategies and detailed examples of multiple dearomatization reactions involving various aromatic compounds, along with a discussion of the related mechanisms and the major challenges that remain in this intriguing yet formidable field.
Collapse
Affiliation(s)
- Xihong Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Jiang Z, Chen Z, Yu X, Lu S, Xu W, Yu B, Stern CL, Li SY, Zhao Y, Liu X, Han Y, Chen S, Cai K, Shen D, Ma K, Li X, Chen AXY. Engineering Helical Chirality in Metal-Coordinated Cyclodextrin Nanochannels. J Am Chem Soc 2025; 147:7325-7335. [PMID: 39964363 DOI: 10.1021/jacs.4c14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Helicates are a defining element of DNAs and proteins, with functions that are critical to a variety of biological processes. Cyclodextrins are promising candidates for forging multiple-stranded helicates with well-defined helicity, but a lack of available tools has precluded the construction of artificial helical nanochannels with a controllable geometry and helicity from these widely available chiral building blocks. Herein, we disclose a family of Ag6L2 helical nanochannels that can be readily assembled from α-cyclodextrin-derived ligands through coordination between pyridinyl groups and Ag+ cations. We discovered that the nanochannels exhibit either an M or a P helicity when the Ag+ cations adopt a tetrahedral coordination geometry while losing most of their helicity when the Ag+ cations are linearly coordinated. Both the geometry and helicity of the nanochannels can be precisely controlled by simply changing the number of methyl groups at the ortho positions of the pyridinyl ligands. The tetracoordinated Ag+ cations interconnect the helical nanochannels into an infinite two-dimensional coordinative network characterized by hexagonal tessellation. Theoretical calculations, which reveal lower energies of the helical conformations observed in crystals compared with those of their inverted counterparts, support the experimental results.
Collapse
Affiliation(s)
- Zhiyuan Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wenmin Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Bo Yu
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shu-Yi Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Yue Zhao
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Xinzhi Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Yeqiang Han
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Shuqi Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Kang Cai
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Kaikai Ma
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Aspen X-Y Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Liu K, Delbianco M. A glycan foldamer that uses carbohydrate-aromatic interactions to perform catalysis. Nat Chem 2025:10.1038/s41557-025-01763-6. [PMID: 40011712 DOI: 10.1038/s41557-025-01763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
In nature, the ability to catalyse reactions is primarily associated with proteins and ribozymes. Inspired by these systems, peptide-based catalysts have been designed to accelerate chemical reactions and/or ensure regio- and stereoselective transformations. We wondered whether other biomolecules (such as glycans) could be designed to perform catalytic functions, expanding the portfolio of synthetic functional oligomers. Here we report a glycan foldamer inspired by the natural Sialyl Lewis X antigen that acts as catalyst in a chemical reaction. This glycan-based catalyst benefits from structural rigidity and modular adaptability, incorporating a substrate-recognition motif alongside a catalytic active site. Leveraging the inherent ability of carbohydrates to engage in CH-π interactions with aromatic substrates, we demonstrate the recruitment and functionalization of a tryptophan via a Pictet-Spengler transformation. Our modular glycan catalyst accelerates the reaction kinetics, enabling the modification of tryptophan-containing peptides in aqueous environments. Our findings pave the way for the development of glycan-based catalysts and suggest the possibility of catalytic capabilities of glycans in biological contexts.
Collapse
Affiliation(s)
- Kaimeng Liu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
4
|
Liu X, Zhu B, Chu A, Wang R. Organocatalyzed Enantioselective Double Dearomatization of Tricyclic Phenols and Alkoxybenzenes. Org Lett 2024; 26:10827-10832. [PMID: 39641758 DOI: 10.1021/acs.orglett.4c03921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
To advance more efficient dearomatization approaches, we present herein an organocatalyzed asymmetric double dearomatization reaction of tricyclic phenols and alkoxybenzenes by leveraging a novel steric hindrance-regulated dearomatization strategy for nonfunctionalized phenols. This protocol allows the efficient synthesis of structurally complex polycyclic diketones with four tertiary carbon centers under mild conditions while also showcasing the potential of multiple dearomatizations for building intricate molecular frameworks from simple starting materials.
Collapse
Affiliation(s)
- Xihong Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Boyan Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Anqi Chu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Syntrivanis L, Tiefenbacher K. Reactivity Inside Molecular Flasks: Acceleration Modes and Types of Selectivity Obtainable. Angew Chem Int Ed Engl 2024; 63:e202412622. [PMID: 39295476 PMCID: PMC11586709 DOI: 10.1002/anie.202412622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024]
Abstract
There is increasing interest in the discovery and application of molecular flasks-supramolecular host structures capable of catalyzing organic reactions. Reminiscent of enzymes due to possessing a host cavity akin to an active site, molecular flasks can exhibit complex catalytic mechanisms and in many cases provide selectivity not achievable in bulk solvent. In this Review, we aim to organize the increasingly diverse examples through a two-part structure. In part one, we provide an overview of the different acceleration modes that operate within molecular flasks, while in part two we showcase, through selected examples, the different types of selectivity that are obtainable through the use of molecular flasks. Particular attention is given to examples that are relevant to current challenges in synthetic organic chemistry. We believe that this structure makes the field more approachable and thus will stimulate the development of novel applications of molecular flasks.
Collapse
Affiliation(s)
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselBaselSwitzerland
- Department of Biosystems Science and EngineeringETHZurichBaselSwitzerland
| |
Collapse
|
6
|
Hoenders D, Ludwanowski S, Barner-Kowollik C, Walther A. Cyclodextrin 'Chaperones' Enable Quasi-Ideal Supramolecular Network Formation and Enhanced Photodimerization of Hydrophobic, Red-shifted Photoswitches in Water. Angew Chem Int Ed Engl 2024; 63:e202405582. [PMID: 38640085 DOI: 10.1002/anie.202405582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Precision-engineered light-triggered hydrogels are important for a diversity of applications. However, fields such as biomaterials require wavelength outside the harsh UV regime to prevent photodamage, typically requiring chromophores with extended π-conjugation that suffer from poor water solubility. Herein, we demonstrate how cyclodextrins can be used as auxiliary agents to not only solubilize such chromophores, but even to preorganize them in a 2 : 2 host-guest inclusion complex to facilitate photodimerization. We apply our concept to styrylpyrene-end-functionalized star-shaped polyethylene glycols (sPEGs). We initially unravel details of the host-guest inclusion complex using spectroscopy and mass spectrometry to give clear evidence of a 2 : 2 complex formation. Subsequently, we show that the resultant supramolecularly linked hydrogels conform to theories of supramolecular quasi-ideal model networks, and derive details on their association dynamics using in-depth rheological measurements and kinetic models. By comparing sPEGs of different arm length, we further elucidate the model network topology and the accessible mechanical property space. The photo-mediated dimerization proceeds smoothly, allowing to transform the supramolecular model networks into covalent ones. We submit that our strategy opens avenues for executing hydrophobic photochemistry in aqueous environments with enhanced control over reactivity, hydrogel topology or programmable mechanical properties.
