1
|
Guo Y, Xia T, Walter V, Xie Y, Rho JY, Xiao L, O'Reilly RK, Wallace MI. Real-time label-free imaging of living crystallization-driven self-assembly. Nat Commun 2025; 16:2672. [PMID: 40102380 PMCID: PMC11920093 DOI: 10.1038/s41467-025-57776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Living crystallization-driven self-assembly (CDSA) of semicrystalline block copolymers is a powerful method for the bottom-up construction of uniform polymer microstructures with complex hierarchies. Improving our ability to engineer such complex particles demands a better understanding of how to precisely control the self-assembly process. Here, we apply interferometric scattering (iSCAT) microscopy to observe the real-time growth of individual poly(ε-caprolactone)-based fibers and platelets. This label-free method enables us to map the role of key reaction parameters on platelet growth rate, size, and morphology. Furthermore, iSCAT provides a contrast mechanism for studying multi-annulus platelets formed via the sequential addition of different unimers, offering insights into the spatial distribution of polymer compositions within a single platelet.
Collapse
Affiliation(s)
- Yujie Guo
- Department of Chemistry, King's College London, London, UK
| | - Tianlai Xia
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Vivien Walter
- Department of Engineering, King's College London, London, UK
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Julia Y Rho
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Laihui Xiao
- School of Chemistry, University of Birmingham, Birmingham, UK
| | | | - Mark I Wallace
- Department of Chemistry, King's College London, London, UK.
| |
Collapse
|
2
|
Ding K, Xie Y, Xu H, Xu S, Ge S, Li H, Chang X, Chen J, Wang R, Shan Y, Ding S. Visible light-responsive TiO 2-based hybrid nanofiller reinforced multifunctional chitosan film for effective fruit preservation. Food Chem 2024; 460:140539. [PMID: 39059328 DOI: 10.1016/j.foodchem.2024.140539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
In this study, we developed a multifunctional chitosan film with visible light-responsive photocatalytic properties by incorporating a novel nanofiller-a nanohybrid particle of poly(tannic acid) (PTA) and TiO2 (TP-NPs). Firstly, the hybridization of TiO2 with PTA not only improved its dispersion but also obtained TP-NPs with smaller band gaps (from 3.11 eV to 1.55 eV) and higher separation efficiency of photogenerated e--h+ (about 1.5-fold enhancement), thereby producing more reactive oxygen species and enhancing the antibacterial efficacy (compared with TiO2, the antibacterial effect of TP-NPs on Staphylococcus aureus and Escherichia coli was heightened by about 2 times under visible light for 1 h). Secondly, TP-NPs were hydrogen bonded with chitosan, strengthening its mechanical and barrier properties, while imparting exceptional antibacterial efficacy. Moreover, the multifunctional properties enabled the active film to effectively delay the quality deterioration of grapes and kiwifruit. Hence, this study presented a multifunctional active packaging film tailored for fruit preservation.
Collapse
Affiliation(s)
- Ke Ding
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Saiqing Xu
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Huan Li
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jiani Chen
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China; Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
3
|
Hu D, Ji X, Zhu J, Xu J. Crystallization-dictated assembly of block copolymers and nanoparticles under three-dimensional confinement. Chem Commun (Camb) 2024; 60:10854-10865. [PMID: 39239768 DOI: 10.1039/d4cc03685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Crystallization-dictated self-assembly of crystalline block copolymers (BCPs) in solution has been utilized to produce many impressive nanostructures. However, when the assembly of crystalline BCPs happens in a three-dimensional (3D) confined space, predicting the self-assembly structure of BCPs becomes challenging due to the competition between crystallization and microphase separation. In this feature article, we summarize the recent progress in the self-assembly of crystalline BCPs under confinement, emphasizing the impact of crystallization behavior on the assembly structure. Furthermore, we highlight the crystallization-directed assembly of inorganic nanoparticles (NPs), either by pre-assembling crystalline polymers as templates or using crystalline polymer chain segments as ligands. By exploring the impact of crystallization behavior on the assembled structure of BCPs and NPs, it is helpful to predict and manipulate the properties of polymer/nanoparticle composites, thereby enabling the precise design of polymer metamaterials.
Collapse
Affiliation(s)
- Dengwen Hu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), State Key Laboratory of Materials Processing and Die & Mold Technology, and Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Xinyu Ji
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), State Key Laboratory of Materials Processing and Die & Mold Technology, and Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), State Key Laboratory of Materials Processing and Die & Mold Technology, and Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), State Key Laboratory of Materials Processing and Die & Mold Technology, and Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
4
|
Dore MD, Laurent Q, Lachance-Brais C, Das T, Luo X, Sleiman HF. DNA Hierarchical Superstructures from Micellar Units: Stiff Hydrogels and Anisotropic Nanofibers. Chemistry 2024; 30:e202401453. [PMID: 38951115 DOI: 10.1002/chem.202401453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Supramolecular materials have been assembled using a wide range of interactions, including the hydrophobic effect, DNA base-pairing, and hydrogen bonding. Specifically, DNA amphiphiles with a hydrophobic building block self-assemble into diverse morphologies depending on the length and composition of both blocks. Herein, we take advantage of the orthogonality of different supramolecular interactions - the hydrophobic effect, Watson-Crick-Franklin base pairing and RNA kissing loops - to create hierarchical self-assemblies with controlled morphologies on both the nanometer and the micrometer scales. Assembly through base-pairing leads to the formation of hybrid, multi-phasic hydrogels with high stiffness and self-healing properties. Assembly via hydrophobic core interactions gives anisotropic, discrete assemblies, where DNA fibers with one sequence are terminated with DNA spheres bearing different sequences. This work opens new avenues for the bottom-up construction of DNA-based materials, with promising applications in drug delivery, tissue engineering, and the creation of complex DNA structures from a minimum array of components.
