1
|
Liu Z, Li P, Wang H, Zhang J, Huo X, Sun ZL, Zhang W. Ternary Aldehyde-Copper-Iridium Catalysis Enables Stereodivergent Allylation via α-C-H Functionalization of Primary Amines. Angew Chem Int Ed Engl 2025:e202508335. [PMID: 40324954 DOI: 10.1002/anie.202508335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/07/2025]
Abstract
α-Chiral primary amines are recognized as one of the most valuable and versatile synthetic intermediates, widely utilized in the construction of diverse amine-containing natural products, pharmaceuticals, and agrochemicals. The direct asymmetric α-C-H functionalization of unprotected primary amines is the most straightforward method for creating these motifs. However, this transformation remains underdeveloped, particularly in stereodivergent synthesis of primary amines with multiple stereocenters. Herein, we report an aldehyde/copper/iridium ternary catalytic system, which was successfully employed for the direct enantio- and diastereodivergent α-allylation of primary α-amino-chromanone without requiring additional protection or activation of the NH2 group. A wide range of α-tertiary primary amines bearing vicinal stereocenters were prepared in high yields with excellent enantio- and diastereoselectivities (generally >20:1 dr and >99% ee). Notably, all four stereoisomers of the α-tertiary amines can be readily prepared by simply switching the configuration combinations of the two chiral metal catalysts. Furthermore, the asymmetric induction model for the α-C-H functionalization of primary amines was meticulously elucidated through comprehensive density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Zijiao Liu
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, 201499, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Panpan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haoyang Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiacheng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen-Liang Sun
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, 201499, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Papidocha SM, Wilke HR, Patej KJ, Isomura M, Stucky TJ, Rothenbühler L, Carreira EM. Enantiospecific Synthesis of α-Tertiary Amines: Ruthenium-Catalyzed Allylic Amination with Aqueous Ammonia. J Am Chem Soc 2025; 147:11675-11681. [PMID: 40145970 DOI: 10.1021/jacs.5c01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Ammonia stands out as the most available, cost-effective, and atom-economical source of nitrogen for organic synthesis. In the laboratory, it is safely and most conveniently handled in aqueous solution. Despite the advantages, the direct application of aqueous ammonia in the field of transition-metal catalysis remains a significant challenge. In this study, we report the first ruthenium-catalyzed allylic substitution using ammonia. The catalytic system, consisting of [Cp*Ru(MeCN)3]PF6 and a phenoxythiazoline ligand, enables the enantiospecific amination of tertiary allylic carbonates in aqueous media and affords enantioenriched primary amines as single regioisomers in high yields.
Collapse
Affiliation(s)
- Sven M Papidocha
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Henrik R Wilke
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Kacper J Patej
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Mayuko Isomura
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Tim J Stucky
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Lukas Rothenbühler
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Erick M Carreira
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Zhang YY, Deng Y, Wei K, Yang YR. Synthesis of vinyl, alkyl-substituted chiral acrylates via Krische iridium complex-catalysed allylic phosphonation. Chem Commun (Camb) 2025; 61:4567-4570. [PMID: 40008590 DOI: 10.1039/d5cc00072f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
An enantioselective preparation of vinyl, alkyl-substituted chiral α-stereogenic acrylates is reported using two consecutive steps of Ir-catalysed allylic alkylation of aliphatic allylic acetates with phosphonates and Horner-Wadsworth-Emmons olefination. Unlike commonly utilised iridium-phosphoramidite catalysts, Krische's catalyst was uniquely effective in promoting highly regio- and enantioselective reactions of alkyl-substituted allylic substrates, thus constituting a significant alternative to the known protocol.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Deng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wei
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yu-Rong Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
4
|
Zhuang HF, Gu J, Ye Z, He Y. Stereospecific 3-Aza-Cope Rearrangement Interrupted Asymmetric Allylic Substitution-Isomerization. Angew Chem Int Ed Engl 2025; 64:e202418951. [PMID: 39417348 DOI: 10.1002/anie.202418951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Transition-metal catalyzed asymmetric allylic substitution with alkyl and heteroaryl carbon nucleophiles has been well-established. However, the asymmetric allylic arylation of acyclic internal alkenes with aryl nucleophiles remains challenging and underdeveloped. Herein we report a stereospecific 3-aza-Cope rearrangement interrupted asymmetric allylic substitution-isomerization (Int-AASI) that enables asymmetric allylic arylation. By means of this stepwise strategy, both enantioenriched allylic arylation products and axially chiral alkenes could be readily obtained in high enantioselectivities. Experimental studies support a mechanism involving a cascade of asymmetric allylic amination, stereospecific 3-aza-Cope rearrangement and alkene isomerization. Density functional theory studies detailed the reasons of achieving the high chemoselectivity, regioselectivity, stereoselectivity and stereospecificity, respectively.