Collapse
Affiliation(s)
- Daniel Hoenders
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Simon Ludwanowski
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000 Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Walther
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
7
|
Mei S, Ou Q, Tang X, Xu JF, Zhang X. Stabilization of Carbocation Intermediate by Cucurbit[7]uril Enables High Photolysis Efficiency. Org Lett 2023; 25:5291-5296. [PMID: 37428144 DOI: 10.1021/acs.orglett.3c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A cucurbit[7]uril-based host-guest strategy is employed to enhance the efficiency of photolysis reactions that release caged molecules from photoremovable protecting groups. The photolysis of benzyl acetate follows a heterolytic bond cleavage mechanism, thereby leading to the formation of a contact ion pair as the key reactive intermediate. The Gibbs free energy of the contact ion pair is lowered by 3.06 kcal/mol through the stabilization of cucurbit[7]uril, as revealed by DFT calculations, which results in a 40-fold increase in the quantum yield of the photolysis reaction. This methodology is also applicable to the chloride leaving group and the diphenyl photoremovable protecting group. We anticipate that this research presents a novel strategy to improve reactions involving active cationics, thereby enriching the field of supramolecular catalysis.
Collapse
Affiliation(s)
- Shan Mei
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qi Ou
- AI for Science Institute, Beijing 100080, China
- DP Technology, Beijing 100080, China
| | - Xingchen Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Wei L, Fan C, Rao M, Gao F, He C, Sun Y, Zhu S, He Q, Yang C, Wu W. Triplet-triplet annihilation upconversion in LAPONITE®/PVP nanocomposites: absolute quantum yields of up to 23.8% in the solid state and application to anti-counterfeiting. MATERIALS HORIZONS 2022; 9:3048-3056. [PMID: 36213984 DOI: 10.1039/d2mh00887d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The low quantum efficiency in the solid phase and the highly efficient quenching by oxygen are two major weaknesses limiting the practical applications of triplet-triplet annihilation (TTA) upconversion (UC). Herein, we report an organic-inorganic hybrid nanocomposites fabricated by self-assembly of LAPONITE® clay and poly(N-vinyl-2-pyrrolidone) (PVP), which serves as excellent matrix for solid-state TTA-UC even in air. In the hybrid hydrogel doped by TTA-UC components, the anionic acceptors are arranged in an ordered manner at the nano-disk edge through electrostatic attraction, which avoids haphazard accumulation of the acceptors and allows for highly efficient inter-acceptor triplet energy migration. Moreover, the entangled PVP could not only protect the triplet excitons from oxygen quenching but even proactively eliminate oxygen by photoirradiation. Significantly, the dried gel prepared by completely removing water from the hydrogel gave absolute UC quantum efficiencies of up to 23.8% (out of a 50% maximum), which is the highest TTA-UC efficiency obtained in the solid state. The dried gels are readily made into powder by grinding with maintained UC emissions, making them convenient for application to information encryption and anti-counterfeiting security by virtue of the high UC quantum efficiency and insensitivity to oxygen.
Collapse
Affiliation(s)
- Lingling Wei
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Chunying Fan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ming Rao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Fanrui Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Cheng He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Yujiao Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Sijia Zhu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Qiuhui He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
9
|
Kanai H, Yamada K, Salikolimi K, Kodama K, Ishida Y. Supramolecular Architecture of an Amphiphilic Amino Alcohol as a Versatile Chiral Environment for Stereocontrolled Photoreaction of Various Anthracenes. Chemistry 2022; 28:e202201940. [DOI: 10.1002/chem.202201940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Hayato Kanai
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Applied Chemistry Graduate School of Science and Engineering Saitama University 255 Shimo-Okubo, Sakura-ku Saitama 338-8570 Japan
| | - Kuniyo Yamada
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | | | - Koichi Kodama
- Department of Applied Chemistry Graduate School of Science and Engineering Saitama University 255 Shimo-Okubo, Sakura-ku Saitama 338-8570 Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
10
|
Trajectory of the spectral/structural rearrangements for photo-oxidative reaction of neat ketoprofen and its cyclodextrin complex. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Synthesis of cyclodextrin derivatives for enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate. Nat Protoc 2022; 17:2494-2516. [PMID: 36045225 DOI: 10.1038/s41596-022-00722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/02/2022] [Indexed: 11/08/2022]
Abstract
Photochemical methods are increasingly being used in organic synthesis. They are especially useful for preparing many compounds that are not readily accessible through thermal or enzymatic reactions. The supramolecular strategy has proved highly promising in recent years for manipulating the stereochemical outcome of chiral photoreactions through relatively strong and long-lasting noncovalent interactions in both ground and excited states. Among the numerous chiral photochemical reactions, photocyclodimerization of 2-anthracenecarboxylate (AC) is the most comprehensively studied supramolecular chiral photoreaction and has essentially become a benchmark reaction for evaluating supramolecular photochirogenesis. Cyclodextrin (CD) derivatives were the earliest and are the most widely applied chiral host for mediating photoreactions. Herein, we use CD-mediated photocyclodimerization of AC as an example to introduce the operation process of supramolecular chiral photoreactions. The protocol includes the following contents: (i) the preparation, purification and characterization of β-CD derivatives; (ii) methods for investigating the host-guest inclusion behavior between AC and β-CD derivatives; (iii) the photochemical reaction operation flow under different solvent and temperature conditions; (iv) chiral high-performance liquid chromatography (HPLC) analyses of the product distribution and enantioselectivity. The protocol is introduced by using representative examples of the synthesis of β-CD derivatives and the manipulation of environmental factors that give excellent regio- and enantioselectivities in the photocyclodimerization of AC. The synthesis and purification of β-CD derivatives require 3-5 d of work. The photoirradiation of AC with β-CD derivatives can be done within 1 h. The product analysis requires 5 h.
