1
|
Li Y, Hu Z, Guo Q, Li J, Liu S, Xie X, Zhang X, Kang L, Li Q. van der Waals one-dimensional atomic crystal heterostructure derived from carbon nanotubes. Chem Soc Rev 2025. [PMID: 40331270 DOI: 10.1039/d4cs00670d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
One-dimensional (1D) van der Waals (vdWs) heterojunctions, due to the dimensional reduction leading to 1D quantum confinement effects and interface effects of the heterojunctions, typically exhibit discrete energy levels and strong electron interactions, resulting in unique conductive and optical behaviors. Carbon nanotube (CNT)-derived 1D atomic crystal vdWs heterojunctions represent a new class of 1D vdWs heterojunctions. They leverage the excellent chemical stability, nanoscale cavities, and adjustable diameters provided by CNTs as templates, ensuring controlled synthesis and precise structural tuning. The 1D radial pathways can alter the photonic-electronic propagation characteristics. At the same time, their unique metal-semiconductor-like electronic structure creates conditions for constructing various types of heterojunctions. The CNTs and their encapsulated 1D materials can lead to synergistic enhancement in the fields of electronics, magnetism, and optics. Currently, research is concentrated on understanding the synthesis mechanisms, integration characteristics, and host-guest interactions, and the exploration of novel 1D atomic crystal vdWs heterojunctions derived from CNTs. This review is focused on the latest progress made in 1D vdWs heterojunctions using CNTs as growth templates, emphasizing the construction methods, selection criteria, and the unique properties and applications arising from these complex interfacial electronic or phonon interactions. We also propose several future directions for the development of CNT-derived 1D atomic crystal vdWs heterojunctions. This review aims to enhance the understanding of their synthesis mechanisms and fundamental properties, broaden the range of available materials, and explore new and broader applications.
Collapse
Affiliation(s)
- Yunfei Li
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Ziyi Hu
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Qing Guo
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jing Li
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Shuai Liu
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoxuan Xie
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xu Zhang
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Lixing Kang
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Qingwen Li
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Jiao Z, Li G, Guo S, Wang W, Hou Q, Li Y, Ma W, He G, Fei Q. A De Novo Auto-Activated Solar-Driven Biohybrid System for Hydrogen Production in Methanotrophic Cells. Angew Chem Int Ed Engl 2025; 64:e202419973. [PMID: 39510972 DOI: 10.1002/anie.202419973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Climate change driving by greenhouse gas emissions from petroleum-based energy has garnered significant attention. Renewable energy production via a sustainable system that integrates the cell factory and visible-light-driven photocatalysts offers a novel approach for upcycling methane and addressing global energy challenges. Here, an auto-activated biohybrid system driven by solar energy is developed for converting methane into hydrogen fuel, which incorporated thienoviologen (S-MV2+) and genetically engineered methanotrophic bacteria. In this system, S-MV2+ functioned as photosensitizer and electron mediator, capturing solar energy and supplying electrons for an enzyme-catalyzed bioprocess. The genetically modified Methylomicrobium buryatense 5GB1 mutant, lacking methanol dehydrogenase but overexpressing hydrogenase, is able to convert methane into methanol that maintains the electron flow cycle by quenching photogenerated holes for both hydrogen biosynthesis and methane oxidation. Finally, the highest H2 production of 272.96 μM from this biohybrid system was achieved with methanol as a sacrificial agent generated by the H2-producing mutant, resulting in a 140-fold enhancement. This innovative method showcases the potential of coupling photocatalysis with methanotrophic biocatalysis for sustainable energy production. Additionally, the system introduces a new strategy for self-regeneration of sacrificial agents, offering a promising avenue for hydrogen production using greenhouse gases in an eco-friendly manner.