Collapse
Affiliation(s)
- Michael D Dore
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | - Quentin Laurent
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | | | - Trishalina Das
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | - Xin Luo
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| |
Collapse
|
5
|
Park S, Kang SY, Yang S, Choi TL. Independent Control of the Width and Length of Semiconducting 2D Nanorectangles via Accelerated Living Crystallization-Driven Self-Assembly. J Am Chem Soc 2024; 146:19369-19376. [PMID: 38965837 DOI: 10.1021/jacs.4c05351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Self-assembly of conjugated polymers offers a powerful method to prepare semiconducting two-dimensional (2D) nanosheets for optoelectronic applications. However, due to the typical biaxial growth behavior of the polymer self-assembly, independent control of the width and length of 2D sheets has been challenging. Herein, we present a greatly accelerated crystallization-driven self-assembly (CDSA) system of polyacetylene-based conjugated polymer to produce 2D semiconducting nanorectangles with precisely controllable dimensions. In detail, rectangular 2D seeds with tunable widths of 0.2-1.3 μm were produced by changing the cosolvent% and grown in the length direction by uniaxial living CDSA up to 11.8 μm. The growth rate was effectively enhanced by tuning the cosolvent%, seed concentration, and temperature, achieving up to 27-fold increase. Additionally, systematic kinetic investigation yielded empirical rate equations, elucidating the relationship between growth rate constant, cosolvent%, seed concentration, and seed width. Finally, the living CDSA allowed us to prepare penta-block comicelles with tunable width, length, and height.
Collapse
Affiliation(s)
- Songyee Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sung-Yun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sanghee Yang
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
6
|
Liu L, Meng X, Li M, Chu Z, Tong Z. Regulation of Two-Dimensional Platelet Micelles with Tunable Core Composition Distribution via Coassembly Seeded Growth Approach. ACS Macro Lett 2024; 13:542-549. [PMID: 38629823 DOI: 10.1021/acsmacrolett.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Seeded growth termed "living" crystallization-driven self-assembly (CDSA) has been identified as a powerful method to create one- or two-dimensional nanoparticles. Epitaxial crystallization is usually regarded as the growth mechanism for the formation of uniform micelles. From this perspective, the unimer depositing rate is largely related to the crystallization temperature, which is a key factor to determine the crystallization rate and regulate the core composition distribution among nanoparticles. In the present work, the coassembly of two distinct crystallizable polymers is explored in detail in a one-pot seeded growth protocol. Results have shown that polylactone containing a larger number of methylene groups (-CH2-) in their repeating units such as poly(η-octalactone) (POL) has a faster crystallization rate compared to poly(ε-caprolactone) (PCL) with a smaller number of -CH2- at ambient temperature (25 °C), thus a block or blocky platelet structure with heterogeneous composition distribution is formed. In contrast, when the crystallization temperature decreases to 4 °C, the difference of crystallization rate between both cores become negligible. Consequently, a completely random component distribution within 2D platelets is observed. Moreover, we also reveal that the core component of seed micelles is also paramount for the coassembly seeded growth, and a unique structure of flower-like platelet micelle is created from the coassembly of PCL/POL using POL core-forming seeds. This study on the formation of platelet micelles by one-pot seeded growth using two crystallizable components offers a considerable scope for the design of 2D polymer nanomaterials with a controlled core component distribution.
Collapse
Affiliation(s)
- Liping Liu
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiancheng Meng
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Meili Li
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Zhenyan Chu
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Zaizai Tong
- School of Materials Science and Engineering and Institute of Smart Biomaterials, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
7
|
Liu F, Liu X, Abdiryim T, Gu H, Astruc D. Heterometallic macromolecules: Synthesis, properties and multiple nanomaterial applications. Coord Chem Rev 2024; 500:215544. [DOI: 10.1016/j.ccr.2023.215544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Finnegan JR, FitzGerald LI, Chen MZ, Warne NM, Yuen D, Davis TP, Johnston APR, Kempe K. Length-Dependent Cellular Internalization of Nanobody-Functionalized Poly(2-oxazoline) Nanorods. NANO LETTERS 2024; 24:89-96. [PMID: 37939013 DOI: 10.1021/acs.nanolett.3c03342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The ability to target specific tissues and to be internalized by cells is critical for successful nanoparticle-based targeted drug delivery. Here, we combined "stealthy" rod-shaped poly(2-oxazoline) (POx) nanoparticles of different lengths with a cancer marker targeting nanobody and a fluorescent cell internalization sensor via a heat-induced living crystallization-driven self-assembly (CDSA) strategy. A significant increase in association and uptake driven by nanobody-receptor interactions was observed alongside nanorod-length-dependent kinetics. Importantly, the incorporation of the internalization sensor allowed for quantitative differentiation between cell surface association and internalization of the targeted nanorods, revealing unprecedented length-dependent cellular interactions of CDSA nanorods. This study highlights the modularity and versatility of the heat-induced CDSA process and further demonstrates the potential of POx nanorods as a modular nanomedicine platform.
Collapse
Affiliation(s)
- John R Finnegan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Laura I FitzGerald
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Moore Zhe Chen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Nicole M Warne
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
9
|
Sahare S, Ghoderao P, Chan Y, Lee SL. Surface supramolecular assemblies tailored by chemical/physical and synergistic stimuli: a scanning tunneling microscopy study. NANOSCALE 2023; 15:1981-2002. [PMID: 36515142 DOI: 10.1039/d2nr05264d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular self-assemblies formed by various non-covalent interactions can produce diverse functional networks on solid surfaces. These networks have recently attracted much interest from both fundamental and application points of view. Unlike covalent organic frameworks (COFs), the properties of the assemblies differ from each other depending on the constituent motifs. These various motifs may find diverse applications such as in crystal engineering, surface modification, and molecular electronics. Significantly, these interactions between/among the molecular tectonics are relatively weak and reversible, which makes them responsive to external stimuli. Moreover, for a liquid-solid-interface environment, the dynamic processes are amenable to in situ observation using scanning tunneling microscopy (STM). In the literature, most review articles focus on supramolecular self-assembly interactions. This review summarizes the recent literature in which stimulation sources, including chemical, physical, and their combined stimuli, cooperatively tailor supramolecular assemblies on surfaces. The appropriate design and synthesis of functional molecules that can be integrated on different surfaces permits the use of nanostructured materials and devices for bottom-up nanotechnology. Finally, we discuss synergic effect on materials science.