Collapse
|
12
|
Tu C, Wu W, Liang W, Zhang D, Xu W, Wan S, Lu W, Yang C. Host-Guest Complexation-Induced Aggregation Based on Pyrene-Modified Cyclodextrins for Improved Electronic Circular Dichroism and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202203541. [PMID: 35499863 DOI: 10.1002/anie.202203541] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 01/03/2023]
Abstract
Several γ-cyclodextrin (CD) derivatives mono- or di-substituted by pyrenes at the primary rim of the CD were demonstrated to aggregate into nano-strips in aqueous solutions, with the pyrene moieties interpenetrating into γ-CD cavities. The hydrophobic complexation-induced aggregation provides a rigid chiral environment for the pyrenes and leads to significant electronic circular dichroism (ECD) and circularly polarized luminescence (CPL) activities, giving unprecedently high gabs and glum values up to 4.3×10-2 and 5.3×10-2 , respectively. The aggregates lead to excimer emission with high quantum yields and show BCPL and Bi CPL up to 338. 6 M-1 cm-1 and 169.3 M-1 cm-1 , respectively.
Collapse
Affiliation(s)
- Chenlin Tu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Wenting Liang
- Department of Chemistry, Institute of Environmental Science Shanxi University, Taiyuan, 030006, China
| | - Dongjing Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Wei Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Shigang Wan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
13
|
Yu X, Gao F, Zhao W, Lai H, Wei L, Yang C, Wu W. BODIPY-conjugated bis-terpyridine Ru(II) complexes showing ultra-long luminescence lifetimes and applications to triplet-triplet annihilation upconversion. Dalton Trans 2022; 51:9314-9322. [PMID: 35670531 DOI: 10.1039/d2dt01373h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The poor excited-state properties of bis-terpyridine Ru(II) complexes have significantly limited the applications of these complexes as sensitizers in photocatalysis and triplet-triplet annihilation upconversion. In the present work, two novel ruthenium bis-terpyridine complexes (Ru-1 and Ru-2) conjugated with visible-light-harvesting bodipy chromophores were synthesized. These complexes showed strong absorption of visible light, the bodipy-localized intraligand triplet state (3IL) was efficiently populated, and the phosphorescence of bodipy at room temperature in both complexes was observed. The luminescence lifetimes of these complexes were significantly prolonged, with that of the heteroleptic complex Ru-2 prolonged to 37.9 μs and that of the homoleptic bis-terpyridine complex Ru-1 unprecedentedly prolonged to 356 μs, which was hundreds of times longer than the current longest emissive state achieved in ruthenium terpyridine complexes. The ultra-long triplet lifetimes and strong visible-light absorbing ability made them new candidates of triplet sensitizers, and were first applied to TTA-UC for terpyridine Ru(II) complexes with a Ru-1/Py system showing a ΦUC of 2.93% in dilute solutions at concentrations as low as 1.0 μM.
Collapse
Affiliation(s)
- Xingke Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Fanrui Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Weiyi Zhao
- Sichuan University-Pittsburgh Institute, Sichuan University, Chengdu 610064, China
| | - Hongxia Lai
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Lingling Wei
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
14
|
Mizuno H, Fukuhara G. Solution-State Hydrostatic Pressure Chemistry: Application to Molecular, Supramolecular, Polymer, and Biological Systems. Acc Chem Res 2022; 55:1748-1762. [PMID: 35657708 DOI: 10.1021/acs.accounts.2c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusPressure (P), as one of the most inherent state quantities, has become an academic subject of study and has attracted attention for a long time for the minute control of reaction equilibria and rates, not only in the gas phase, based on the gas state equation, but also in the solution state. In the latter case, the pressure applied to the solutions is classified as hydrostatic pressure, which is a type of isotropic mechanical force. For instance, deep-sea organisms are exposed to hydrostatic pressure environments of up to 100 MPa, implying that hydrostatic pressurization plays a role in homeostatic functions at physiological levels. The pressure control of such complicated biological behavior can be addressed by thermodynamics or kinetics. In fact, the spontaneity (ΔG) of a reaction that is governed by weak interactions (approximately 10 kcal/mol), such as electrostatic, van der Waals, hydrophobic, hydrogen bonding, and π-π stacking, is determined by the exquisite balance of enthalpy (ΔH) and entropy changes (ΔS), in accordance with the fundamental thermodynamic equation ΔG = ΔH - TΔS. The mutually correlated ΔH-ΔS relationship is known as the enthalpy-entropy compensation law, in which a more negative enthalpic change (more exothermic) causes further entropic loss based on a more negative entropy change. Namely, changing the temperature (T) as the state quantity, except for P, is highly likely to be equal to controlling the entropy term. The solution-state entropy term is relatively vague, mainly based on solvation, and thus unpredictable, even using high-cost quantum mechanical calculations because of the vast number of solvation molecules. Hence, such entropy control is not always feasible and must be demonstrated on a trial-and-error basis. Furthermore, the above-mentioned equation can be rearranged as ΔG = ΔF + PΔV, enabling us to control solution-state reactions by simply changing P as hydrostatic pressure based on the volume change (ΔV). The volume term is strongly relevant to conformational changes, solvation changes, and molecular recognition upon complexation and thus is relatively predictable, that is, volumetrically compact or not, compared to the complicated entropy term. These extrathermodynamic and kinetic observations prompted us to use hydrostatic pressure as a controlling factor over a long period. Hydrostatic pressure chemistry in the solution phase has developed over the past six decades and then converged and passed the fields of mechanochemistry and mechanobiology, which are new but challenging and current hot topics in multidisciplinary science. In this Account, we fully summarize our achievements in solution-state hydrostatic pressure chemistry for smart/functional molecular, supramolecular, polymer, and biological systems. We hope that the phenomena, mechanistic outcomes, and methodologies that we introduced herein for hydrostatic-pressure-controlling dynamics can provide guidance for both theoretical and experimental chemists working in supramolecular and (bio)macromolecular chemistry, mechanoscience, materials science, and technology.
