1
|
Lin E, Wang JZ, Mao E, Tsang S, Carsch KM, Prieto Kullmer CN, McNamee RE, Long JR, Le CC, MacMillan DWC. Aryl Acid-Alcohol Cross-Coupling: C(sp 3)-C(sp 2) Bond Formation from Nontraditional Precursors. J Am Chem Soc 2025; 147:14905-14914. [PMID: 40267410 DOI: 10.1021/jacs.4c15827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Alcohols and aryl carboxylic acids are among the most commercially abundant, synthetically versatile, and operationally convenient building blocks in organic chemistry. Despite their widespread availability, the direct formation of C(sp3)-C(sp2) bonds from these functional groups remains a challenge. Recently, our group developed robust protocols to harness alcohols as alkyl radical precursors, but the activation of aryl acids remains relatively unexplored. Herein, we describe the merger of N-heterocyclic carbene (NHC)-mediated deoxygenation and nickel-mediated decarbonylation of aryl acids toward C(sp3)-C(sp2) bond formation. The utility of this method is demonstrated through the synthesis of a diverse range of aryl-alkyl cross-coupled products and the late-stage functionalization of complex molecules, including drugs, natural products, and biomolecules.
Collapse
Affiliation(s)
- Eva Lin
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Johnny Z Wang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Stephanie Tsang
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Kurtis M Carsch
- Institute for Decarbonization Materials, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Cesar N Prieto Kullmer
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ryan E McNamee
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Jeffrey R Long
- Institute for Decarbonization Materials, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Chi Chip Le
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Tian DY, Zhao WP, Xu ZY. Mechanism and Origin of Nickel-Catalyzed Decarbonylative Construction of C(sp 2)-C(sp 3) Bonds from Carboxylic Acids and Their Derivatives. J Org Chem 2025; 90:4808-4818. [PMID: 40163894 DOI: 10.1021/acs.joc.4c02521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Nickel-catalyzed arylation of carboxylic acids provides a ligand-controlled chemoselectivity-switchable method for the construction of C(sp2)-C(sp3) bonds. Here, we employed density functional theory to provide a detailed understanding of the mechanism and origin of nickel-catalyzed ligand-controlled carbonyl transformation. This reaction generates decarbonylation products through oxidative addition, activation of C-C bonds, decarbonylation, binding of alkyl radicals with Ni(III) complexes, and final reduction elimination step. The activation of C-C bonds in aromatic carboxylate esters is more favorable than C-O bond activation because of the interaction between the nickel catalyst and the π orbitals of the substrate's aromatic moiety during C-C bond activation. The induction effect of the ligand and the carbonyl group together determines the transfer tendency of the carbonyl group.
Collapse
Affiliation(s)
- Dan-Yan Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei-Peng Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zheng-Yang Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Shinde PS, Shinde VS, Rueping M. Catalytic stereoselective synthesis of all-carbon tetra-substituted alkenes via Z-selective alkyne difunctionalization. Chem Sci 2025; 16:6273-6281. [PMID: 40092594 PMCID: PMC11904831 DOI: 10.1039/d5sc00297d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
We report a Ni-catalyzed cascade reaction leading to the arylation of an alkyne-induced acyl migration and the formation of all-carbon tetra-substituted alkenes in good yields with exclusive Z-selectivity. This transformation involves the generation of a nucleophilic vinyl-Ni species through regioselective syn-aryl nickelation of the alkynes, followed by an intramolecular acyl migration. The steric and electronic properties of the phosphine ligands are crucial for achieving high regio- and stereocontrol in this migratory carbo-acylation process. The synthetic utility of the resulting Z-tetra-substituted alkenes is also demonstrated.
Collapse
Affiliation(s)
- Prashant S Shinde
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Valmik S Shinde
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Lucknow 226031 Uttar Pradesh India
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
4
|
Zhou B, Cai L, Jin Z, Hu Y. Formal Transesterification Reaction of But-3-enyl Esters Enabled by a Synergistic Nickel/Zinc Relay. Org Lett 2025; 27:1118-1123. [PMID: 39868494 DOI: 10.1021/acs.orglett.4c04515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The transition metal-catalyzed coupling reaction has renewed the role of ester as an electrophilic partner. In this context, we describe a synergistic Ni/Zn-catalyzed formal transesterification reaction of but-3-enyl esters with tetrahydrofuran and alkyl iodides to give 4-alkoxylbutyl esters. The aromatic and aliphatic esters are both competent electrophiles and thus broaden the substrate scope of esters in coupling reactions, because the electrophiles in previously reported work were strictly limited to aromatic ones. Mechanistic studies reveal that the C(acyl)-O bond or even more inert C(alkyl)-O bond of esters could be cleaved under nickel catalysis. Two catalytic cycles are proposed, which represent a new reaction pathway versus the traditional transesterification.