Collapse
Affiliation(s)
- Sanjay Sahare
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
- Faculty of Physics, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Prachi Ghoderao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Yue Chan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
10
|
Schaller R, Hils C, Karg M, Schmalz H. Surface-Compartmentalized Micelles by Stereocomplex-Driven Self-Assembly. Macromol Rapid Commun 2023; 44:e2200682. [PMID: 36285394 DOI: 10.1002/marc.202200682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Indexed: 11/08/2022]
Abstract
The unique corona structure of surface-compartmentalized micelles (Janus micelles, patchy micelles) opens highly relevant applications, e.g. as efficient particulate surfactants for emulsion stabilization or compatibilization of polymer blends. Here, stereocomplex-driven self-assembly (SCDSA) as a facile route to micelles with a semicrystalline stereocomplex (SC) core and a patch-like microphase separated corona, employing diblock copolymers with enantiomeric poly(L-lactide)/poly(D-lactide) blocks and highly incompatible corona-forming blocks (polystyrene (PS), poly(tert-butyl methacrylate)) is introduced. The spherical patchy SC micelles feature a narrow size distribution and show a compartmentalized, shamrock-like corona structure. Compared to SC micelles with a homogeneous PS corona the patchy micelles have a significantly higher interfacial activity attributable to the synergistic combination of an amphiphilic corona with the Pickering effect of nanoparticles. The patchy micelles are successfully employed in the stabilization of emulsions, underlining their application potential.
Collapse
Affiliation(s)
- Roman Schaller
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Christian Hils
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Matthias Karg
- Physical Chemistry I / Colloids and Nanooptics, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany.,Bavarian Polymer Institute, Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|
11
|
Deng R, Mao X, Pearce S, Tian J, Zhang Y, Manners I. Role of Competitive Crystallization Kinetics in the Formation of 2D Platelets with Distinct Coronal Surface Patterns via Seeded Growth. J Am Chem Soc 2022; 144:19051-19059. [PMID: 36201750 DOI: 10.1021/jacs.2c07962] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low dispersity 2D platelet micelles with controllable surface patterns were prepared by seeded-growth/living crystallization-driven self-assembly (CDSA) of block copolymer/homopolymer (BCP/HP) blends of poly(ferrocenyldimethylsilane)-b-poly(2-vinyl pyridine) (PFS-b-P2VP) and PFS. The precise morphology was found to be dependent on the proportion of the P2VP corona block, which can be efficiently controlled by changing the molar concentration ratio of PFS-b-P2VP/PFS, (cB/cH)t, as well as their relative rates of crystallization, (GB/GH)t. In the case where their molar concentration ratio was comparable to their crystallization rate ratio, platelets with a uniform distribution of P2VP coronal chains were formed. In other cases, as the concentration ratio increased (or decreased) during the living CDSA process, hierarchical structures were formed, including chain-like assemblies consisting of end-to-end linked rectangular platelets and fusiform (tapered) micelles. (GB/GH)t was adjusted by tuning the degree of polymerization of the crystallizable PFS core-forming block and the BCP block ratio and by varying the terminus of the HP or changing the solvent used. Furthermore, the open edge of the platelets remained active for further growth, which permitted control of the morphology and dimensions of the platelets. Interestingly, in cases where the molar concentration ratio was lower than the crystallization rate ratio, growth rings were observed after two or more living CDSA steps. This study on the formation of platelet micelles by living CDSA of BCP/HP blends under kinetic control offers a considerable scope for the design of 2D polymer nanomaterials with controlled shape and surface patterns.
Collapse
Affiliation(s)
- Renhua Deng
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.,Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xi Mao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Samuel Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Jia Tian
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Yifan Zhang
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.,Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
12
|
Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
New iodoargentates with azole molecules: Syntheses, structural characterization and photoluminescence properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Lei S, Tian J, Fukui T, Winnik MA, Manners I. Probing the Analogy between Living Crystallization-Driven Self-Assembly and Living Covalent Polymerizations: Length-Independent Growth Behavior for 1D Block Copolymer Nanofibers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Jia Tian
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Tomoya Fukui
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mitchell A. Winnik
- Chemistry Department, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
15
|
Ma J, Lu G, Huang X, Feng C. π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications. Chem Commun (Camb) 2021; 57:13259-13274. [PMID: 34816824 DOI: 10.1039/d1cc04825b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
π-Conjugated-polymer-based nanofibers (CPNFs) of controlled length, composition and morphology are promising for a broad range of emerging applications in optoelectronics, biomedicine and catalysis, owing to the morphological merits of fiber-like nanostructures and structural attributes of π-conjugated polymers. Living crystallization-driven self-assembly (CDSA) of π-conjugated-polymer-containing block copolymers (BCPs) has emerged as an efficient strategy to prepare CPNFs with precise dimensional and structural controllability by taking advantage of the crystallinity of π-conjugated polymers. In this review, recent advances in the generation of CPNFs have been highlighted. The influence of the structure of π-conjugated-polymer-containing BCPs and experimental conditions on the CDSA behaviors, especially seeded growth and self-seeding processes of living CDSA, has been discussed in detail, aiming to provide an in-depth overview of living CDSA of π-conjugated-polymer-containing BCPs. In addition, the properties of CPNFs as well as their potential applications have been illustrated. Finally, we put forward the current challenges and research directions in the field of CPNFs.
Collapse
Affiliation(s)
- Junyu Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|
16
|
Hils C, Schmelz J, Drechsler M, Schmalz H. Janus Micelles by Crystallization-Driven Self-Assembly of an Amphiphilic, Double-Crystalline Triblock Terpolymer. J Am Chem Soc 2021; 143:15582-15586. [PMID: 34529422 DOI: 10.1021/jacs.1c08076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface-compartmentalized micellar nanostructures (Janus and patchy micelles) have gained increasing interest due to their unique properties opening highly relevant applications, e.g., as efficient particulate surfactants, compatibilizers in polymer blends, or templates for catalytically active nanoparticles. We present a facile method for the production of worm-like Janus micelles based on crystallization-driven self-assembly of a double-crystalline triblock terpolymer with a crystallizable polyethylene middle block and two highly incompatible corona blocks, polystyrene and poly(ethylene oxide). This approach enables the production of amphiphilic Janus micelles with excellent interfacial activity by a comparably simple heating and cooling protocol directly in solution.