Collapse
Affiliation(s)
- Hiroaki Mizuno
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
15
|
Liu Z, Zhou L, Zhang H, Han J. Cyclodextrin-pillar[ n]arene hybridized macrocyclic systems. Org Biomol Chem 2022; 20:4278-4288. [PMID: 35552579 DOI: 10.1039/d2ob00671e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclodextrin (CD) and pillar[n]arene are significant macrocyclic host molecules in supramolecular chemistry, and have either similar or contrasting physicochemical properties, for example, both can provide capable cavities available for recognizing various favorite guest molecules, while they usually possess different solubility in aqueous solutions, and exhibit diverse chiral characteristics. To balance their similarity and differences inherited from each chemical structure and incorporate both advantages, the CD-pillar[n]arene hybrid macrocyclic system was recently developed. In this review, we will focus on the preparation and application of CD-pillar[n]arene hybrid macrocyclic systems. Both noncovalent interactions and covalent bonds were employed in the synthesis strategies of building the hybrid macrocyclic system, which was in the form of host-guest inclusion, self-assembly, conjugated molecules, and polymeric structures. Furthermore, the CD-pillar[n]arene hybrid macrocyclic system has been primarily applied for the removal of organic pollutants from water, induced chirality, as well as photocatalysis due to the integration of both cavities from CD and pillar[n]arene as hybrid hosts and chiral characteristics inherited from their chemical structures.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China.
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
16
|
Abstract
Multicharged cyclodextrin (CD) supramolecular assemblies, including those based on positively/negatively charged modified mono-6-deoxy-CDs, per-6-deoxy-CDs, and random 2,3,6-deoxy-CDs, as well as parent CDs binding positively/negatively charged guests, have been extensively applied in chemistry, materials science, medicine, biological science, catalysis, and other fields. In this review, we primarily focus on summarizing the recent advances in positively/negatively charged CDs and parent CDs encapsulating positively/negatively charged guests, especially the construction process of supramolecular assemblies and their applications. Compared with uncharged CDs, multicharged CDs display remarkably high antiviral and antibacterial activity as well as efficient protein fibrosis inhibition. Meanwhile, charged CDs can interact with oppositely charged dyes, drugs, polymers, and biomacromolecules to achieve effective encapsulation and aggregation. Consequently, multicharged CD supramolecular assemblies show great advantages in improving drug-delivery efficiency, the luminescence properties of materials, molecular recognition and imaging, and the toughness of supramolecular hydrogels, in addition to enabling the construction of multistimuli-responsive assemblies. These features are anticipated to not only promote the development of CD-based supramolecular chemistry but also contribute to the rapid exploitation of these assemblies in diverse interdisciplinary applications.
Collapse
Affiliation(s)
- Zhixue Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
17
|
Tu C, Wu W, Liang W, Zhang D, Xu W, Wan S, Lu W, Yang C. Host–Guest Complexation‐Induced Aggregation Based on Pyrene‐Modified Cyclodextrins for Improved Electronic Circular Dichroism and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenlin Tu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Wenting Liang
- Department of Chemistry Institute of Environmental Science Shanxi University Taiyuan 030006 China
| | - Dongjing Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Wei Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Shigang Wan
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Wei Lu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Cheng Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| |
Collapse
|
18
|
Zhang D, Liang W, Yi J, Chen J, Lv Y, Zhao T, Xiao C, Xie X, Wu W, Yang C. Photochemical graft of γ-cyclodextrin’s interior leading to in-situ charge-transfer complexes with unusual regioselectivity and its application in 3D photo-printing. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Rao M, Fan C, Ji J, Liang W, Wei L, Zhang D, Yan Z, Wu W, Yang C. Catalytic Chiral Photochemistry Sensitized by Chiral Hosts-Grafted Upconverted Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21453-21460. [PMID: 35486103 DOI: 10.1021/acsami.2c02313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Singlet chiral photocatalysis is highly challenging. Herein, we report fluorescence resonance energy transfer (FRET)-based chiral photocatalysis with γ-cyclodextrin (CD)-grafted lanthanide-doped upconverted nanoparticles (UCNP). The CD-modified UCNP strongly emits in the UV wavelength region upon excitation with a 980 nm laser, which selectively sensitizes the photosubstrates complexed by CD on the surface of UCNP through FRET. Therefore, enantiodifferentiating photocyclodimerization of anthracene or naphthalene derivatives sensitized by the CD-modified UCNP gives photoproducts in good enantioselectivity even in the presence of a catalytic amount of CD-modified UCNP. Moreover, the photocatalysts are readily separated and could be reused for at least six cycles without decreasing the enantioselectivity.
Collapse
Affiliation(s)
- Ming Rao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Chunying Fan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiecheng Ji
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan 030006, China
| | - Lingling Wei
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Dongjing Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zhiqiang Yan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Li H, Hu X, Liu F, Sun D, Wu Y, Liu S. Photodimerization of azaanthracene derivatives mediated by cucurbit[10]uril. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Genzink MJ, Kidd JB, Swords WB, Yoon TP. Chiral Photocatalyst Structures in Asymmetric Photochemical Synthesis. Chem Rev 2022; 122:1654-1716. [PMID: 34606251 PMCID: PMC8792375 DOI: 10.1021/acs.chemrev.1c00467] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Asymmetric catalysis is a major theme of research in contemporary synthetic organic chemistry. The discovery of general strategies for highly enantioselective photochemical reactions, however, has been a relatively recent development, and the variety of photoreactions that can be conducted in a stereocontrolled manner is consequently somewhat limited. Asymmetric photocatalysis is complicated by the short lifetimes and high reactivities characteristic of photogenerated reactive intermediates; the design of catalyst architectures that can provide effective enantiodifferentiating environments for these intermediates while minimizing the participation of uncontrolled racemic background processes has proven to be a key challenge for progress in this field. This review provides a summary of the chiral catalyst structures that have been studied for solution-phase asymmetric photochemistry, including chiral organic sensitizers, inorganic chromophores, and soluble macromolecules. While some of these photocatalysts are derived from privileged catalyst structures that are effective for both ground-state and photochemical transformations, others are structural designs unique to photocatalysis and offer insight into the logic required for highly effective stereocontrolled photocatalysis.