Collapse
Affiliation(s)
- Ziyue Jiao
- School of Chemical Engineering and Technology, Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guoping Li
- Frontier Institute of Science and Technology, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Weiting Wang
- School of Chemical Engineering and Technology, Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qianzi Hou
- School of Chemical Engineering and Technology, Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yawen Li
- Frontier Institute of Science and Technology, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenqiang Ma
- Frontier Institute of Science and Technology, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Gang He
- Frontier Institute of Science and Technology, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Tajima T, Matsuura T, Efendi A, Yukimoto M, Takaguchi Y. MoSe 2-Sensitized Water Splitting Assisted by C 60-Dendrons on the Basal Surface. Chemistry 2024; 30:e202402690. [PMID: 39261993 DOI: 10.1002/chem.202402690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
To facilitate water splitting using MoSe2 as a light absorber, we fabricated water-dispersible MoSe2/C60-dendron nanohybrids via physical modification of the basal plane of MoSe2. Upon photoirradiation, the mixed-dimension MoSe2/C60 (2D/0D) heterojunction generates a charge-separated state (MoSe2⋅+/C60⋅-) through electron extraction from the exciton in MoSe2 to C60. This process is followed by the hydrogen evolution reaction (HER) from water in the presence of a sacrificial donor (1-benzyl-1,4-dihydronicotinamide) and co-catalyst (Pt-PVP). The apparent quantum yields of the HER were estimated to be 0.06 % and 0.27 % upon photoexcitation at the A- and B-exciton absorption peaks (λmax=800 and 700 nm), respectively.
Collapse
Affiliation(s)
- Tomoyuki Tajima
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Tomoki Matsuura
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Arif Efendi
- Department of Materials Design and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Mariko Yukimoto
- Department of Materials Design and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Yutaka Takaguchi
- Department of Materials Design and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| |
Collapse
|
4
|
Allard C, Alvarez L, Bantignies JL, Bendiab N, Cambré S, Campidelli S, Fagan JA, Flahaut E, Flavel B, Fossard F, Gaufrès E, Heeg S, Lauret JS, Loiseau A, Marceau JB, Martel R, Marty L, Pichler T, Voisin C, Reich S, Setaro A, Shi L, Wenseleers W. Advanced 1D heterostructures based on nanotube templates and molecules. Chem Soc Rev 2024; 53:8457-8512. [PMID: 39036944 DOI: 10.1039/d3cs00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recent advancements in materials science have shed light on the potential of exploring hierarchical assemblies of molecules on surfaces, driven by both fundamental and applicative challenges. This field encompasses diverse areas including molecular storage, drug delivery, catalysis, and nanoscale chemical reactions. In this context, the utilization of nanotube templates (NTs) has emerged as promising platforms for achieving advanced one-dimensional (1D) molecular assemblies. NTs offer cylindrical, crystalline structures with high aspect ratios, capable of hosting molecules both externally and internally (Mol@NT). Furthermore, NTs possess a wide array of available diameters, providing tunability for tailored assembly. This review underscores recent breakthroughs in the field of Mol@NT. The first part focuses on the diverse panorama of structural properties in Mol@NT synthesized in the last decade. The advances in understanding encapsulation, adsorption, and ordering mechanisms are detailed. In a second part, the review highlights the physical interactions and photophysics properties of Mol@NT obtained by the confinement of molecules and nanotubes in the van der Waals distance regime. The last part of the review describes potential applicative fields of these 1D heterostructures, providing specific examples in photovoltaics, luminescent materials, and bio-imaging. A conclusion gathers current challenges and perspectives of the field to foster discussion in related communities.