Collapse
Affiliation(s)
- Christian Hils
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Joachim Schmelz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Markus Drechsler
- Keylab Electron and Optical Microscopy, Bavarian Polymer Institute, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.,Keylab Synthesis and Molecular Characterization, Bavarian Polymer Institute, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
17
|
|
18
|
Karayianni M, Pispas S. Block copolymer solution self‐assembly: Recent advances, emerging trends, and applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
19
|
Wang Z, Ma C, Huang X, Lu G, Winnik MA, Feng C. Self-Seeding of Oligo( p-phenylenevinylene)- b-poly(2-vinylpyridine) Micelles: Effect of Metal Ions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiqin Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
20
|
Shyshov O, Haridas SV, Pesce L, Qi H, Gardin A, Bochicchio D, Kaiser U, Pavan GM, von Delius M. Living supramolecular polymerization of fluorinated cyclohexanes. Nat Commun 2021; 12:3134. [PMID: 34035277 PMCID: PMC8149861 DOI: 10.1038/s41467-021-23370-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
The development of powerful methods for living covalent polymerization has been a key driver of progress in organic materials science. While there have been remarkable reports on living supramolecular polymerization recently, the scope of monomers is still narrow and a simple solution to the problem is elusive. Here we report a minimalistic molecular platform for living supramolecular polymerization that is based on the unique structure of all-cis 1,2,3,4,5,6-hexafluorocyclohexane, the most polar aliphatic compound reported to date. We use this large dipole moment (6.2 Debye) not only to thermodynamically drive the self-assembly of supramolecular polymers, but also to generate kinetically trapped monomeric states. Upon addition of well-defined seeds, we observed that the dormant monomers engage in a kinetically controlled supramolecular polymerization. The obtained nanofibers have an unusual double helical structure and their length can be controlled by the ratio between seeds and monomers. The successful preparation of supramolecular block copolymers demonstrates the versatility of the approach.
Collapse
Affiliation(s)
| | | | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland
| | - Haoyuan Qi
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, University of Ulm, Ulm, Germany
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, Dresden, Germany
| | - Andrea Gardin
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Davide Bochicchio
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland
- Department of Physics, Università degli studi di Genova, Genova, Italy
| | - Ute Kaiser
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, University of Ulm, Ulm, Germany
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland.
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.
| | - Max von Delius
- Institute of Organic Chemistry, University of Ulm, Ulm, Germany.
| |
Collapse
|
21
|
Sun Y, Gao F, Yao Y, Jin H, Li X, Lin S. Light-Induced Reversible Hierarchical Self-Assembly of Amphiphilic Diblock Copolymers into Microscopic Vesicles with Tunable Optical and Nanocarrier Properties. ACS Macro Lett 2021; 10:525-530. [PMID: 35570756 DOI: 10.1021/acsmacrolett.1c00127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In contrast to the conventional hierarchical self-assembly process, effective methods to enable reversible hierarchical self-assembly of block copolymers are comparatively few and limited in scope. Herein, we report, for the first time, a simple yet robust strategy for light-induced reversible hierarchical self-assembly of an amphiphilic diblock copolymer, poly(4-vinylpyridine)-block-poly[6-[4-(4-butyloxyphenylazo)phenoxy]hexyl methacrylate] (denoted P4VP-b-PAzoMA). The hierarchical structures are constructed via a two-step self-assembly process (first-level reverse micelles, second-level compound micelles, and rearrangement into micrometer-sized vesicles) driven by use of solvent. Intriguingly, because of reversible photoinduced trans-to-cis isomerization of azobenzene moieties in PAzoMA, the vesicles could disassemble into subunits upon UV light and then recover the nearly identical vesicular morphology upon visible light. Such a reversible hierarchical self-assembly process is accompanied by reversible fluorescence, encapsulation, and controlled release of dyes and can be used as a template for the synthesis of nanoparticles. Clearly, the ability to render the light-enabled reversible hierarchical self-assembly provides a unique platform for smart delivery vehicles and templates for nanomaterials.
Collapse
Affiliation(s)
- Yao Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haibao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinxin Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
22
|
Yang S, Kang SY, Choi TL. Semi-conducting 2D rectangles with tunable length via uniaxial living crystallization-driven self-assembly of homopolymer. Nat Commun 2021; 12:2602. [PMID: 33972541 PMCID: PMC8110585 DOI: 10.1038/s41467-021-22879-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/01/2021] [Indexed: 11/11/2022] Open
Abstract
Semi-conducting two-dimensional (2D) nanoobjects, prepared by self-assembly of conjugated polymers, are promising materials for optoelectronic applications. However, no examples of self-assembled semi-conducting 2D nanosheets whose lengths and aspect ratios are controlled at the same time have been reported. Herein, we successfully prepared uniform semi-conducting 2D sheets using a conjugated poly(cyclopentenylene vinylene) homopolymer and its block copolymer by blending and heating. Using these as 2D seeds, living crystallization-driven self-assembly (CDSA) was achieved by adding the homopolymer as a unimer. Interestingly, unlike typical 2D CDSA examples showing radial growth, this homopolymer assembled only in one direction. Owing to this uniaxial growth, the lengths of the 2D nanosheets could be precisely tuned from 1.5 to 8.8 μm with narrow dispersity according to the unimer-to-seed ratio. We also studied the growth kinetics of the living 2D CDSA and confirmed first-order kinetics. Subsequently, we prepared several 2D block comicelles (BCMs), including penta-BCMs in a one-shot method.
Collapse
Affiliation(s)
- Sanghee Yang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Sung-Yun Kang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
23
|
Hils C, Manners I, Schöbel J, Schmalz H. Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers (Basel) 2021; 13:1481. [PMID: 34064413 PMCID: PMC8125556 DOI: 10.3390/polym13091481] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
Crystallization-driven self-assembly (CDSA) of block copolymers bearing one crystallizable block has emerged to be a powerful and highly relevant method for the production of one- and two-dimensional micellar assemblies with controlled length, shape, and corona chemistries. This gives access to a multitude of potential applications, from hierarchical self-assembly to complex superstructures, catalysis, sensing, nanomedicine, nanoelectronics, and surface functionalization. Related to these applications, patchy crystalline-core micelles, with their unique, nanometer-sized, alternating corona segmentation, are highly interesting, as this feature provides striking advantages concerning interfacial activity, functionalization, and confinement effects. Hence, this review aims to provide an overview of the current state of the art with respect to self-assembly concepts, properties, and applications of patchy micelles with crystalline cores formed by CDSA. We have also included a more general discussion on the CDSA process and highlight block-type co-micelles as a special type of patchy micelle, due to similarities of the corona structure if the size of the blocks is well below 100 nm.