Collapse
Affiliation(s)
- Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Long Cai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhou Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Kubo M, Yamaguchi J. Divergent Transformations of Aromatic Esters: Decarbonylative Coupling, Ester Dance, Aryl Exchange, and Deoxygenative Coupling. Acc Chem Res 2024; 57:1747-1760. [PMID: 38819671 PMCID: PMC11191398 DOI: 10.1021/acs.accounts.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
ConspectusAromatic esters are cost-effective, versatile, and commonly used scaffolds that are readily synthesized or encountered as synthetic intermediates. While most conventional reactions involving these esters are nucleophilic acyl substitutions or 1,2-nucleophilic additions─where a nucleophile attacks the carbonyl group, decarbonylative transformations offer an alternative pathway by using the carbonyl group as a leaving group. This transition-metal-catalyzed process typically begins with oxidative addition of the C(acyl)-O bond to the metal. Subsequently, the reaction involves the migration of CO to the metal center, the reaction with a nucleophile, and reductive elimination to yield the final product. Pioneering work by Yamamoto on nickel complexes and the development of decarbonylative reactions (such as Mizoroki-Heck-type olefination) using aromatic carboxylic anhydrides catalyzed by palladium were conducted by de Vries and Stephan. Furthermore, reports have surfaced of decarbonylative hydrogenation of pyridyl methyl esters by Murai using ruthenium catalysts as well as Mizoroki-Heck-type reactions of nitro phenyl esters by Gooßen under palladium catalysis. Our group has been at the forefront of developing decarbonylative C-H arylations of phenyl esters with 1,3-azoles and aryl boronic acids using nickel catalysts. The key to this reaction is the use of phenyl esters, which are easy to synthesize, stabilize, and handle, allowing oxidative addition of the C(acyl)-O bond; nickel, which facilitates oxidative addition of the C(acyl)-O bond; and suitable bidentate phosphine ligands that can stabilize the intermediate. By modification of the nucleophiles, esters have been effectively utilized as electrophiles in cross-coupling reactions, encouraging the development of these nucleophiles among researchers. This Account summarizes our advancements in nucleophile development for decarbonylative coupling reactions, particularly highlighting the utilization of aromatic esters in diverse reactions such as alkenylation, intramolecular etherification, α-arylation of ketones, C-H arylation, methylation, and intramolecular C-H arylation for dibenzofuran synthesis, along with cyanation and reductive coupling. We also delve into reaction types that are distinct from typical decarbonylative reactions, including ester dance reactions, aromatic ring exchanges, and deoxygenative transformations, by focusing on the oxidative addition of the C(acyl)-O bond of the aromatic esters to the metal complex. For example, the ester dance reaction is hypothesized to undergo 1,2-translocation starting with oxidative addition to a palladium complex, leading to a sequence of ortho-deprotonation/decarbonylation, followed by protonation, carbonylation, and reductive elimination. The aromatic exchange reaction likely involves oxidative addition of complexes of different aryl electrophiles with a nickel complex. In deoxygenative coupling, an oxidative addition complex with palladium engages with a nucleophile, forming an acyl intermediate that undergoes reductive elimination in the presence of an appropriate reducing agent. These methodologies are poised to captivate the interest of synthetic chemists by offering unconventional and emerging approaches for transforming aromatic esters. Moreover, we demonstrated the potential to transform readily available basic chemicals into new compounds through organic synthesis.
Collapse
Affiliation(s)
- Masayuki Kubo
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
6
|
Wan T, Capaldo L, Djossou J, Staffa A, de Zwart FJ, de Bruin B, Noël T. Rapid and scalable photocatalytic C(sp 2)-C(sp 3) Suzuki-Miyaura cross-coupling of aryl bromides with alkyl boranes. Nat Commun 2024; 15:4028. [PMID: 38740738 DOI: 10.1038/s41467-024-48212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
In recent years, there has been a growing demand for drug design approaches that incorporate a higher number of sp3-hybridized carbons, necessitating the development of innovative cross-coupling strategies to reliably introduce aliphatic fragments. Here, we present a powerful approach for the light-mediated B-alkyl Suzuki-Miyaura cross-coupling between alkyl boranes and aryl bromides. Alkyl boranes were easily generated via hydroboration from readily available alkenes, exhibiting excellent regioselectivity and enabling the selective transfer of a diverse range of primary alkyl fragments onto the arene ring under photocatalytic conditions. This methodology eliminates the need for expensive catalytic systems and sensitive organometallic compounds, operating efficiently at room temperature within just 30 min. We further demonstrate the translation of the present protocol to continuous-flow conditions, enhancing scalability, safety, and overall efficiency of the method. This versatile approach offers significant potential for accelerating drug discovery efforts by enabling the introduction of complex aliphatic fragments in a straightforward and reliable manner.
Collapse
Affiliation(s)
- Ting Wan
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098, XH, Amsterdam, The Netherlands
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Luca Capaldo
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098, XH, Amsterdam, The Netherlands
- SynCat Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Jonas Djossou
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098, XH, Amsterdam, The Netherlands
| | - Angela Staffa
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098, XH, Amsterdam, The Netherlands
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Felix J de Zwart
- Homogeneous, Supramolecular and Bioinspired Catalysis Group (HomKat), van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), 1098, XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bioinspired Catalysis Group (HomKat), van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), 1098, XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098, XH, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Wang X, Jin P, Li S, Wen Y, Wang F, Wei H, Wei D. Effects of phosphine ligands in nickel-catalyzed decarbonylation reactions of lactone. Org Biomol Chem 2023; 21:7410-7418. [PMID: 37661852 DOI: 10.1039/d3ob01216f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Due to the ubiquity of carbonyl compounds and the abundance of nickel on the earth, nickel-catalyzed decarbonylation has garnered increasing attention in recent years. This type of reaction has seen significant developments in various aspects; however, certain challenges concerning reactivity, selectivity, and transformation efficiency remain pressing and demand urgent resolution. In this study, we employed DFT calculations to investigate the mechanism of nickel-catalyzed decarbonylation reactions involving lactones, as well as the effects of phosphine ligands. Mechanically, Ni(0) first activates the C(acyl)-O bond of the lactone, followed by a decarbonylation step, and ultimately results in reductive elimination under carbonyl coordination to yield the product. Through a comprehensive examination of the electronic and steric effects of the phosphine ligands, we deduced that the electronic effect of the ligand plays a dominant role in the decarbonylation reaction. By enhancing the electron-withdrawing ability of the ligand, the energy barrier of the entire reaction can be significantly reduced. The obtained insights should be valuable for understanding the detailed mechanism and the role of phosphine ligands in nickel catalysis. Moreover, they offer crucial clues for the rational design of more efficient catalytic reactions.
Collapse
Affiliation(s)
- Xinghua Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Peng Jin
- State Key Laboratory of Coking Coal Resources Green Exploitation, China Pingmei Shenma Group, Pingdingshan 467000, China
- Henan Shenma Catalytic Technology Co., Ltd, Pingdingshan 467000, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Shiqiang Li
- Henan Shenma Catalytic Technology Co., Ltd, Pingdingshan 467000, China
| | - Yiqiang Wen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Fuke Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Huijuan Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
8
|
Yang F, Wang C. Nickel-Catalyzed Directed Cross-Electrophile Coupling of Phenolic Esters with Arylmethyl Trimethylammonium Triflates. J Org Chem 2023; 88:10199-10205. [PMID: 37432780 DOI: 10.1021/acs.joc.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
In this context, we successfully utilize polycyclic aryl-activated alkyl ammonium triflates as the electrophilic aryl-activated alkylating agent in the nickel-catalyzed hydroxyl- or sulfonamide-directed cross-electrophile coupling reaction with an array of phenyl benzoates, allowing for the synthesis of various aryl ketones under mild conditions.