Collapse
Affiliation(s)
| | - Laurent Alvarez
- Laboratoire Charles Coulomb, CNRS-Université de Montpellier, France
| | | | | | | | | | | | - Emmanuel Flahaut
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse, cedex 9, France
| | | | - Frédéric Fossard
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Etienne Gaufrès
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | - Jean-Sebastien Lauret
- LUMIN, Université Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France
| | - Annick Loiseau
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Jean-Baptiste Marceau
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | | | | | | | | | - Antonio Setaro
- Free University of Berlin, Germany
- Faculty of Engineering and Informatics, Pegaso University, Naples, Italy
| | - Lei Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology and Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | | |
Collapse
|
5
|
Qin Y, She P, Wang Y, Wong WY. An All-In-One Integrating Strategy for Designing Platinum(II)-Based Supramolecular Polymers for Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400259. [PMID: 38624171 DOI: 10.1002/smll.202400259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/06/2024] [Indexed: 04/17/2024]
Abstract
Organic polymer photocatalysts have achieved significant progress in photocatalytic hydrogen evolution, while developing the integrated organic polymers possessing the functions of photosensitizer, electron transfer mediator, and catalyst simultaneously is urgently needed and presents a great challenge. Considering that chalcogenoviologens are able to act as photosensitizers and electron-transfer mediators, a series of chalcogenoviologen-containing platinum(II)-based supramolecular polymers is designed, which exhibited strong visible light-absorbing ability and suitable bandgap for highly efficient photocatalytic hydrogen evolution without the use of a cocatalyst. The hydrogen evolution rate (HER) increases steadily with the decrease in an optical gap of the polymer. Among these "all-in-one" polymers, Se-containing 2D porous polymer exhibited the best photocatalytic performance with a HER of 3.09 mmol g-1 h-1 under visible light (>420 nm) irradiation. Experimental and theoretical calculations reveal that the distinct intramolecular charge transfer characteristics and heteroatom N in terpyridine unit promote charge separation and transfer within the molecules. This work could provide new insights into the design of metallo-supramolecular polymers with finely tuned components for photocatalytic hydrogen evolution from water.
Collapse
Affiliation(s)
- Yanyan Qin
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Pengfei She
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Yidi Wang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
6
|
Seidenath S, Seeber P, Kupfer S, Grӓfe S, Weigand W, Mlostoń G, Matczak P. Theoretical insights into the spectroscopic properties of ferrocenyl hetaryl ketones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122635. [PMID: 36996518 DOI: 10.1016/j.saa.2023.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Quantum chemical calculations have been carried out to elucidate the electronic structure as well as to draw structure-property relationships for a series of ferrocenyl hetaryl ketones by means of simulated NMR, IR and UV-vis spectra. In this series, the list of hetaryl groups included furan-2-yl, thiophen-2-yl, selenophen-2-yl, 1H-pyrrol-2-yl and N-methylpyrrol-2-yl. Density functional theory was employed to determine the ground-state properties of the five ketones while their excited-state properties were modeled using a broad range of theoretical methods, namely from time-dependent density functional theory to multiconfigurational and multireference ab initio approaches. The patterns in the 13C and 17O chemical shifts of the carbonyl group were explained by the geometrical twist of hetaryl rings and by the electronic parameters corresponding to π-bonds conjugation and group hardness. Furthermore, the corresponding 13C and 17O shielding constants were analyzed in terms of both their dia/paramagnetic and Lewis/non-Lewis contributions within the framework of natural chemical shielding theory. The pattern in the vibrational frequency of the carbonyl bond was connected with changes in its bond length and bond order. It was established that the electronic absorption spectra of the studied ketones are largely characterized by low-intensity d → π* transitions in the visible region and the dominant high-intensity π → π* transition in the UV region. Finally, the theoretical methods best suited for modeling the excited-state properties of such ketones were designated.
Collapse
Affiliation(s)
- Sebastian Seidenath
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Phillip Seeber
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stefanie Grӓfe
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstrasse 8, 07743 Jena, Germany
| | - Grzegorz Mlostoń
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Lodz, Poland
| | - Piotr Matczak
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90236 Lodz, Poland.