Collapse
Affiliation(s)
- Christian Hils
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada;
| | - Judith Schöbel
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam-Golm, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
24
|
Song S, Liu X, Nikbin E, Howe JY, Yu Q, Manners I, Winnik MA. Uniform 1D Micelles and Patchy & Block Comicelles via Scalable, One-Step Crystallization-Driven Block Copolymer Self-Assembly. J Am Chem Soc 2021; 143:6266-6280. [PMID: 33856800 DOI: 10.1021/jacs.1c02395] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fiber-like (1D) core-crystalline micelles of uniform length can be obtained in protocols involving multiple steps from block copolymers (BCPs) in which crystallization of the core-forming polymer drives the self-assembly. Here we report a systematic study that shows that adding small amounts (<5 w/w%) of a homopolymer corresponding to the core-forming block of the BCP enables uniform 1D micelles (mean lengths Ln = 0.6 to 9.7 μm) to be obtained in a single step, simply by heating the mixture in a selective solvent followed by slow cooling. A series of poly(ferrocenyldimethylsilane) (PFS) BCPs with different corona-forming blocks and different compositions as well as PFS homopolymers of different lengths were examined. Dye labeling and confocal fluorescence microscopy showed that the homopolymer ends up in the center of the micelle, signaling that it served as the initial seed for epitaxial micelle growth. The rate of unimer addition was strongly enhanced by the length of the PFS block, and this enabled more complex structures to be formed in one-pot self-assembly experiments from mixtures of two or three BCPs with different PFS block lengths. Furthermore, BCP mixtures that included PFS-b-PI (PI = polyisoprene) and PFS-b-PDMS with similar PFS block lengths resulted in simultaneous addition to growing micelles, resulting in a patchy block that could be visualized by staining the vinyl groups of the PI with Pt nanoparticles. This approach also enabled scale up, so that uniform 1D micelles of controlled architecture can be obtained at concentrations of 10 w/w % solids or more.
Collapse
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Xuemin Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ehsan Nikbin
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada
| | - Jane Y Howe
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.,Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Qing Yu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3 V6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
25
|
MacFarlane L, Zhao C, Cai J, Qiu H, Manners I. Emerging applications for living crystallization-driven self-assembly. Chem Sci 2021; 12:4661-4682. [PMID: 34163727 PMCID: PMC8179577 DOI: 10.1039/d0sc06878k] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/12/2021] [Indexed: 01/02/2023] Open
Abstract
The use of crystallization as a tool to control the self-assembly of polymeric and molecular amphiphiles in solution is attracting growing attention for the creation of non-spherical nanoparticles and more complex, hierarchical assemblies. In particular, the seeded growth method termed living crystallization-driven self-assembly (CDSA) has been established as an ambient temperature and potentially scalable platform for the preparation of low dispersity samples of core-shell fiber-like or platelet micellar nanoparticles. Significantly, this method permits predictable control of size, and access to branched and segmented structures where functionality is spatially-defined. Living CDSA operates under kinetic control and shows many analogies with living chain-growth polymerizations of molecular organic monomers that afford well-defined covalent polymers of controlled length except that it covers a much longer length scale (ca. 20 nm to 10 μm). The method has been applied to a rapidly expanding range of crystallizable polymeric amphiphiles, which includes block copolymers and charge-capped homopolymers, to form assemblies with crystalline cores and solvated coronas. Living CDSA seeded growth methods have also been transposed to a wide variety of π-stacking and hydrogen-bonding molecular species that form supramolecular polymers in processes termed "living supramolecular polymerizations". In this article we outline the main features of the living CDSA method and then survey the promising emerging applications for the resulting nanoparticles in fields such as nanomedicine, colloid stabilization, catalysis, optoelectronics, information storage, and surface functionalization.
Collapse
Affiliation(s)
- Liam MacFarlane
- Department of Chemistry, University of Victoria British Columbia Canada
| | - Chuanqi Zhao
- Department of Chemistry, University of Victoria British Columbia Canada
| | - Jiandong Cai
- Department of Chemistry, University of Victoria British Columbia Canada
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Ian Manners
- Department of Chemistry, University of Victoria British Columbia Canada
| |
Collapse
|
26
|
Jiang S, Zheng W, Yang G, Zhu Y, Chen L, Zhou Q, Wang Y, Li Z, Yin G, Li X, Ding H, Chen G, Yang H. Construction of
Metallacycle‐Linked
Heteroarm Star Polymers
via
Orthogonal
Post‐Assembly
Polymerization and Their Intriguing
Self‐Assembly
into
Large‐Area
and Regular Nanocubes
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shu‐Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Wei Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Guang Yang
- Biomass Molecular Engineering Center, Anhui Agricultural University, Hefei Anhui 230036 China
| | - Yu Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Li‐Jun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Qi‐Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Yu‐Xuan Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Zhen Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University Shanghai 200433 China
| | | | | | | | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University Shanghai 200433 China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
27
|
Nie J, Wang Z, Huang X, Lu G, Feng C. Uniform Continuous and Segmented Nanofibers Containing a π-Conjugated Oligo(p-phenylene ethynylene) Core via “Living” Crystallization-Driven Self-Assembly: Importance of Oligo(p-phenylene ethynylene) Chain Length. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01199] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiucheng Nie
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- School of Physical Science & Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, People’s Republic of China
| | - Zhiqin Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- School of Physical Science & Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, People’s Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
28
|
Song S, Yu Q, Zhou H, Hicks G, Zhu H, Rastogi CK, Manners I, Winnik MA. Solvent effects leading to a variety of different 2D structures in the self-assembly of a crystalline-coil block copolymer with an amphiphilic corona-forming block. Chem Sci 2020; 11:4631-4643. [PMID: 34122918 PMCID: PMC8159233 DOI: 10.1039/d0sc01453b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
We describe a polyferrocenyldimethylsilane (PFS) block copolymer (BCP), PFS27-b-P(TDMA65-ran-OEGMA69) (the subscripts refer to the mean degrees of polymerization), in which the corona-forming block is a random brush copolymer of hydrophobic tetradecyl methacrylate (TDMA) and hydrophilic oligo(ethylene glycol) methyl ether methacrylate (OEGMA). Thus, the corona is amphiphilic. This BCP generates a remarkable series of different structures when subjected to crystallization-driven self-assembly (CDSA) in solvents of different polarity. Long ribbon-like micelles formed in isopropanol, and their lengths could be controlled using both self-seeding and seeded growth protocols. In hexanol, the BCP formed more complex structures. These objects consisted of oval platelets connected to long fiber-like micelles that were uniform in width but polydisperse in length. In octane, relatively uniform rectangular platelets formed. Finally, a distinct morphology formed in a mixture of octane/hexanol, namely uniform oval structures, whose height corresponded to the fully extended PFS block. Both long and short axes of these ovals increased with the initial annealing temperature and with the BCP concentration. The self-seeding protocol also afforded uniform two-dimensional structures. Seeded growth experiments, in which a solution of the BCP in THF was added to a colloidal solution of the oval micelles led to a linear increase in area while maintaining the aspect ratio of the ovals. These experiments demonstrate the powerful effect of the amphiphilic corona chains on the CDSA of a core crystalline BCP in solvents of different hydrophilicity.