Collapse
Affiliation(s)
- Matthew J Genzink
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jesse B Kidd
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Wesley B Swords
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Song J, Xiao H, Fang L, Qu L, Zhou X, Xu ZX, Yang C, Xiang H. Highly Phosphorescent Planar Chirality by Bridging Two Square-Planar Platinum(II) Complexes: Chirality Induction and Circularly Polarized Luminescence. J Am Chem Soc 2022; 144:2233-2244. [DOI: 10.1021/jacs.1c11699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jintong Song
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Hui Xiao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Lizhi Fang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Lang Qu
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Cheng Yang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Haifeng Xiang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| |
Collapse
|
23
|
Xue C, Xu L, Wang H, Li T, Liu M. Circularly Polarized Luminescence (CPL) from Pyrene‐Appended Cyclohexanediamides and Photoirradiation‐Tuned CPL Inversion. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chenlu Xue
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Lifei Xu
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Han‐Xiao Wang
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Tiesheng Li
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
| | - Minghua Liu
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| |
Collapse
|
24
|
|
25
|
Chen L, Yang W, Gao C, Liao X, Yang J, Yang B. The complexes of cannabidiol mediated by bridged cyclodextrins dimers with high solubilization, in vitro antioxidant activity and cytotoxicity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Wang X, Ji J, Rao M, Wu W, Yang C. Supramolecular Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylic Acid Mediated by Bridged β-Cyclodextrins: Critical Effects of the Host Structure, pH and Co-Solvents. Chem Asian J 2021; 16:3091-3096. [PMID: 34510777 DOI: 10.1002/asia.202100827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Indexed: 02/05/2023]
Abstract
Several sulfoxide- and sulfone-bridged β-cyclodextrin (CD) dimers were synthesized for mediating the enantiodifferentiating [4+4] photocyclodimerization of 2-anthracenecarboxylic acid (AC). The complexation behavior of these chiral hosts with AC was investigated by UV-vis, circular dichroism, fluorescence, and NMR spectroscopies and certified the formation of 1 : 1 and 1 : 2 host-guest complexes. The product distribution and enantioselectivity of the photoreaction turned out to be a critical function of the chemical structure of bridged CDs. Comparing to the sulfur-bridged 2AX -3GX β-CD dimer 7, the conversion of the photolyzes with sulfoxide-bridged was significantly improved, and the ee of cyclodimer 2 was remarkably increased from -82.8% with 7 to -96.7% with the sulfoxide-bridged 2AX -3GX β-CD dimer 8. The relative yields and ee values of the slipped cyclodimers 5 and 6 were greatly enhanced in the presence of 6 M CsCl. The reaction selectivity is susceptible to the pH variation of the aqueous buffer solution, demonstrating that the supramolecular photochirogenesis is controlled by multidimensional factors, including the chemical structure of the chiral host, solvent, and pH conditions.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, Healthy Food Evaluation Research Center, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jiecheng Ji
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, Healthy Food Evaluation Research Center, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Ming Rao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, Healthy Food Evaluation Research Center, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, Healthy Food Evaluation Research Center, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, Healthy Food Evaluation Research Center, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
27
|
Bui CV, Rosenau T, Hettegger H. Polysaccharide- and β-Cyclodextrin-Based Chiral Selectors for Enantiomer Resolution: Recent Developments and Applications. Molecules 2021; 26:molecules26144322. [PMID: 34299597 PMCID: PMC8307936 DOI: 10.3390/molecules26144322] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
Polysaccharides, oligosaccharides, and their derivatives, particularly of amylose, cellulose, chitosan, and β-cyclodextrin, are well-known chiral selectors (CSs) of chiral stationary phases (CSPs) in chromatography, because they can separate a wide range of enantiomers. Typically, such CSPs are prepared by physically coating, or chemically immobilizing the polysaccharide and β-cyclodextrin derivatives onto inert silica gel carriers as chromatographic support. Over the past few years, new chiral selectors have been introduced, and progressive methods to prepare CSPs have been exploited. Also, chiral recognition mechanisms, which play a crucial role in the investigation of chiral separations, have been better elucidated. Further insights into the broad functional performance of commercially available chiral column materials and/or the respective newly developed chiral phase materials on enantiomeric separation (ES) have been gained. This review summarizes the recent developments in CSs, CSP preparation, chiral recognition mechanisms, and enantiomeric separation methods, based on polysaccharides and β-cyclodextrins as CSs, with a focus on the years 2019-2020 of this rapidly developing field.
Collapse
Affiliation(s)
- Cuong Viet Bui
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, Tulln, A-3430 Vienna, Austria; (C.V.B.); (T.R.)
- Department of Food Technology, Faculty of Chemical Engineering, University of Science and Technology—The University of Danang, Danang City 550000, Vietnam
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, Tulln, A-3430 Vienna, Austria; (C.V.B.); (T.R.)
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, FI-20500 Åbo, Finland
| | - Hubert Hettegger
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, Tulln, A-3430 Vienna, Austria; (C.V.B.); (T.R.)
- Correspondence:
| |
Collapse
|
28
|
Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev 2021; 50:7681-7724. [PMID: 34008654 DOI: 10.1039/d1cs00175b] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
29
|
Chen XY, Chen H, Đorđević L, Guo QH, Wu H, Wang Y, Zhang L, Jiao Y, Cai K, Chen H, Stern CL, Stupp SI, Snurr RQ, Shen D, Stoddart JF. Selective Photodimerization in a Cyclodextrin Metal-Organic Framework. J Am Chem Soc 2021; 143:9129-9139. [PMID: 34080831 DOI: 10.1021/jacs.1c03277] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For the most part, enzymes contain one active site wherein they catalyze in a serial manner chemical reactions between substrates both efficiently and rapidly. Imagine if a situation could be created within a chiral porous crystal containing trillions of active sites where substrates can reside in vast numbers before being converted in parallel into products. Here, we report how it is possible to incorporate 1-anthracenecarboxylate (1-AC-) as a substrate into a γ-cyclodextrin-containing metal-organic framework (CD-MOF-1), where the metals are K+ cations, prior to carrying out [4+4] photodimerizations between pairs of substrate molecules, affording selectively one of four possible regioisomers. One of the high-yielding regioisomers exhibits optical activity as a result of the presence of an 8:1 ratio of the two enantiomers following separation by high-performance liquid chromatography. The solid-state superstructure of 1-anthracenecarboxylate potassium salt (1-ACK), which is co-crystallized with γ-cyclodextrin, reveals that pairs of substrate molecules are not only packed inside tunnels between spherical cavities present in CD-MOF-1, but also stabilized-in addition to hydrogen-bonding to the C-2 and C-3 hydroxyl groups on the d-glucopyranosyl residues present in the γ-cyclodextrin tori-by combinations of hydrophobic and electrostatic interactions between the carboxyl groups in 1-AC- and four K+ cations on the waistline between the two γ-cyclodextrin tori in the tunnels. These non-covalent bonding interactions result in preferred co-conformations that account for the highly regio- and enantioselective [4+4] cycloaddition during photoirradiation. Theoretical calculations, in conjunction with crystallography, support the regio- and stereochemical outcome of the photodimerization.