Collapse
Affiliation(s)
- Feiyan Yang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
9
|
Rajendran N, Kamaraj K, Janakiraman S, Saral M, Dixneuf PH, Bheeter CB. A sustainable metal and base-free direct amidation of esters using water as a green solvent. RSC Adv 2023; 13:14958-14962. [PMID: 37200700 PMCID: PMC10186333 DOI: 10.1039/d3ra02637j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023] Open
Abstract
Herein, we report a simple and efficient synthetic approach for direct amidation of esters via C(acyl)-O bond cleavage without any additional reagents or catalysts, using only water as a green solvent. Subsequently, the reaction byproduct is recovered and utilized for the next phase of ester synthesis. This method emphasized metal-free, additive-free, and base-free characteristics making it a new, sustainable, and eco-friendly way to realize direct amide bond formation. In addition, the synthesis of the drug molecule diethyltoluamide and the Gram-scale synthesis of a representative amide are demonstrated.
Collapse
Affiliation(s)
- Nanthini Rajendran
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | - Kiruthigadevi Kamaraj
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | - Saranya Janakiraman
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | - Mary Saral
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | | | - Charles Beromeo Bheeter
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| |
Collapse
|
10
|
Wang J, Ehehalt LE, Huang Z, Beleh OM, Guzei IA, Weix DJ. Formation of C(sp 2)-C(sp 3) Bonds Instead of Amide C-N Bonds from Carboxylic Acid and Amine Substrate Pools by Decarbonylative Cross-Electrophile Coupling. J Am Chem Soc 2023; 145:9951-9958. [PMID: 37126234 PMCID: PMC10175239 DOI: 10.1021/jacs.2c11552] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbon-heteroatom bonds, most often amide and ester bonds, are the standard method to link together two complex fragments because carboxylic acids, amines, and alcohols are ubiquitous and the reactions are reliable. However, C-N and C-O linkages are often a metabolic liability because they are prone to hydrolysis. While C(sp2)-C(sp3) linkages are preferable in many cases, methods to make them require different starting materials or are less functional-group-compatible. We show here a new, decarbonylative reaction that forms C(sp2)-C(sp3) bonds from the reaction of activated carboxylic acids (via 2-pyridyl esters) with activated alkyl groups derived from amines (via N-alkyl pyridinium salts) and alcohols (via alkyl halides). Key to this process is a remarkably fast, reversible oxidative addition/decarbonylation sequence enabled by pyridone and bipyridine ligands that, under reaction conditions that purge CO(g), lead to a selective reaction. The conditions are mild enough to allow coupling of more complex fragments, such as those used in drug development, and this is demonstrated in the coupling of a typical Proteolysis Targeting Chimera (PROTAC) anchor with common linkers via C-C linkages.
Collapse
Affiliation(s)
| | | | - Zhidao Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Omar M. Beleh
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Fier PS, Roberts RA, Larson RT. The Direct Conversion of Esters to Ketones Enabled by a Traceless Activating Group. Org Lett 2023; 25:3131-3135. [PMID: 37099748 DOI: 10.1021/acs.orglett.3c00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
We report here the design and development of a method for the single-step conversion of esters to ketones with simple reagents. The selective transformation of esters to ketones, rather than tertiary alcohols, is made possible by the use of a transient sulfinate group on the nucleophile that activates the adjacent carbon toward deprotonation to form a carbanion that adds to the ester, followed by a second deprotonation to prevent further addition. The resulting dianion undergoes spontaneous fragmentation of the SO2 group upon quenching with water to reveal the ketone product.
Collapse
Affiliation(s)
- Patrick S Fier
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Riley A Roberts
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Reed T Larson
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
12
|
Roh B, Farah AO, Kim B, Feoktistova T, Moeller F, Kim KD, Cheong PHY, Lee HG. Stereospecific Acylative Suzuki–Miyaura Cross-Coupling: General Access to Optically Active α-Aryl Carbonyl Compounds. J Am Chem Soc 2023; 145:7075-7083. [PMID: 37016901 DOI: 10.1021/jacs.3c00637] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A novel strategy for the stereospecific Pd-catalyzed acylative cross-coupling of enantiomerically enriched alkylboron compounds has been developed. The protocol features an extremely high level of enantiospecificity to allow facile access to synthetically challenging and valuable chiral ketones and carboxylic acid derivatives. The use of a sterically encumbered and electron-rich phosphine ligand proved to be crucial for the success of the reaction. Furthermore, on the basis of experimental and computational studies, a unique mechanism for the transmetalation, assisted by the noncovalent interactions of the C(sp3)-based organoboron reagent, has been identified.
Collapse
Affiliation(s)
- Byeongdo Roh
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Beomsu Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Taisiia Feoktistova
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Finn Moeller
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kyeong Do Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
13
|
Liu C, Szostak M. Amide N-C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling. SYNOPEN 2023; 7:88-101. [PMID: 38037650 PMCID: PMC10686541 DOI: 10.1055/a-2035-6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N-C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
14
|
Underwood SJ, Douglas CJ. N-Pyridylimidates as Traceless Acyl Equivalents for Directed C-O Bond Functionalization. Org Lett 2023; 25:146-151. [PMID: 36583549 DOI: 10.1021/acs.orglett.2c03961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Directing groups are a common strategy to target traditionally inert bonds, with an easily removable directing group being ideal. Herein we disclose our method for rhodium-catalyzed C-O bond functionalization of N-pyridylimidates using a recyclable and traceless amine directing group. In addition to the substrate scope, we discuss the behavior of this class of compounds and how that behavior affects their reactivity.