Collapse
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | - Qing Yu
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | - Hang Zhou
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | - Garion Hicks
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | - Hu Zhu
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | | | - Ian Manners
- Department of Chemistry, University of Victoria Victoria British Columbia V8W 3V6 Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto ON M5S 3E2 Canada
| |
Collapse
|
29
|
Guerin G, Cruz M, Yu Q. Formation of 2D and 3D multi-tori mesostructures via crystallization-driven self-assembly. SCIENCE ADVANCES 2020; 6:eaaz7301. [PMID: 32494620 PMCID: PMC7159922 DOI: 10.1126/sciadv.aaz7301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/22/2020] [Indexed: 06/11/2023]
Abstract
The fabrication of three-dimensional (3D) objects by polymer self-assembly in solution is extremely challenging. Here, multi-tori mesostructures were obtained from the crystallization-driven self-assembly of a coil-crystalline block copolymer (BCP) in mixed solvents. The formation of these structures follows a multistep process. First, the BCP self-assembles into amorphous micrometer-large vesicles. Then, the BCP confined in these mesosized vesicles crystallizes. This second step leads to the formation of objects with shapes ranging from closed 3D multi-tori spherical shells to 2D toroid mesh monolayers, depending on the solvent mixture composition. This approach demonstrates how topological constraints induced by the specific interactions between coil-crystalline BCP and solvents can be used to prepare mesostructures of complex morphologies.
Collapse
Affiliation(s)
- Gerald Guerin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Menandro Cruz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Qing Yu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
30
|
Cui Y, Wang Z, Huang X, Lu G, Manners I, Winnik MA, Feng C. How a Small Change of Oligo(p-phenylenevinylene) Chain Length Affects Self-Seeding of Oligo(p-phenylenevinylene)-Containing Block Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00068] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yinan Cui
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zhiqin Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
31
|
Yu W, Foster JC, Dove AP, O’Reilly RK. Length Control of Biodegradable Fiber-Like Micelles via Tuning Solubility: A Self-Seeding Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-Containing Triblock Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02613] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Yu
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Jeffrey C. Foster
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | | |
Collapse
|
32
|
Tao D, Cui Y, Huang X, Lu G, Manners I, Winnik MA, Feng C. Mechanistic study of the formation of fiber-like micelles with a π-conjugated oligo(p-phenylenevinylene) core. J Colloid Interface Sci 2020; 560:50-58. [DOI: 10.1016/j.jcis.2019.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 11/29/2022]
|
33
|
Zhang L, Gong Y, Wang T, Xiao J, Pang Y, Hu Q, Yu L. Morphological transformation of ultrasonically obtained nanofibers during living self-assembly. NEW J CHEM 2020. [DOI: 10.1039/d0nj01665a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nanofibers are obtained by ionic self-assembly and living self-assembly.
Collapse
Affiliation(s)
- Liangkai Zhang
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| | - Yanjun Gong
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| | - Tao Wang
- Petroleum Engineering Technology Research Institute of Shengli Oilfield
- Sinopec
- Dongying 257000
- P. R. China
| | - Jianhong Xiao
- Petroleum Engineering Technology Research Institute of Shengli Oilfield
- Sinopec
- Dongying 257000
- P. R. China
| | - Yiping Pang
- College of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences)
- Shandong Analysis and Test Center
- Jinan 250014
- P. R. China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| |
Collapse
|
34
|
Abstract
Supramolecular polymers are non-covalent assemblies of unimeric building blocks connected by secondary interactions and hold great promises due to their dynamic nature.
Collapse
Affiliation(s)
| | | | - Sebastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
35
|
Osypenko A, Moulin E, Gavat O, Fuks G, Maaloum M, Koenis MAJ, Buma WJ, Giuseppone N. Temperature Control of Sequential Nucleation–Growth Mechanisms in Hierarchical Supramolecular Polymers. Chemistry 2019; 25:13008-13016. [DOI: 10.1002/chem.201902898] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Artem Osypenko
- SAMS Research Group, University of Strasbourg–Institut Charles SadronCNRS 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Emilie Moulin
- SAMS Research Group, University of Strasbourg–Institut Charles SadronCNRS 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Odile Gavat
- SAMS Research Group, University of Strasbourg–Institut Charles SadronCNRS 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Gad Fuks
- SAMS Research Group, University of Strasbourg–Institut Charles SadronCNRS 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Mounir Maaloum
- SAMS Research Group, University of Strasbourg–Institut Charles SadronCNRS 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Mark A. J. Koenis
- Van ‘t Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Wybren Jan Buma
- Van ‘t Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Institute for Molecules and Materials, FELIX LaboratoryRadboud University Toernooiveld 7c 6525 ED Nijmegen The Netherlands
| | - Nicolas Giuseppone
- SAMS Research Group, University of Strasbourg–Institut Charles SadronCNRS 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| |
Collapse
|
36
|
Yu Q, Roberts MG, Pearce S, Oliver AM, Zhou H, Allen C, Manners I, Winnik MA. Rodlike Block Copolymer Micelles of Controlled Length in Water Designed for Biomedical Applications. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00959] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | - Samuel Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Alex M. Oliver
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | | | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | | |
Collapse
|
37
|
Adelizzi B, Van Zee NJ, de Windt LNJ, Palmans ARA, Meijer EW. Future of Supramolecular Copolymers Unveiled by Reflecting on Covalent Copolymerization. J Am Chem Soc 2019; 141:6110-6121. [PMID: 30889358 DOI: 10.1021/jacs.9b01089] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Supramolecular copolymers are an emerging class of materials, and in the last years their potential has been demonstrated on a broad scale. Implementing noncovalent polymers with multiple components can bring together useful features such as dynamicity and new functionalities. However, mastering and tuning the microstructure of these systems is still an open challenge. In this Perspective, we aim to trace the general principles of supramolecular copolymerization by analyzing them through the lens of the well-established field of covalent copolymerization. Our goal is to delineate guidelines to classify and analyze supramolecular copolymers in order to create a fruitful platform to design and investigate new multicomponent systems.