| |
Collapse
|
7
|
Matczak P, Domagała S, Weigand W, Mlostoń G. A comparative analysis of UV-vis transitions in hetaryl and ferrocenyl thioketones. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Song G, Qin F, Yu J, Tang L, Pang Y, Zhang C, Wang J, Deng L. Tailoring biochar for persulfate-based environmental catalysis: Impact of biomass feedstocks. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127663. [PMID: 34799169 DOI: 10.1016/j.jhazmat.2021.127663] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 05/28/2023]
Abstract
Biochar, a carbonaceous material with engineering potential, has gained attention as an efficient catalyst in persulfate-based advanced oxidation processes (PS-AOPs). Although biomass feedstocks are known as a critical factor for the performance of biochar, the relationship between the catalytic efficiency/mechanism and the types of biomass feedstocks is still unclear. Thus, according to recent advances in experimental and theoretical researches, this paper provides a systematic review of the properties of biochar, and the relationship between catalytic performance in PS-AOPs and biomass feedstocks, where the differences in physicochemical properties (surface properties, pore structure, etc.) and activation path of different sourced biochars, are introduced. In addition, how the tailoring of biochar (such as heteroatomic doping and co-pyrolysis of biomass) affects its activation efficiency and mechanism in PS-AOPs is summarized. Finally, the suitable application scenarios or systems of different sourced biochars, appropriate methods to improve the catalytic performance of different types of biochar and the prospects and challenges for the development of biochar in PS-AOPs are proposed.
Collapse
Affiliation(s)
- Ge Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Ya Pang
- Department of Biology and Environmental Engineering, Changsha University, Changsha 410003, Hunan, China.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Lifei Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| |
Collapse
|
9
|
Yang X, Zhang B, Gao Y, Liu C, Li G, Rao B, Chu D, Yan N, Zhang M, He G. Efficient Photoinduced Electron Transfer from Pyrene-o-Carborane Heterojunction to Selenoviologen for Enhanced Photocatalytic Hydrogen Evolution and Reduction of Alkynes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101652. [PMID: 34957686 PMCID: PMC8844576 DOI: 10.1002/advs.202101652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/10/2021] [Indexed: 05/03/2023]
Abstract
A series of pyrene or pyrene-o-carborane-appendant selenoviologens (Py-SeV2+ , Py-Cb-SeV2+ ) for enhanced photocatalytic hydrogen evolution reaction (HER) and reduction of alkynes is reported. The efficient photoinduced electron transfer (PET) from electron-rich pyrene-o-carborane heterojunction (Py-Cb) with intramolecular charge transfer (ICT) characteristic to electron-deficient selenoviologen (SeV2+ ) (kET = 1.2 × 1010 s-1 ) endows the accelerating the generation of selenoviologen radical cation (SeV+• ) compared with Py-SeV2+ and other derivatives. The electrochromic/electrofluorochromic devices' (ECD and EFCD) measurements and supramolecular assembly/disassembly processes of SeV2+ and cucurbit[8]uril (CB[8]) results show that the PET process can be finely tuned by electrochemical and host-guest chemistry methods. By combination with Pt-NPs catalyst, the Py-Cb-SeV2+ -based system shows high-efficiency visible-light-driven HER and highly selective phenylacetylene reduction due to the efficient PET process.
Collapse
Affiliation(s)
- Xiaodong Yang
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy and Power EngineeringFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Bingjie Zhang
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy and Power EngineeringFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Yujing Gao
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy and Power EngineeringFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Chenjing Liu
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy and Power EngineeringFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Guoping Li
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy and Power EngineeringFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Bin Rao
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy and Power EngineeringFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Dake Chu
- The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Ni Yan
- School of Materials Science & EngineeringEngineering Research Center of Transportation MaterialsMinistry of EducationChang'an UniversityXi'anShaanxi710054P. R. China
| | - Mingming Zhang
- School of Materials Science and EngineeringXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Gang He
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy and Power EngineeringFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| |
Collapse
|
10
|
Lazzarin L, Pasini M, Menna E. Organic Functionalized Carbon Nanostructures for Solar Energy Conversion. Molecules 2021; 26:5286. [PMID: 34500718 PMCID: PMC8433975 DOI: 10.3390/molecules26175286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
This review presents an overview of the use of organic functionalized carbon nanostructures (CNSs) in solar energy conversion schemes. Our attention was focused in particular on the contribution of organic chemistry to the development of new hybrid materials that find application in dye-sensitized solar cells (DSSCs), organic photovoltaics (OPVs), and perovskite solar cells (PSCs), as well as in photocatalytic fuel production, focusing in particular on the most recent literature. The request for new materials able to accompany the green energy transition that are abundant, low-cost, low-toxicity, and made from renewable sources has further increased the interest in CNSs that meet all these requirements. The inclusion of an organic molecule, thanks to both covalent and non-covalent interactions, in a CNS leads to the development of a completely new hybrid material able of combining and improving the properties of both starting materials. In addition to the numerical data, which unequivocally state the positive effect of the new hybrid material, we hope that these examples can inspire further research in the field of photoactive materials from an organic point of view.