Collapse
Affiliation(s)
- Steven J Underwood
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christopher J Douglas
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Xu X, Lin Z. Understanding the Reaction Mechanism of Nickel-Catalyzed Enantioselective Arylative Activation of the Aromatic C–O Bond. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
16
|
Duan A, Xiao F, Lan Y, Niu L. Mechanistic views and computational studies on transition-metal-catalyzed reductive coupling reactions. Chem Soc Rev 2022; 51:9986-10015. [PMID: 36374254 DOI: 10.1039/d2cs00371f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transition-metal-catalyzed reductive coupling reactions have been considered as a powerful tool to convert two electrophiles into value-added products. Numerous related reports have shown the fascinating potential. Mechanistic studies, especially theoretical studies, can provide important implications for the design of novel reductive coupling reactions. In this review, we summarize the representative advancements in theoretical studies on transition-metal-catalyzed reductive coupling reactions and systematically elaborate the mechanisms for the key steps of reductive coupling reactions. The activation modes of electrophiles and the deep insights of selectivity generation are mechanistically discussed. In addition, the mechanism of the reduction of high-oxidation-state catalysts and further construction of new chemical bonds are also described in detail.
Collapse
Affiliation(s)
- Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Fengjiao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China. .,School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Linbin Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
17
|
Stereoretentive cross-coupling of chiral amino acid chlorides and hydrocarbons through mechanistically controlled Ni/Ir photoredox catalysis. Nat Commun 2022; 13:5200. [PMID: 36057676 PMCID: PMC9440902 DOI: 10.1038/s41467-022-32851-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
The direct modification of naturally occurring chiral amino acids to their amino ketone analogs is a significant synthetic challenge. Here, an efficient and robust cross-coupling reaction between chiral amino acid chlorides and unactivated C(sp3)–H hydrocarbons is achieved by a mechanistically designed Ni/Ir photoredox catalysis. This reaction, which proceeds under mild conditions, enables modular access to a wide variety of chiral amino ketones that retain the stereochemistry of the starting amino acids. In-depth mechanistic analysis reveals that the strategic generation of an N-acyllutidinium intermediate is critical for the success of this reaction. The barrierless reduction of the N-acyllutidinium intermediate facilitates the delivery of chiral amino ketones with retention of stereochemistry. This pathway avoids the formation of a detrimental nickel intermediate, which could be responsible for undesirable decarbonylation and transmetalation reactions that limit the utility of previously reported methods. Chiral α-amino ketones are privileged motifs in bioorganic and medicinal chemistry. Here, the authors develop an efficient method to synthesize these structures via stereoretentive direct cross-coupling of amino acid chlorides with simple aliphatic substrates.
Collapse
|
18
|
Chen H, Yue H, Zhu C, Rueping M. Reactivity in Nickel‐Catalyzed Multi‐component Sequential Reductive Cross‐Coupling Reactions. Angew Chem Int Ed Engl 2022; 61:e202204144. [DOI: 10.1002/anie.202204144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Haifeng Chen
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Huifeng Yue
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Chen Zhu
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
19
|
He X, Hu S, Xiao Y, Yu L, Duan W. Access to Ketones through Palladium‐Catalyzed Cross‐Coupling of Phenol Derivatives with Nitroalkanes Followed by Nef Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoyu He
- Guangxi University College of Chemistry and Chemical Engineering 100 East Daxue Road Nanning CHINA
| | - Sengui Hu
- Guangxi University College of Chemistry and Chemical Engineering 100 East Daxue Road Nanning CHINA
| | - Yuxuan Xiao
- Guangxi University College of Chemistry and Chemical Engineering Nanning CHINA
| | - Lin Yu
- Guangxi University Chemistry No. 100, East Daxue Road 530004 Nanning CHINA
| | - Wengui Duan
- Guangxi University College of Chemistry and Chemical Engineering 100 East Daxue Road Nanning CHINA
| |
Collapse
|
20
|
Qu J, Yan Z, Wang X, Deng J, Liu F, Rong ZQ. Nickel-catalyzed cross-coupling of epoxides with aryltriflates: rapid and regioselective construction of aryl ketones. Chem Commun (Camb) 2022; 58:9214-9217. [PMID: 35894937 DOI: 10.1039/d2cc02891c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aryl ketones are one of the most important classes of organic compounds, and widely present in various pharmacological compounds, biologically active molecules and functional materials. Presented herein is a facile synthetic method for the construction of ketones via Ni-catalyzed cross coupling of epoxides with aryltriflates. A range of easily accessible epoxides can be highly regioselectively converted to the corresponding aryl ketones with good yields in a redox neutral fashion.
Collapse
Affiliation(s)
- Jinglin Qu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| | - Zijuan Yan
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| | - Jun Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| |
Collapse
|
21
|
Hu Z, Wang Y, Ma P, Wu X, Wang J. Nickel(0)-Catalyzed Decarbonylative Cross-Coupling of Aromatic Esters with Arylboronic Acids via Chelation Assistance. ACS OMEGA 2022; 7:21537-21545. [PMID: 35785273 PMCID: PMC9245102 DOI: 10.1021/acsomega.2c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
10-Arylbenzo[h]quinolines were synthesized by cross-coupling of ethyl benzo[h]quinoline-10-carboxylate with arylboronic acids via group-directed Ni(0) catalyzation. The catalytic system combining Ni(COD)2 (10 mol %) with PCy3 (20 mol %) and t-BuOK (3 equiv) was optimal for the above transformations. A series of arylboronic acids reacted with ethyl benzo[h]quinoline-10-carboxylates for the production of various substituted 10-phenyl[h]quinolines in moderate and good yields under optimized reaction conditions.