Collapse
Affiliation(s)
| | - Nathan J Van Zee
- Chimie Moléculaire, Macromoléculaire, et Matériaux, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI)-CNRS, UMR-7167 , Paris Sciences et Lettres (PSL) Research University , 10 Rue Vauquelin , 75005 Paris , France
| | | | | | | |
Collapse
|
38
|
One‐dimensional growth kinetics for formation of cylindrical crystalline micelles of block copolymers. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Photopolymerization-assisted self-assembly as a strategy to obtain a dispersion of very high aspect ratio nanostructures in a polystyrene matrix. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.10.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Ma X, Gu M, Zhang L, Lin J, Tian X. Sequence-Regulated Supracolloidal Copolymers via Copolymerization-Like Coassembly of Binary Mixtures of Patchy Nanoparticles. ACS NANO 2019; 13:1968-1976. [PMID: 30624891 DOI: 10.1021/acsnano.8b08431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Synthetic copolymers of molecular systems serve as an inspiration for creation of one-dimensional copolymer-like superstructures via coassembly of anisometric nanoparticles. In contrast to the covalent and molecular copolymers, the details of formation mechanisms of copolymer-like superstructures, as well as the factors determining their length and the sequences of arranged nanoparticles, are still poorly understood. Herein, we propose a joint theoretical-computational framework to probe into the coassembly mechanism and kinetics of binary mixtures of patchy nanoparticles. By applying the coarse-grained molecular dynamics simulations, it is demonstrated that the coassembly of patchy nanoparticles markedly resembles many aspects of molecular step-growth copolymerization, and the sequences of nanoparticles inside the copolymer-like superstructures can be finely regulated by the relative activity and the initial ingredient of patchy nanoparticles as well as the coassembly strategy. A quantitatively copolymerization-like model is developed to account for the coassembly kinetics of patchy nanoparticles and the sequence distribution of arranged nanoparticles, all governed by the elaborate design of lower-level building units. The jointly theoretical and simulated studies offer mechanistic insights into the copolymerization-like kinetics and the sequence prediction for the coassembly of binary mixtures of patchy nanoparticles, paving the way toward the rational design of copolymer-like superstructures with various sequences and functionalities.
Collapse
Affiliation(s)
- Xiaodong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Mengxin Gu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
41
|
Xu J, Zhou H, Yu Q, Guerin G, Manners I, Winnik MA. Synergistic self-seeding in one-dimension: a route to patchy and block comicelles with uniform and controllable length. Chem Sci 2019; 10:2280-2284. [PMID: 30881653 PMCID: PMC6385529 DOI: 10.1039/c8sc04705g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/18/2018] [Indexed: 01/12/2023] Open
Abstract
By manipulating both the dissolution sequence of polymer crystallites and the growth rate of polymer unimers, patchy comicelles and block comicelles with uniform and controllable length can be obtained.
Self-seeding is a process unique to polymer crystals, which consist of regions of different chain packing order and different crystallinity. Here we report the synergistic self-seeding behaviour of pairs of core-crystalline block copolymer (BCP) micelle fragments and show how this strategy can be employed to control the morphology of these BCP comicelles. Each micelle fragment has a critical dissolution temperature (Tc), and unimers of each BCP have a characteristic epitaxial growth rate. The Tc value affects the dissolution sequence of the fragments upon heating, while the unimer growth rate affects the growth sequence upon cooling. By carefully choosing micelle fragments having different Tc values as well as growth rates, we could prepare patchy comicelles and block comicelles with uniform and controllable length. This synergistic self-seeding strategy is a simple yet effective route to control both length and morphology of core-crystalline comicelles
Collapse
Affiliation(s)
- Jiangping Xu
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada . .,Key Laboratory of Material Chemistry for Energy Conversion and Storage , Ministry of Education , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Hang Zhou
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada .
| | - Qing Yu
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada .
| | - Gerald Guerin
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada .
| | - Ian Manners
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - Mitchell A Winnik
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada .
| |
Collapse
|
42
|
Yang X, Ruan J, Ma C, Hao B, Huang X, Lu G, Feng C. Synthesis and self-seeding behavior of oligo(p-phenylene vinylene)-b-poly(N-(2-hydroxypropyl)methacrylamide). Polym Chem 2019. [DOI: 10.1039/c9py00816k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports the preparation of uniform fiber- and ribbon-like nanostructures via the self-seeding of OPV5-b-PHPMA diblock copolymers.
Collapse
Affiliation(s)
- Xian Yang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Junyi Ruan
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Bingjie Hao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
43
|
Zhu R, Luo X, Feng Y, Billon L. CO2-Triggered and temperature-switchable crystallization-driven self-assembly of a semicrystalline block copolymer in aqueous medium. Polym Chem 2019. [DOI: 10.1039/c9py01298b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a semicrystalline block copolymer comprising a hydrophilic poly(acrylic acid) pure block and an amphiphilic poly(acrylic acid)-r-poly(octadecyl acrylate) random block by nitroxide-mediated polymerization is reported.