Collapse
Affiliation(s)
- Luca Lazzarin
- Department of Chemical Sciences & INSTM, University of Padua, Via Marzolo 1, 35131 Padova, Italy;
| | - Mariacecilia Pasini
- Institute of Chemical Sciences and Technologies “G. Natta”-SCITEC, National Research Council, CNR-SCITEC, Via Corti 12, 20133 Milan, Italy
| | - Enzo Menna
- Department of Chemical Sciences & INSTM, University of Padua, Via Marzolo 1, 35131 Padova, Italy;
- Interdepartmental Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padua, 35131 Padova, Italy
| |
Collapse
|
11
|
Abstract
This perspective article describes the application opportunities of carbon nanotube (CNT) films for the energy sector. Up to date progress in this regard is illustrated with representative examples of a wide range of energy management and transformation studies employing CNT ensembles. Firstly, this paper features an overview of how such macroscopic networks from nanocarbon can be produced. Then, the capabilities for their application in specific energy-related scenarios are described. Among the highlighted cases are conductive coatings, charge storage devices, thermal interface materials, and actuators. The selected examples demonstrate how electrical, thermal, radiant, and mechanical energy can be converted from one form to another using such formulations based on CNTs. The article is concluded with a future outlook, which anticipates the next steps which the research community will take to bring these concepts closer to implementation.
Collapse
|
12
|
Nishioka S, Oshima T, Hirai S, Saito D, Hojo K, Mallouk TE, Maeda K. Excited Carrier Dynamics in a Dye-Sensitized Niobate Nanosheet Photocatalyst for Visible-Light Hydrogen Evolution. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shunta Nishioka
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Takayoshi Oshima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shota Hirai
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Daiki Saito
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Koya Hojo
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Thomas E. Mallouk
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
13
|
Tajima T, Okabe S, Takaguchi Y. Photoinduced Electron Transfer in a MoS 2/Anthracene Mixed-Dimensional Heterojunction in Aqueous Media. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Tomoyuki Tajima
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Shogo Okabe
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yutaka Takaguchi
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
14
|
Ahn DH, Park C, Song JW. Predicting whether aromatic molecules would prefer to enter a carbon nanotube: A density functional theory study. J Comput Chem 2020; 41:1261-1270. [PMID: 32058612 DOI: 10.1002/jcc.26173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 01/02/2023]
Abstract
The interaction of a carbon nanotube (CNT) with various aromatic molecules, such as aniline, benzophenone, and diphenylamine, was studied using density functional theory able to compute intermolecular weak interactions (B3LYP-D3). CNTs of varying lengths were used, such as 4-CNT, 6-CNT, and 8-CNT (the numbers denoting relative lengths), with the lengths being chosen appropriately to save computation times. All aromatic molecules were found to exhibit strong intermolecular binding energies with the inner surface of the CNT, rather than the outer surface. Hydrogen bonding between two aromatic molecules that include N and O atoms is shown to further stabilize the intermolecular adsorption process. Therefore, when benzophenone and diphenylamine were simultaneously allowed to interact with a CNT, the aromatic molecules were expected to preferably enter the CNT. Furthermore, additional calculations of the intermolecular adsorption energy for aniline adsorbed on a graphene surface showed that the concavity of graphene-like carbon sheet is in proportion to the intermolecular binding energy between the graphene-like carbon sheet and the aromatic molecule.