Collapse
Affiliation(s)
- Zhenzhu Hu
- Department
of Chemistry, College of Science, Tianjin
University, Tianjin 300350, P. R. China
| | - Yuhang Wang
- Department
of Chemistry, College of Science, Tianjin
University, Tianjin 300350, P. R. China
| | - Peng Ma
- Department
of Chemistry, College of Science, Tianjin
University, Tianjin 300350, P. R. China
| | - Xiaqian Wu
- Department
of Chemistry, College of Science, Tianjin
University, Tianjin 300350, P. R. China
| | - Jianhui Wang
- Department
of Chemistry, College of Science, Tianjin
University, Tianjin 300350, P. R. China
- Institute
of Molecular Plus, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
22
|
Cetin HK, Baytaroglu C. The Impact of Age on Percutaneous Thrombectomy Outcomes in the Management of Lower Extremity Deep Vein Thrombosis. HASEKI TIP BÜLTENI 2022. [DOI: 10.4274/haseki.galenos.2022.8233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
23
|
Chen H, Yue H, Zhu C, Rueping M. Reactivity in Nickel Catalyzed Multicomponent Sequential Reductive Cross‐Coupling Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Haifeng Chen
- King Abdullah University of Science and Technology KAUST Catalysis Center Chemical Science Program SAUDI ARABIA
| | - Huifeng Yue
- King Abdullah University of Science and Technology KAUST Catalysis Center Chemical Science Program SAUDI ARABIA
| | - Chen Zhu
- King Abdullah University of Science and Technology KAUST Catalysis Center Chemical Science Program SAUDI ARABIA
| | - Magnus Rueping
- King Abdullah University of Science and Technology KAUST Catalysis Center Landoltweg 1 23955 Thuwal SAUDI ARABIA
| |
Collapse
|
24
|
Kubo M, Inayama N, Ota E, Yamaguchi J. Palladium-Catalyzed Tandem Ester Dance/Decarbonylative Coupling Reactions. Org Lett 2022; 24:3855-3860. [PMID: 35604648 DOI: 10.1021/acs.orglett.2c01432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
"Dance reaction" on the aromatic ring is a powerful method in organic chemistry to translocate functional groups on arene scaffolds. Notably, dance reactions of halides and pseudohalides offer a unique platform for the divergent synthesis of substituted (hetero)aromatic compounds when combined with transition-metal-catalyzed coupling reactions. Herein, we report a tandem reaction of ester dance and decarbonylative coupling enabled by palladium catalysis. In this reaction, 1,2-translocation of the ester moiety on the aromatic ring is followed by decarbonylative coupling with nucleophiles to enable the installation of a variety of nucleophiles at the position adjacent to the ester in the starting material.
Collapse
Affiliation(s)
- Masayuki Kubo
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Naomi Inayama
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Eisuke Ota
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
25
|
Peng Y, Isshiki R, Muto K, Yamaguchi J. Decarbonylative Reductive Coupling of Aromatic Esters by Nickel and Palladium Catalyst. CHEM LETT 2022. [DOI: 10.1246/cl.220214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yunfei Peng
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Ryota Isshiki
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Kei Muto
- Waseda Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
26
|
Yu C, Huang R, Patureau FW. Direct Dehydrogenative Access to Unsymmetrical Phenones. Angew Chem Int Ed Engl 2022; 61:e202201142. [PMID: 35128810 PMCID: PMC9314079 DOI: 10.1002/anie.202201142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/09/2022]
Abstract
The first non-directed dehydrogenative phenone coupling method of methylarenes with aromatic C-H bonds, displaying a large substrate scope, is herein reported. This reaction represents a far more direct atom- and step-efficient alternative to the classical Friedel-Crafts or Suzuki-Miyaura derived acylation reactions. The method can be carried out on a gram scale and was successfully applied to the synthesis of several Ketoprofen drug analogues.
Collapse
Affiliation(s)
- Congjun Yu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Raolin Huang
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Frederic W. Patureau
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
27
|
Li X, Mao Y, Fan P, Wang C. Nickel/Photo‐Cocatalyzed Acyl C−H Benzylation of Aldehydes with Benzyl Chlorides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Yujia Mao
- University of Science and Technology of China Chemistry CHINA
| | - Pei Fan
- Huainan Normal University Chemistry CHINA
| | - Chuan Wang
- University of Science and Technology of China Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
28
|
Yu C, Huang R, Patureau FW. Direkter Dehydrierender Zugang zu unsymmetrischen Phenonen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Congjun Yu
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Raolin Huang
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Frederic W. Patureau
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
29
|
Pandey AK. Emerging Nickel Catalysis in Ketones Synthesis Using Carboxylic Acid Derivatives. ChemCatChem 2022. [DOI: 10.1002/cctc.202101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ashok Kumar Pandey
- IICT CSIR: Indian Institute of Chemical Technology Fluoro-Agrochemicals Uppal RoadTarnaka 500007 Hyderbada INDIA
| |
Collapse
|
30
|
Luu QH, Li J. A C-to-O atom-swapping reaction sequence enabled by Ni-catalyzed decarbonylation of lactones. Chem Sci 2022; 13:1095-1100. [PMID: 35211275 PMCID: PMC8790783 DOI: 10.1039/d1sc06968c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/06/2022] [Indexed: 12/31/2022] Open
Abstract
Advances in site-selective functionalization reactions have enabled single atom changes on the periphery of a complex molecule, but reaction manifolds that enable such changes on the core framework of the molecule remain sparse. Here, we disclose a strategy for carbon-to-oxygen substitution in cyclic diarylmethanes and diarylketones to yield cyclic diarylethers. Oxygen atom insertion is accomplished by methylene and Baeyer-Villiger oxidations. To remove the carbon atom in this C-to-O "atom swap" process, we developed a nickel-catalyzed decarbonylation of lactones to yield the corresponding cyclic diaryl ethers. This reaction was enabled by mechanistic studies with stoichiometric nickel(ii) complexes that led to the optimization of a ligand capable of promoting a challenging C(sp2)-O(aryl) reductive elimination. The nickel-catalyzed decarbonylation was applied to 6-8 membered lactones (16 examples, 32-99%). Finally, a C-to-O atom-swapping reaction sequence was accomplished on a natural product and a pharmaceutical precursor.
Collapse
Affiliation(s)
- Quang H Luu
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| | - Junqi Li
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| |
Collapse
|
31
|
Xi X, Luo Y, Li W, Xu M, Zhao H, Chen Y, Zheng S, Qi X, Yuan W. From Esters to Ketones via a Photoredox‐Assisted Reductive Acyl Cross‐Coupling Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoxiang Xi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Yixin Luo
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Weirong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Minghao Xu
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Hongping Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Yukun Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Songlin Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| |
Collapse
|
32
|
Feng B, Zhang G, Feng X, Chen Y. Palladium-catalyzed decarbonylative methylation of aryl carboxylic acids. Org Chem Front 2022. [DOI: 10.1039/d1qo01756j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described herein is a palladium-catalyzed decarbonylative methylation of general carboxylic acids, providing an efficient method for Ar–Me bond formation.