Collapse
Affiliation(s)
- Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyuan Chen
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qing-Hui Guo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, 676 North St. Clair Street, Chicago, Illinois 60611, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
30
|
Rao M, Wu W, Yang C. Recent progress on the enantioselective excited-state photoreactions by pre-arrangement of photosubstrate(s). GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
31
|
Yang W, Yang L, Li F, Zhao Y, Liao X, Gao C, Yang J, Yang B. pH-sensitive β-cyclodextrin derivatives for the controlled release of Podophyllotoxin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Zuo M, Velmurugan K, Wang K, Tian X, Hu XY. Insight into functionalized-macrocycles-guided supramolecular photocatalysis. Beilstein J Org Chem 2021; 17:139-155. [PMID: 33564325 PMCID: PMC7849235 DOI: 10.3762/bjoc.17.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/09/2020] [Indexed: 01/11/2023] Open
Abstract
Due to the unique characteristics of macrocycles (e.g., the ease of modification, hydrophobic cavities, and specific guest recognition), they can provide a suitable environment to realize photocatalysis via noncovalent interactions with different substrates. In this minireview, we emphasized the photochemical transformation and catalytic reactivity of different guests based on the binding with various macrocyclic hosts as well as on the role of macrocyclic-hosts-assisted hybrid materials in energy transfer. To keep the clarity of this review, the macrocycles are categorized into the most commonly used supramolecular hosts, including crown ethers, cyclodextrins, cucurbiturils, calixarenes, and pillararenes. This minireview not only summarizes the role that macrocycles play in photocatalytic reactions but also clarifies the photocatalytic mechanisms. Finally, the future research efforts and new pathways to apply macrocycles and supramolecular hybrid materials in photocatalysis are also discussed.
Collapse
Affiliation(s)
- Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xueqi Tian
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| |
Collapse
|
33
|
Peng C, Liang W, Ji J, Fan C, Kanagaraj K, Wu W, Cheng G, Su D, Zhong Z, Yang C. Pyrene-tiaraed pillar[5]arene: Strong intramolecular excimer emission applicable for photo-writing. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Hao T, Yang Y, Liang W, Fan C, Wang X, Wu W, Chen X, Fu H, Chen H, Yang C. Trace mild acid-catalysed Z → E isomerization of norbornene-fused stilbene derivatives: intelligent chiral molecular photoswitches with controllable self-recovery. Chem Sci 2020; 12:2614-2622. [PMID: 34164029 PMCID: PMC8179340 DOI: 10.1039/d0sc05213b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Stilbene derivatives have long been known to undergo "acid-catalyzed" Z → E isomerization, where a strong mineral acid at high concentration is practically necessary. Such severe reaction conditions often cause undesired by-reactions and limit their potential application. Herein, we present a trace mild acid-catalyzed Z → E isomerization found with stilbene derivatives fused with a norbornene moiety. By-reactions, such as the migration of the C[double bond, length as m-dash]C double bond and electrophilic addition reactions, were completely inhibited because of the ring strain caused by the fused norbornene component. Direct photolysis of the E isomers at selected wavelengths led to the E → Z photoisomerization of these stilbene derivatives and thus constituted a unique class of molecular switches orthogonally controllable by light and acid. The catalytic amount of acid could be readily removed, and the Z → E isomerization could be controlled by turning on/off the irradiation of a photoacid, which allowed repeated isomerization in a non-invasive manner. Moreover, the Z isomer produced by photoisomerization could spontaneously self-recover to the E isomer in the presence of a catalytic amount of acid. The kinetics of Z → E isomerization were adjustable by manipulating catalytic factors and, therefore, unprecedented molecular photoswitches with adjustable self-recovery were realized.
Collapse
Affiliation(s)
- Taotao Hao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Yongsheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University Taiyuan 030006 China
| | - Chunying Fan
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xin Wang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xiaochuan Chen
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| |
Collapse
|
35
|
Wang Q, Liang W, Wei X, Wu W, Inoue Y, Yang C, Liu Y. A Supramolecular Strategy for Enhancing Photochirogenic Performance through Host/Guest Modification: Dicationic γ-Cyclodextrin-Mediated Photocyclodimerization of 2,6-Anthracenedicarboxylate. Org Lett 2020; 22:9757-9761. [PMID: 33284623 DOI: 10.1021/acs.orglett.0c03848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Possessing an extra anionic handle for chiral supramolecular interactions, 2,6-anthracenedicarboxylate exhibited greater photochirogenic performance than 2-anthracenecarboxylate to afford the anti-cyclodimer in up to 94% yield and -72% enantiomeric excess upon photoirradiation with dicationic γ-cyclodextrins.
Collapse
Affiliation(s)
- Qian Wang
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan 030006, China
| | - Xueqin Wei
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Yoshihisa Inoue
- Department of Applied Chemistry, Osaka University, Yamada-oka 2-1, Suita 565-0871, Japan
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
36
|
|
37
|
Designing and preparing supramolecular fluorescent probe based on carminic acid and γ-cyclodextrins and studying their application for detection of 2-aminobenzidazole. Carbohydr Polym 2020; 241:116367. [PMID: 32507167 DOI: 10.1016/j.carbpol.2020.116367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 01/30/2023]
Abstract
Supramolecular fluorescent probe, which was designed and modeled from carminic acid (CA) and γ-cyclodextrins (γ-CDs), was initially qualified and stated comprehensively. Fluorescence intensity of CA could be dramatically enhanced ∼850 a.u. through formation of a supramolecular fluorescent probe CA@γ-CDs. The super-probe was verified by geometric conformation and molecular docking, and subsequently characterized by FT-IR, NMR, XRD and fluorescence lifetime. Furthermore, the CA@γ-CDs probe was proved on the detection of fungicide 2-aminobenzidazole (2-BZ). Finally, fluorescence performance of CA and the application of the probe for molecular recognition were both motivated by γ-CDs significantly, which could facilitate the fluorescence detection of CA more extensively and precisely.