Collapse
Affiliation(s)
- Dae-Hwan Ahn
- Department of Chemistry Education, Daegu University, Gyeongsan-si, South Korea
| | - Chiyoung Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, Dalseong-Gun, Daegu, South Korea
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Gyeongsan-si, South Korea.,Computational Molecular Science Research Team, RIKEN Center for Computaional Science, Kobe, Hyogo, Japan
| |
Collapse
|
15
|
Izawa T, Kalousek V, Miyamoto D, Murakami N, Miyake H, Tajima T, Kurashige W, Negishi Y, Ikeue K, Ohkubo T, Takaguchi Y. Carbon-nanotube-based Photocatalysts for Water Splitting in Cooperation with BiVO 4 and [Co(bpy) 3] 3+/2+. CHEM LETT 2019. [DOI: 10.1246/cl.180999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takumi Izawa
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Vit Kalousek
- Advanced Materials Research Institute, Sanyo-onoda City University, 1-1-1 Daigakudori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Daiki Miyamoto
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Noritake Murakami
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Hideaki Miyake
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Tomoyuki Tajima
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Wataru Kurashige
- Department of Applied Chemistry, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Keita Ikeue
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-onoda City University, 1-1-1 Daigakudori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Takahiro Ohkubo
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yutaka Takaguchi
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
16
|
Takaguchi Y, Miyake H, Izawa T, Miyamoto D, Sagawa R, Tajima T. Molecular design of benzothiadiazole-based dyes for working with carbon nanotube photocatalysts. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1603716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yutaka Takaguchi
- Graduate School of Environmental Science & Technology, Okayama University, Okayama, Japan
| | - Hideaki Miyake
- Graduate School of Sciences & Technology for Innovation, Yamaguchi University, Ube, Japan
| | - Takumi Izawa
- Graduate School of Environmental Science & Technology, Okayama University, Okayama, Japan
| | - Daiki Miyamoto
- Graduate School of Environmental Science & Technology, Okayama University, Okayama, Japan
| | - Ryohei Sagawa
- Graduate School of Environmental Science & Technology, Okayama University, Okayama, Japan
| | - Tomoyuki Tajima
- Graduate School of Environmental Science & Technology, Okayama University, Okayama, Japan
| |
Collapse
|
17
|
Chen B, Wang X, Dong W, Zhang X, Rao L, Chen H, Huang D, Xiang Y. Enhanced Light-Driven Hydrogen-Production Activity Induced by Accelerated Interfacial Charge Transfer in Donor-Acceptor Conjugated Polymers/TiO 2 Hybrid. Chemistry 2019; 25:3362-3368. [PMID: 30645005 DOI: 10.1002/chem.201805740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Indexed: 12/12/2022]
Abstract
Donor-acceptor (D-A) conjugated polymers have proved to be desired candidates to couple with inorganic semiconductors for enhanced photocatalytic activity. Herein, the matched energy levels between polymer BFB and TiO2 make them form BFB-TiO2 composites with moderate photocatalytic H2 evolution rate (HER). To further enhance the interfacial interaction, BFB was modified with a carboxylic acid end group, which reacted with surface OH of TiO2 to form an ester bond. As a result, the functionalized BFBA-TiO2 composites exhibited superior photocatalytic activity. Especially, HER of 4 % BFBA-TiO2 can reach up to 228.2 μmol h-1 under visible light irradiation (λ>420 nm), which is about 2.02 times higher than that of BFB-TiO2 . The enhanced photocatalytic activity originated from the formed ester bond between polymer and TiO2 , and photogenerated electrons injection from lowest unoccupied molecular orbital (LUMO) of the exited polymer to conduction band of TiO2 were accelerated. Therefore, based on an intermolecular interaction mechanism, more suitable D-A conjugated polymers with anchoring groups could be designed to couple with other semiconductors for enhancing photocatalytic activity.