Collapse
Affiliation(s)
- Boya Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Guodong Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
- Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| |
Collapse
|
33
|
Yi W, Sun W, Hu X, Liu C, Jin L. Recent Advance of Ketones Synthesis from Carboxylic Esters. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Fu Z, Cao X, Yin J, Gou Z, Yi X, Cai H. ortho-C—H Bond Functionalization of Carboxylic Acid Using Carboxyl as a Traceless Directing Group Based on the Strategy of “Two Birds with One Stone”. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202106024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Liu Y, Mo X, Majeed I, Zhang M, Wang H, Zeng Z. An Efficient and Straightforward Approach for Accessing Thioesters via Palladium-Catalyzed C-N Cleavage of Thioamides. Org Biomol Chem 2022; 20:1532-1537. [DOI: 10.1039/d1ob02349g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We first report the coupling of activated thioamides with alcohols to efficiently form thioesters via palladium-catalyzed C-N cleavage strategy. The new approach employs the thioamides as thioacylating reagent to give...
Collapse
|
36
|
Xi X, Luo Y, Li W, Xu M, Zhao H, Chen Y, Zheng S, Qi X, Yuan W. From Esters to Ketones via a Photoredox-Assisted Reductive Acyl Cross-Coupling Strategy. Angew Chem Int Ed Engl 2021; 61:e202114731. [PMID: 34783143 DOI: 10.1002/anie.202114731] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 12/14/2022]
Abstract
A method was developed for ketone synthesis via a photoredox-assisted reductive acyl cross-coupling (PARAC) using a nickel/photoredox dual-catalyzed cross-electrophile coupling of two different carboxylic acid esters. A variety of aryl, 1°, 2°, 3°-alkyl 2-pyridyl esters can act as acyl electrophiles while N-(acyloxy)phthalimides (NHPI esters) act as 1°, 2°, 3°-radical precursors. Our PARAC strategy provides an alternative and reliable way to synthesize various sterically congested 3°-3°, 3°-2°, and aryl-3° ketones under mild and highly unified conditions, which have been otherwise difficult to access. The combined experimental and computational studies identified a Ni0 /NiI /NiIII pathway for ketone formation.
Collapse
Affiliation(s)
- Xiaoxiang Xi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yixin Luo
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Weirong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Minghao Xu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hongping Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yukun Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Songlin Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| |
Collapse
|
37
|
Liu S, He B, Li H, Zhang X, Shang Y, Su W. Facile Synthesis of Alkylidene Phthalides by Rhodium-Catalyzed Domino C-H Acylation/Annulation of Benzamides with Aliphatic Carboxylic Acids. Chemistry 2021; 27:15628-15633. [PMID: 34519367 DOI: 10.1002/chem.202102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/12/2022]
Abstract
The Rh-catalyzed ortho-C(sp2 )-H functionalization of 8-aminoquinoline-derived benzamides with aliphatic acyl fluorides generated in situ from the corresponding acids has been developed. This reaction initiated with 8-aminoquinoline-directed ortho-C(sp2 )-H acylation, which was accompanied by subsequent intramolecular nucleophilic acyl substitution of amide group to produce alkylidene phthalides This approach exhibits high stereo-selectivity for Z-isomer products, and tolerates a variety of functional groups as well as aliphatic carboxylic acids with diverse structural scaffolds.
Collapse
Affiliation(s)
- Sien Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bangyue He
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Hongyi Li
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
38
|
Deng X, Guo J, Zhang X, Wang X, Su W. Activation of Aryl Carboxylic Acids by Diboron Reagents towards Nickel‐Catalyzed Direct Decarbonylative Borylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xi Deng
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiandong Guo
- Hoffmann Institute of Advanced Materials Postdoctoral Innovation Practice Base Shenzhen Polytechnic 7098 Liuxian Boulevard, Nanshan District Shenzhen 518055 P. R. China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou 350002 P. R. China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials Postdoctoral Innovation Practice Base Shenzhen Polytechnic 7098 Liuxian Boulevard, Nanshan District Shenzhen 518055 P. R. China
- Department of Chemistry University of Colorado Denver Campus Box 194, P. O. Box 173364 Denver CO 80217-3364 USA
| | - Weiping Su
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
39
|
Yang L, Wang J, Wang Y, Li X, Liu W, Zhang Z, Xie X. Stereoselective Synthesis of cis-2-Ene-1,4-diones via Aerobic Oxidation of Substituted Furans Catalyzed by ABNO/HNO 3. J Org Chem 2021; 86:14311-14320. [PMID: 34618466 DOI: 10.1021/acs.joc.1c00613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a highly efficient and selective catalytic system, ABNO (9-azabicyclo-[3.3.1]nonane N-oxyl)/HNO3, for the aerobic oxidation of substituted furans to cis-2-ene-1,4-diones under mild reaction conditions using oxygen as the oxidant. The catalyst system is amenable to various substituted (mon-, di-, and tri-) furans and tolerates diverse functional groups, including cyano, nitro, naphthyl, ketone, ester, heterocycle, and even formyl groups. Based on the control and 18O-labeling experiments, the possible mechanism of the oxidation is proposed.
Collapse
Affiliation(s)
- Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jingyang Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yue Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaotong Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Shanghai Institute of Organic Chemistry, Chines Academy of Sciences, 345 Fenglin Road, Shanghai 200032, China
| | - Xiaomin Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
40
|
Lutter FH, Jouffroy M. Facile Conversion of Molecularly Complex (Hetero)aryl Carboxylic Acids into Alkynes for Accelerated SAR Exploration. Chemistry 2021; 27:14816-14820. [PMID: 34460121 DOI: 10.1002/chem.202102130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 11/10/2022]
Abstract
1,2,3-Triazoles are well-established bioisosteres for amides, often installed as a result of structure-activity-relationship (SAR) exploration. A straightforward approach to assess the effect of the replacement of an amide by a triazole would start from the carboxylic acid and the amine used for the formation of a given amide and convert them into the corresponding alkyne and azide for cyclization by copper-catalyzed alkyne-azide cycloaddition (CuAAC). Herein, we report a functional-group-tolerant and operationally simple decarbonylative alkynylation that allows the conversion of complex (hetero)aryl carboxylic acids into alkynes. Furthermore, the utility of this method was demonstrated in the preparation of a triazolo analog of the commercial drug moclobemide. Lastly, mechanistic investigations using labeled carboxylic acid derivatives clearly show the decarbonylative nature of this transformation.