Collapse
|
38
|
Sueishi Y, Hagiwara S, Matsumoto Y, Hanaya T. Comparative study of inclusion complexation of tetraalkylphosphonium and ammonium salts with cucurbit[7]uril. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Kanagaraj K, Liang W, Rao M, Yao J, Wu W, Cheng G, Ji J, Wei X, Peng C, Yang C. pH-Controlled Chirality Inversion in Enantiodifferentiating Photocyclodimerization of 2-Antharacenecarboxylic Acid Mediated by γ-Cyclodextrin Derivatives. Org Lett 2020; 22:5273-5278. [PMID: 32418431 DOI: 10.1021/acs.orglett.0c01194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Several γ-cyclodextrin (γ-CDx) derivatives were used as chiral hosts for the photocyclodimerization of 2-anthracenecarboxylic acid (AC). The effect of pH on photoreactivity and stereochemical outcome of photoproducts was investigated. Upon changing the solution pH, the stereochemical outcome of HH cyclodimer 3 was inverted from 25.2% to -64.4% and 41.2% to -76.2%, respectively, in the photocyclodimerization of AC mediated by bis-quinoline-modified γ-CDx 7 and its N-methylated derivative 8.
Collapse
Affiliation(s)
- Kuppusamy Kanagaraj
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Wenting Liang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.,Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ming Rao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Jiabin Yao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Guo Cheng
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Jiecheng Ji
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Xueqin Wei
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Chao Peng
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
40
|
Ji J, Wu W, Wei X, Rao M, Zhou D, Cheng G, Gong Q, Luo K, Yang C. Synergetic effects in the enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by β-cyclodextrin-pillar[5]arene-hybridized hosts. Chem Commun (Camb) 2020; 56:6197-6200. [PMID: 32396589 DOI: 10.1039/d0cc02055a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tri-cavity hosts consisting of one pillar[5]arene (P5) sandwiched by two β-cyclodextrins (CDs) were synthesized, and their diastereoseparation was successfully accomplished. Photocyclodimerization of 2-anthracenecarboxylate with these hybrid hosts demonstrated the critical dependence of stereoselectivity on the absolute configuration of the central P5 and the conjugating positions on the β-CD, and gave the non-classical HT photodimers in up to 87% ee.
Collapse
Affiliation(s)
- Jiecheng Ji
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Healthy Food Evaluation Research Center and College of Chemistry, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hu X, Liu F, Zhang X, Zhao Z, Liu S. Expected and unexpected photoreactions of 9-(10-)substituted anthracene derivatives in cucurbit[ n]uril hosts. Chem Sci 2020; 11:4779-4785. [PMID: 34122934 PMCID: PMC8159169 DOI: 10.1039/d0sc00409j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/23/2020] [Indexed: 11/21/2022] Open
Abstract
By arranging substrates in a "reaction ready" state through noncovalent interactions, supramolecular nanoreactors/catalysts show high selectivity and/or rate acceleration features. Herein, we report the host-guest complexation of 9-(10-)substituted anthracene derivatives (G1-G3) with cucurbit[n]uril (CB[n], n = 8, 10), and the photoreactions of these derivatives in the presence of CB[n] hosts. Both CB[10] and CB[8] showed no obvious effects on the photoreaction of 9,10-disubstituted derivative G1. For G2 and G3, CB[10] operated as either a nanoreactor or catalyst (10%) for the photodimerization of two compounds with high selectivity and high yield. However, although CB[8] formed a 1 : 2 complex with G2, as also observed with CB[10], the photosolvolysis product (9-anthracenemethanol) was obtained quantitatively after photoirradiation of the CB[8]·2G2 complex. This unexpected photosolvolysis was rationalized by a plausible catalytic cycle in which anthracene acts as a photoremovable protecting group (PPG) and the carbonium ion intermediate is stabilized by CB[8].
Collapse
Affiliation(s)
- Xianchen Hu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China
| | - Fengbo Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China
| | - Xiongzhi Zhang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology Wuhan 430081 China
| | - Zhiyong Zhao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology Wuhan 430081 China
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology Wuhan 430081 China
| |
Collapse
|
42
|
Gao B, Wang G, Li B, Wu L. Self-Inclusion and Dissociation of a Bridging β-Cyclodextrin Triplet. ACS OMEGA 2020; 5:8127-8136. [PMID: 32309722 PMCID: PMC7161068 DOI: 10.1021/acsomega.0c00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
To understand the self-inclusion and the dissociation in a branched β-cyclodextrin (CD) system, we designed and synthesized a β-CD trimer in which each CD group is connected to one of bridging arms of a planar triphenylbenzene core through a CuAAC click reaction. Only one rather than two or all of the three host CDs was demonstrated to be in a self-including state in water, while no self-inclusion was observed to occur in dimethylsulfoxide (DMSO) via the characterization of 1H and NOESY NMR spectra. The configuration structures of the CD groups in the self-included state were evaluated, and the dissociation to free state in water was investigated under various conditions like heating, increased acidity, and discharging versus the addition of competitive guests. While raised temperature and increased acidity did not break the self-inclusion, two adamantane guest molecules were found to show capability in driving the equilibrium to get back to free state against the self-inclusion. The inclusion process of the added guests was believed to involve in the dissociation of the self-inclusion and the occupation of the guests in CD cavity. The results of host-guest interaction study indicated that the stable combination of guests was favorable for blocking the structural overturning of glucose toward trapping the bridging group into the cavity.