Collapse
Affiliation(s)
- Bo Chen
- College of Science, Huazhong Agricultural University, Shizishan Avenue, Wuhan, 430070, P. R. China
| | - Xuepeng Wang
- College of Science, Huazhong Agricultural University, Shizishan Avenue, Wuhan, 430070, P. R. China
| | - Wenbo Dong
- College of Science, Huazhong Agricultural University, Shizishan Avenue, Wuhan, 430070, P. R. China
| | - Xiaohu Zhang
- College of Science, Huazhong Agricultural University, Shizishan Avenue, Wuhan, 430070, P. R. China
| | - Li Rao
- College of Chemistry, Central China Normal University, Luoyu Road No. 152, Wuhan, 430079, P. R. China
| | - Hao Chen
- College of Science, Huazhong Agricultural University, Shizishan Avenue, Wuhan, 430070, P. R. China
| | - Dekang Huang
- College of Science, Huazhong Agricultural University, Shizishan Avenue, Wuhan, 430070, P. R. China
| | - Yonggang Xiang
- College of Science, Huazhong Agricultural University, Shizishan Avenue, Wuhan, 430070, P. R. China
| |
Collapse
|
18
|
Yamagami M, Tajima T, Ishimoto K, Miyake H, Michiue H, Takaguchi Y. Physical modification of carbon nanotubes with a dendrimer bearing terminal mercaptoundecahydrododecaborates (Na
2
B
12
H
11
S). HETEROATOM CHEMISTRY 2018. [DOI: 10.1002/hc.21467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Masahiro Yamagami
- Graduate School of Environmental and Life ScienceOkayama University Okayama Japan
| | - Tomoyuki Tajima
- Graduate School of Environmental and Life ScienceOkayama University Okayama Japan
| | - Kango Ishimoto
- Graduate School of Environmental and Life ScienceOkayama University Okayama Japan
| | - Hideaki Miyake
- Graduate School of Sciences and Technology for InnovationYamaguchi University Yamaguchi Japan
| | | | - Yutaka Takaguchi
- Graduate School of Environmental and Life ScienceOkayama University Okayama Japan
| |
Collapse
|
19
|
Fan S, Li X, Zeng L, Zhang M, Yin Z, Lian T, Chen A. Relationships Between Crystal, Internal Microstructures, and Physicochemical Properties of Copper-Zinc-Iron Multinary Spinel Hierarchical Nano-microspheres. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35919-35931. [PMID: 30252434 DOI: 10.1021/acsami.8b11382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rational design and fabrication of high quality complex multicomponent spinel ferrite with specific microstructures and solar light harvestings toward CO2 reduction and antibiotic degradation to future energetic and catalytic applications are highly desirable. In this study, novel copper-zinc-iron multinary spinel hierarchical nano-microspheres (MSHMs) with different internal structures (solid nano-microspheres, yolk-shell hollow nano-microspheres, and double-shelled hollow nano-microspheres) have been successfully developed by a facile self-templated solvothermal strategy. The morphology and structure, optical, as well as photoinduced redox reactions including interfacial charge carrier behaviors and the intrinsic relationship of structure-property between intrinsic nano-microstructures and physicochemical performance of copper-zinc-iron ferrite MSHMs composites were systematically investigated with the assistance of various on- and/or off- line physical-chemical means and deeply elucidated in terms of the research outcomes. It is demonstrated that the modification of the interior microstructures can be applied to tune the catalytic properties of multinary spinel by tailoring the temperature programming to fine control the two opposite forces of contraction (Fc) and adhesion (Fa). Among various internal microstructures, the obtained double-shelled copper-zinc-iron MSHMs exhibited the superior catalytic performance toward 8.8 and 38 μmol for H2 and CO productions as well as 80.4% removal of sulfamethoxazole antibiotics. As evidenced from primary characterizations, for example, combined steady-state PL, ns-TAS, and Mössbauer and sequential investigations, the remarkable improvements in the catalytic activity can be primarily attributed to several crucial factors, for example, the more effective e--h+ spatial separations and interfacial transfers, multiple internal light scattering, higher photonic energy harvesting and effective reactive oxygen species generation with long radical lifetimes. The current research provides new insights into the molecular design of novel copper-zinc-iron multinary spinels and the intrinsic relationship of structure-property between interior structures (e.g., different crystal texture, morphologies structures) and the physicochemical performance of the aforementioned multinary spinels.
Collapse
Affiliation(s)
- Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Libin Zeng
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Mingmei Zhang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Zhifan Yin
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Tingting Lian
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry , University of Guelph , 50 Stone Road E , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|