Collapse
Affiliation(s)
- Ferdinand H Lutter
- Chemical Process R&D, Discovery Process Research, Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Matthieu Jouffroy
- Chemical Process R&D, Discovery Process Research, Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
41
|
D'Alterio MC, Casals-Cruañas È, Tzouras NV, Talarico G, Nolan SP, Poater A. Mechanistic Aspects of the Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction. Chemistry 2021; 27:13481-13493. [PMID: 34269488 PMCID: PMC8518397 DOI: 10.1002/chem.202101880] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 12/14/2022]
Abstract
The story of C-C bond formation includes several reactions, and surely Suzuki-Miyaura is among the most outstanding ones. Herein, a brief historical overview of insights regarding the reaction mechanism is provided. In particular, the formation of the catalytically active species is probably the main concern, thus the preactivation is in competition with, or even assumes the role of the rate determining step (rds) of the overall reaction. Computational chemistry is key in identifying the rds and thus leading to milder conditions on an experimental level by means of predictive catalysis.
Collapse
Affiliation(s)
- Massimo C D'Alterio
- Institut de Química Computacional i Catàlisi Departament de Química, Universitat de Girona, c/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
- Dipartimento di Scienze Chimiche, Università di Napoli, Federico II Via Cintia, I-80126, Napoli, Italy
| | - Èric Casals-Cruañas
- Institut de Química Computacional i Catàlisi Departament de Química, Universitat de Girona, c/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Nikolaos V Tzouras
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Building S3, Krijgslaan 281, 9000, Gent, Belgium
| | - Giovanni Talarico
- Dipartimento di Scienze Chimiche, Università di Napoli, Federico II Via Cintia, I-80126, Napoli, Italy
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Building S3, Krijgslaan 281, 9000, Gent, Belgium
| | - Albert Poater
- Institut de Química Computacional i Catàlisi Departament de Química, Universitat de Girona, c/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| |
Collapse
|
42
|
Liu C, Szostak M. Decarbonylative Sulfide Synthesis from Carboxylic Acids and Thioesters via Cross-Over C-S Activation and Acyl Capture. Org Chem Front 2021; 8:4805-4813. [PMID: 34745635 DOI: 10.1039/d1qo00824b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A method for the synthesis of sulfides from carboxylic acids via thioester C-S activation and acyl capture has been accomplished, wherein thioesters serve as dual electrophilic activators to carboxylic acids as well as S-nucleophiles through the merger of decarbonylative palladium catalysis and sulfur coupling. This new concept engages readily available carboxylic acids as coupling partners to directly intercept sulfur reagents via redox-neutral thioester-enabled cross-over thioetherification. The scope of this platform is demonstrated in the highly selective decarbonylative thioetherification of a variety of carboxylic acids and thioesters, including late-stage derivatization of pharmaceuticals and natural products. This method operates under mild, external base-free, operationally-practical conditions, providing a powerful new framework to unlock aryl electrophiles from carboxylic acids and bolster the reactivity by employing common building blocks in organic synthesis.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| |
Collapse
|
43
|
Deng X, Guo J, Zhang X, Wang X, Su W. Activation of Aryl Carboxylic Acids by Diboron Reagents towards Nickel-Catalyzed Direct Decarbonylative Borylation. Angew Chem Int Ed Engl 2021; 60:24510-24518. [PMID: 34235828 DOI: 10.1002/anie.202106356] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Indexed: 12/14/2022]
Abstract
The Ni-catalyzed decarbonylative borylation of (hetero)aryl carboxylic acids with B2 cat2 has been achieved without recourse to any additives. This Ni-catalyzed method exhibits a broad substrate scope covering poorly reactive non-ortho-substituted (hetero)aryl carboxylic acids, and tolerates diverse functional groups including some of the groups active to Ni0 catalysts. The key to achieve this decarbonylative borylation reaction is the choice of B2 cat2 as a coupling partner that not only acts as a borylating reagent, but also chemoselectively activates aryl carboxylic acids towards oxidative addition of their C(acyl)-O bond to Ni0 catalyst via the formation of acyloxyboron compounds. A combination of experimental and computational studies reveals a detailed plausible mechanism for this reaction system, which involves a hitherto unknown concerted decarbonylation and reductive elimination step that generates the aryl boronic ester product. This mode of boron-promoted carboxylic acid activation is also applicable to other types of reactions.
Collapse
Affiliation(s)
- Xi Deng
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiandong Guo
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen, 518055, P. R. China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, 350002, P. R. China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen, 518055, P. R. China.,Department of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 173364, Denver, CO, 80217-3364, USA
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
44
|
Mokhtar M, Alzhrani G, Aazam ES, Saleh TS, Al-Faifi S, Panja S, Maiti D. Synergistic Effect of NiLDH@YZ Hybrid and Mechanochemical Agitation on Glaser Homocoupling Reaction. Chemistry 2021; 27:8875-8885. [PMID: 33848016 DOI: 10.1002/chem.202100018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Herein, we report the synthesis of nickel-layered double hydroxide amalgamated Y-zeolite (NiLDH@YZ) hybrids and the evaluation of the synergistic effect of various NiLDH@YZ catalysts and mechanochemical agitation on Glaser homocoupling reactions. Nitrogen adsorption-desorption experiments were carried out to estimate the surface area and porosity of NiLDH@YZ hybrids. The basicity and acidity of these hybrids were determined by CO2 -TPD and NH3 -TPD experiments respectively and this portrayed good acid-base bifunctional feature of the catalysts. The NiLDH@YZ-catalyzed mechanochemical Glaser coupling reaction achieved best yield of 83 % for the 0.5NiLDH@0.5YZ hybrid after 60 min of agitation, which revealed the highest acid-base bifunctional feature compared to all the investigated catalysts. The developed catalyst has proven itself as a robust and effective candidate that can successfully be employed up to four catalytic cycles without significant loss in catalytic activity, under optimized reaction conditions. This work demonstrated a new strategy for C-C bond formation enabled by the synergy between mechanochemistry and heterogeneous catalysis.