Collapse
Affiliation(s)
- Rui Zhu
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Xinjie Luo
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Yujun Feng
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Laurent Billon
- CNRS
- Université de Pau & Pays Adour
- E2S UPPA
- IPREM UMR 5254
- Bio-inspired Materials Group: Functionality & Self-assembly
| |
Collapse
|
44
|
Oliver AM, Spontak RJ, Manners I. Solution self-assembly of ABC triblock terpolymers with a central crystallizable poly(ferrocenyldimethylsilane) core-forming segment. Polym Chem 2019. [DOI: 10.1039/c8py01830h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and solution self-assembly behavior of a range of linear ABC triblock terpolymers with a central crystallizable poly(ferrocenyldimethylsilane) core-forming segment have been explored.
Collapse
Affiliation(s)
- Alex M. Oliver
- Department of Chemistry
- University of Victoria
- Victoria
- Canada
- School of Chemistry
| | - Richard J. Spontak
- Departments of Chemical and Biomolecular Engineering and Materials Science and Engineering
- North Carolina State University
- Raleigh
- USA
| | - Ian Manners
- Department of Chemistry
- University of Victoria
- Victoria
- Canada
- School of Chemistry
| |
Collapse
|
45
|
Van Horn RM, Steffen MR, O'Connor D. Recent progress in block copolymer crystallization. POLYMER CRYSTALLIZATION 2018. [DOI: 10.1002/pcr2.10039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ryan M. Van Horn
- Department of Chemistry Allegheny College Meadville Pennsylvania
| | | | - Dana O'Connor
- Department of Chemistry Allegheny College Meadville Pennsylvania
| |
Collapse
|
46
|
Affiliation(s)
- Mark C. Staub
- Department of Materials Science and Engineering Drexel University Philadelphia Pennsylvania
| | - Christopher Y. Li
- Department of Materials Science and Engineering Drexel University Philadelphia Pennsylvania
| |
Collapse
|
47
|
Guerin G, Molev G, Pichugin D, Rupar PA, Qi F, Cruz M, Manners I, Winnik MA. Effect of Concentration on the Dissolution of One-Dimensional Polymer Crystals: A TEM and NMR Study. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gerald Guerin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Gregory Molev
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Dmitry Pichugin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Paul A. Rupar
- School of Chemistry, University of Bristol, Bristol, U.K. BS8 1TS
| | - Fei Qi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Menandro Cruz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol, U.K. BS8 1TS
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
48
|
Finnegan JR, He X, Street STG, Garcia-Hernandez JD, Hayward DW, Harniman RL, Richardson RM, Whittell GR, Manners I. Extending the Scope of "Living" Crystallization-Driven Self-Assembly: Well-Defined 1D Micelles and Block Comicelles from Crystallizable Polycarbonate Block Copolymers. J Am Chem Soc 2018; 140:17127-17140. [PMID: 30392357 DOI: 10.1021/jacs.8b09861] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fiber-like block copolymer (BCP) micelles offer considerable potential for a variety of applications; however, uniform samples of controlled length and with spatially tailored chemistry have not been accessible. Recently, a seeded growth method, termed "living" crystallization-driven self-assembly (CDSA), has been developed to allow the formation of 1D micelles and block comicelles of precisely controlled dimensions from BCPs with a crystallizable segment. An expansion of the range of core-forming blocks that participate in living CDSA is necessary for this technique to be compatible with a broad range of applications. Few examples currently exist of well-defined, water-dispersible BCP micelles prepared using this approach, especially from biocompatible and biodegradable polymers. Herein, we demonstrate that BCPs containing a crystallizable polycarbonate, poly(spiro[fluorene-9,5'-[1,3]-dioxan]-2'-one) (PFTMC), can readily undergo living CDSA processes. PFTMC- b-poly(ethylene glycol) (PEG) BCPs with PFTMC:PEG block ratios of 1:11 and 1:25 were shown to undergo living CDSA to form near monodisperse fiber-like micelles of precisely controlled lengths of up to ∼1.6 μm. Detailed structural characterization of these micelles by TEM, AFM, SAXS, and WAXS revealed that they comprise a crystalline, chain-folded PFTMC core with a rectangular cross-section that is surrounded by a solvent swollen PEG corona. PFTMC- b-PEG fiber-like micelles were shown to be dispersible in water to give colloidally stable solutions. This allowed an assessment of the toxicity of these structures toward WI-38 and HeLa cells. From these experiments, we observed no discernible cytotoxicity from a sample of 119 nm fiber-like micelles to either healthy (WI-38) or cancerous (HeLa) cell types. The living CDSA process was extended to PFTMC- b-poly(2-vinylpyridine) (P2VP), and addition of this BCP to PFTMC- b-PEG seed micelles led to the formation of well-defined segmented fibers with spatially localized coronal chemistries.
Collapse
Affiliation(s)
- John R Finnegan
- School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom.,Department of Chemistry , University of Victoria , Victoria , BC V8W 3V6 , Canada
| | - Xiaoming He
- School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom.,School of Chemical Science and Engineering , Tongji University , Shanghai , China
| | - Steven T G Street
- School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom
| | | | - Dominic W Hayward
- School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom
| | - Robert L Harniman
- School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom
| | - Robert M Richardson
- HH Wills Physics Laboratory , Tyndall Avenue , Bristol BS8 1TL , United Kingdom
| | - George R Whittell
- School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom
| | - Ian Manners
- School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom.,Department of Chemistry , University of Victoria , Victoria , BC V8W 3V6 , Canada
| |
Collapse
|
49
|
Mei S, Li CY. Terraced and Smooth Gradient Polymer Brushes via a Polymer Single-Crystal Assisted Grafting-To Method. Angew Chem Int Ed Engl 2018; 57:15758-15761. [DOI: 10.1002/anie.201809915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Shan Mei
- Department of Materials Science and Engineering; Drexel University; Philadelphia PA 19104 USA
| | - Christopher Y. Li
- Department of Materials Science and Engineering; Drexel University; Philadelphia PA 19104 USA
| |
Collapse
|
50
|
Mei S, Li CY. Terraced and Smooth Gradient Polymer Brushes via a Polymer Single-Crystal Assisted Grafting-To Method. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shan Mei
- Department of Materials Science and Engineering; Drexel University; Philadelphia PA 19104 USA
| | - Christopher Y. Li
- Department of Materials Science and Engineering; Drexel University; Philadelphia PA 19104 USA
| |
Collapse
|