Collapse
|
43
|
Guo J, Fan Y, Lu Y, Zheng S, Su C. Visible‐Light Photocatalysis of Asymmetric [2+2] Cycloaddition in Cage‐Confined Nanospace Merging Chirality with Triplet‐State Photosensitization. Angew Chem Int Ed Engl 2020; 59:8661-8669. [DOI: 10.1002/anie.201916722] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Jing Guo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Yan‐Zhong Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Yu‐Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Shao‐Ping Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
44
|
Guo J, Fan Y, Lu Y, Zheng S, Su C. Visible‐Light Photocatalysis of Asymmetric [2+2] Cycloaddition in Cage‐Confined Nanospace Merging Chirality with Triplet‐State Photosensitization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jing Guo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Yan‐Zhong Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Yu‐Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Shao‐Ping Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
45
|
Zhang D, Cheng J, Wei L, Song W, Wang L, Tang H, Cao D. Host-Guest Complexation of Monoanionic and Dianionic Guests with a Polycationic Pillararene Host: Same Two-Step Mechanism but Striking Difference in Rate upon Inclusion. J Phys Chem Lett 2020; 11:2021-2026. [PMID: 32091223 DOI: 10.1021/acs.jpclett.0c00277] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular dynamic studies provide the most direct information to elucidate the binding mechanisms of the systems and yet are underdeveloped in pillararene chemistry. Herein, we describe the first real-time study on the binding dynamics of a water-soluble per-substituted pillar[5]arene (H1) with pentanesulfonate (G1) and butane-1,4-disulfonate (G2). Both the host-guest complexes were formed via a two-step process. The first step, equilibrated within 1 ms for both guests, was associated with the formation of a 1:1 exclusion complex, and the second step was the conversion of this exclusion complex to the inclusion complex. Threading and dethreading processes in the second step for G2 were at least a million times slower than for G1. Kinetics results reveal that for H1, complexation with a charged guest may follow the same "two-step" mechanism regardless of the number of charged moieties in the guests and the rate of the complexation. This study may advance the mechanistic understanding necessary for further development of functional supramolecular systems.
Collapse
Affiliation(s)
- Dejun Zhang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian Cheng
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Longmeng Wei
- School of Chemical Engineering and Light Industry, Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Song
- School of Chemical Engineering and Light Industry, Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
46
|
Uchikura T, Oshima M, Kawasaki M, Takahashi K, Iwasawa N. Supramolecular Photocatalysis by Utilizing the Host-Guest Charge-Transfer Interaction: Visible-Light-Induced Generation of Triplet Anthracenes for [4+2] Cycloaddition Reactions. Angew Chem Int Ed Engl 2020; 59:7403-7408. [PMID: 32043287 DOI: 10.1002/anie.201916732] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 01/22/2023]
Abstract
Supramolecular photocatalysis via charge-transfer excitation of a host-guest complex was developed by use of the macrocyclic boronic ester [2+2]BTH-F containing highly electron-deficient difluorobenzothiadiazole moieties. In the presence of a catalytic amount of [2+2]BTH-F , the triplet excited state of anthracene was generated from the charge-transfer excited state of anthracene@[2+2]BTH-F by visible-light irradiation, and cycloaddition of the excited anthracene with several dienes and alkenes proceeded in a [4+2] manner in high yields.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.,Present address: Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| | - Mari Oshima
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Minami Kawasaki
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kohei Takahashi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
47
|
Uchikura T, Oshima M, Kawasaki M, Takahashi K, Iwasawa N. Supramolecular Photocatalysis by Utilizing the Host–Guest Charge‐Transfer Interaction: Visible‐Light‐Induced Generation of Triplet Anthracenes for [4+2] Cycloaddition Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatsuhiro Uchikura
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
- Present address: Department of ChemistryFaculty of ScienceGakushuin University, Mejiro, Toshima-ku Tokyo 171-8588 Japan
| | - Mari Oshima
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Minami Kawasaki
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Kohei Takahashi
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Nobuharu Iwasawa
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
48
|
Xiao C, Wu W, Liang W, Zhou D, Kanagaraj K, Cheng G, Su D, Zhong Z, Chruma JJ, Yang C. Redox‐Triggered Chirality Switching and Guest‐Capture/Release with a Pillar[6]arene‐Based Molecular Universal Joint. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chao Xiao
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| | - Wenting Liang
- Institute of Environmental SciencesShanxi University China
| | - Dayang Zhou
- Comprehensive Analysis Center, ISIROsaka University Japan
| | - Kuppusamy Kanagaraj
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| | - Guo Cheng
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| | - Dan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| | - Zhihui Zhong
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| | - Jason J. Chruma
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| |
Collapse
|
49
|
Xiao C, Wu W, Liang W, Zhou D, Kanagaraj K, Cheng G, Su D, Zhong Z, Chruma JJ, Yang C. Redox-Triggered Chirality Switching and Guest-Capture/Release with a Pillar[6]arene-Based Molecular Universal Joint. Angew Chem Int Ed Engl 2020; 59:8094-8098. [PMID: 31958199 DOI: 10.1002/anie.201916285] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/18/2020] [Indexed: 11/05/2022]
Abstract
A chiral electrochemically responsive molecular universal joint (EMUJ) was synthesized by fusing a macrocyclic pillar[6]arene (P[6]) to a ferrocene-based side ring. A single crystal of an enantiopure EMUJ was successfully obtained, which allowed, for the first time, the definitive correlation between the absolute configuration and the circular dichroism spectrum of a P[6] derivative to be determined. The self-inclusion and self-exclusion conformational change of the EMUJ led to a chiroptical inversion of the P[6] moiety, which could be manipulated by both solvents and changes in temperature. The EMUJ also displayed a unique redox-triggered reversible in/out conformational switching, corresponding to an occupation/voidance switching of the P[6] cavity, respectively. This phenomenon is an unprecedented electrochemical manipulation of the capture and release of guest molecules by supramolecular hosts.
Collapse
Affiliation(s)
- Chao Xiao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| | - Wenting Liang
- Institute of Environmental Sciences, Shanxi University, China
| | - Dayang Zhou
- Comprehensive Analysis Center, ISIR, Osaka University, Japan
| | - Kuppusamy Kanagaraj
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| | - Guo Cheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| | - Dan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| | - Zhihui Zhong
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| | - Jason J Chruma
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
50
|
Fan MF, Wang HM, Nan LJ, Wang AJ, Luo X, Yuan PX, Feng JJ. The mimetic assembly of cobalt prot-porphyrin with cyclodextrin dimer and its application for H2O2 detection. Anal Chim Acta 2020; 1097:78-84. [DOI: 10.1016/j.aca.2019.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 01/19/2023]
|