Collapse
Affiliation(s)
- Mohamed Mokhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ghalia Alzhrani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Elham S Aazam
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Tamer S Saleh
- Chemistry Department, Faculty of Science, University of Jeddah, P.O. Box 80329, Jeddah, 21589, Saudi Arabia
| | - Sulaiman Al-Faifi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
45
|
Zheng YL, Xie PP, Daneshfar O, Houk KN, Hong X, Newman SG. Direct Synthesis of Ketones from Methyl Esters by Nickel-Catalyzed Suzuki-Miyaura Coupling. Angew Chem Int Ed Engl 2021; 60:13476-13483. [PMID: 33792138 DOI: 10.1002/anie.202103327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/14/2022]
Abstract
The direct conversion of alkyl esters to ketones has been hindered by the sluggish reactivity of the starting materials and the susceptibility of the product towards subsequent nucleophilic attack. We have now achieved a cross-coupling approach to this transformation using nickel, a bulky N-heterocyclic carbene ligand, and alkyl organoboron coupling partners. 65 alkyl ketones bearing diverse functional groups and heterocyclic scaffolds have been synthesized with this method. Catalyst-controlled chemoselectivity is observed for C(acyl)-O bond activation of multi-functional substrates bearing other bonds prone to cleavage by Ni, including aryl ether, aryl fluoride, and N-Ph amide functional groups. Density functional theory calculations provide mechanistic support for a Ni0 /NiII catalytic cycle and demonstrate how stabilizing non-covalent interactions between the bulky catalyst and substrate are critical for the reaction's success.
Collapse
Affiliation(s)
- Yan-Long Zheng
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Omid Daneshfar
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
46
|
Zheng Y, Xie P, Daneshfar O, Houk KN, Hong X, Newman SG. Direct Synthesis of Ketones from Methyl Esters by Nickel‐Catalyzed Suzuki–Miyaura Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yan‐Long Zheng
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Pei‐Pei Xie
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Omid Daneshfar
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Xin Hong
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
47
|
He B, Liu X, Li H, Zhang X, Ren Y, Su W. Rh-Catalyzed General Method for Directed C-H Functionalization via Decarbonylation of in-Situ-Generated Acid Fluorides from Carboxylic Acids. Org Lett 2021; 23:4191-4196. [PMID: 33979175 DOI: 10.1021/acs.orglett.1c01103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Rh-catalyzed decarbonylative C-H coupling of in-situ-generated acid fluorides with amide substrates bearing ortho-Csp2-H bonds has been developed. This method enables alkyl, aryl, and alkenyl carboxylic acids to undergo decarbonylative coupling with C-H bonds of (hetero)aromatic or alkenyl amides in generally good yields via the in situ conversion of carboxylic acids into acid fluorides and also allows for the functionalization of a series of structurally complex carboxyl-containing natural products and pharmaceuticals as well as pharmaceutical amide derivatives.
Collapse
Affiliation(s)
- Bangyue He
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hongyi Li
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yuxi Ren
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Sarkar S, Sarkar P, Munshi S, Ghosh P. One-Pot Dual C-C Coupling Reaction via Site Selective Cascade Formation by Pd II -Cryptate of an Amino-Ether Heteroditopic Macrobicycle. Chemistry 2021; 27:7307-7314. [PMID: 33439499 DOI: 10.1002/chem.202005397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/24/2022]
Abstract
Selectivity of aryl iodo over ethynyl iodo toward the Suzuki cross coupling reaction is explored by utilizing a palladium complex of amino-ether heteroditopic macrobicycle. Subsequently, unreacted ethynyl iodide undergoes homocoupling reaction in the same catalytic atmosphere, thereby representing a cascade dual C-C coupling reaction. Furthermore, this approach is extended for novel one-pot synthesis of unsymmetrical 1,3-diynes.
Collapse
Affiliation(s)
- Sayan Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Piyali Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| |
Collapse
|
49
|
Doi R, Shimizu K, Ikemoto Y, Uchiyama M, Koshiba M, Furukawa A, Maenaka K, Watanabe S, Sato Y. Nickel‐Catalyzed Acyl Group Transfer of
o‐
Alkynylphenol Esters Accompanied by C−O Bond Fission for Synthesis of Benzo[
b
]furan. ChemCatChem 2021. [DOI: 10.1002/cctc.202001949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ryohei Doi
- Faculty of Pharmaceutical Sciences Hokkaido University Kita 12-jo Nishi 6-chome Kita-ku Sapporo 060–0812 Japan
| | - Koji Shimizu
- Department of Materials Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113–8656 Japan
| | - Yuma Ikemoto
- Faculty of Pharmaceutical Sciences Hokkaido University Kita 12-jo Nishi 6-chome Kita-ku Sapporo 060–0812 Japan
| | - Masashi Uchiyama
- Faculty of Pharmaceutical Sciences Hokkaido University Kita 12-jo Nishi 6-chome Kita-ku Sapporo 060–0812 Japan
| | - Mikiko Koshiba
- Faculty of Pharmaceutical Sciences Hokkaido University Kita 12-jo Nishi 6-chome Kita-ku Sapporo 060–0812 Japan
| | - Atsushi Furukawa
- Faculty of Pharmaceutical Sciences Hokkaido University Kita 12-jo Nishi 6-chome Kita-ku Sapporo 060–0812 Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences Hokkaido University Kita 12-jo Nishi 6-chome Kita-ku Sapporo 060–0812 Japan
- Global Station for Biosurfaces and Drug Discovery Hokkaido University Kita 12-jo Nishi 6-chome Kita-ku Sapporo 060–0812 Japan
- Center for Life Innovation Hokkaido University Kita 12-jo Nishi 6-chome Kita-ku Sapporo 060–0812 Japan
| | - Satoshi Watanabe
- Department of Materials Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113–8656 Japan
| | - Yoshihiro Sato
- Faculty of Pharmaceutical Sciences Hokkaido University Kita 12-jo Nishi 6-chome Kita-ku Sapporo 060–0812 Japan
| |
Collapse
|
50
|
Banovetz HK, Vickerman KL, David CM, Alkan M, Stanley LM. Palladium-Catalyzed Intermolecular Alkene Carboacylation via Ester C–O Bond Activation. Org Lett 2021; 23:3507-3512. [DOI: 10.1021/acs.orglett.1c00940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Haley K. Banovetz
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Kevin L. Vickerman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Colton M. David
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Melisa Alkan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Levi M. Stanley
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|