Collapse
Affiliation(s)
- Hong-Feng Zhuang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
5
|
Xu W. Regioselective tungsten-catalyzed decarboxylative amination of allylic alcohols with isocyanates. Org Biomol Chem 2024; 22:8625-8630. [PMID: 39360942 DOI: 10.1039/d4ob01291g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Highly regioselective tungsten (W)-catalyzed decarboxylative allylic amination of allylic carbamates has been developed. Allylic carbamates can be generated in situ from readily available allylic alcohols and commercially available isocyanates. In the presence of a tungsten catalyst, branched allylic amines could be obtained in moderate to good yields with excellent regioselectivities (b/l > 20 : 1), and CO2 is the only byproduct. This reaction features mild conditions and a broad substrate scope, and aryl- and aliphatic-substituted allylic alcohols and isocyanates are suitable substrates.
Collapse
Affiliation(s)
- Wenbin Xu
- Department of Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin City, 132022, People's Republic of China.
| |
Collapse
|
6
|
Wang HC, You SL. Asymmetric Allylic Amination of Alkyl-Substituted Allylic Carbonates with Pyridones Catalyzed by the Krische Iridium Complex. Org Lett 2024; 26:8632-8635. [PMID: 39331508 DOI: 10.1021/acs.orglett.4c03400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
An efficient Ir-catalyzed asymmetric allylic amination reaction of alkyl-substituted allylic carbonates is disclosed. With the Krische iridium complex as the catalyst, asymmetric allylic amination of alkyl-substituted allylic carbonates with pyridones proceeds effectively, affording pyridone derivatives containing a stereocenter α to the nitrogen atom in excellent yields and enantioselectivity (up to 99% yield, 95% ee). This catalytic system broadens the substrate scope of the reaction compared with that of the known catalytic systems. This reaction can also be conducted on a gram scale, further enhancing its potential for synthetic application.
Collapse
Affiliation(s)
- Hu-Chong Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
7
|
Aquilina JM, Banerjee A, Morais GN, Chen S, Smith MW. Total Synthesis of (-)-Rauvomine B via a Strain-Promoted Intramolecular Cyclopropanation. J Am Chem Soc 2024; 146:22047-22055. [PMID: 39042605 DOI: 10.1021/jacs.4c07669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
We describe the first total synthesis of the unusual cyclopropane-containing indole alkaloid (-)-rauvomine B via a strategy centered upon intramolecular cyclopropanation of a tetracyclic N-sulfonyltriazole. Preparation of this precursor evolved through two generations of synthesis, with the ultimately successful route involving a palladium-catalyzed stereospecific allylic amination, a cis-selective Pictet-Spengler reaction, and ring-closing metathesis as important bond-forming reactions. The key cyclopropanation step was found to be highly dependent on the structure and conformational strain of the indoloquinolizidine N-sulfonyltriazole precursor, the origins of which are explored computationally through DFT studies. Overall, our synthesis proceeds in 11 total steps and 2.4% yield from commercial materials.
Collapse
Affiliation(s)
- Jake M Aquilina
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Ankush Banerjee
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Gabriel N Morais
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, United States
| | - Myles W Smith
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
8
|
Zhang P, Zhang Y, Shao Y, Sun J, Tang S. Iridium-Catalyzed Regio- and Enantioselective N-Allylation of Pyrazoles with Dienyl/Monoallylic Alcohols. Org Lett 2024; 26:3966-3971. [PMID: 38669214 DOI: 10.1021/acs.orglett.4c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Here we report the first example of iridium-catalyzed asymmetric N-allylation of pyrazoles with dienyl allylic alcohols under mild conditions with broad functional group tolerance, exhibiting excellent N1/C3-site selectivities and enantioselectivities (up to >99% ee). In addition to pyrazoles, other nucleophiles including benzotriazole, triazole, and pyrazole precursors (aryl vinyldiazos) are also suitable in this method. Notably, with the use of Sc(OTf)3 as additive and reactions performed at 30 °C for 24 h, the N1-C5 or N1-C1 selective alkylated pyrazoles are also obtained.
Collapse
Affiliation(s)
- Peng Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yulu Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| |
Collapse
|
9
|
Guo J, Ma HR, Xiong WB, Fan L, Zhou YY, Wong HNC, Cui JF. Iridium-catalyzed enantioselective alkynylation and kinetic resolution of alkyl allylic alcohols. Chem Sci 2022; 13:13914-13921. [PMID: 36544735 PMCID: PMC9710208 DOI: 10.1039/d2sc04892b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Herein, we report an efficient kinetic resolution of alkyl allylic alcohols enabled by an iridium-catalyzed enantioselective alkynylation of alkyl allylic alcohols with potassium alkynyltrifluoroborates. A wide range of chiral 1,4-enynes bearing various functional groups and unreacted enantioenriched allylic alcohols were obtained with excellent enantioselectivities and high kinetic resolution performance (s-factor up to 922). Additionally, this method is particularly effective for preparing some useful optically pure alkyl allylic alcohols, such as the key components towards the synthesis of prostaglandins and naturally occurring matsutakeols, which are difficult to access via other asymmetric reactions. Mechanistic studies revealed that the efficient kinetic resolution might be due to the significant distinction of the η 2-coordination between the (R)- and (S)-allylic alcohols with the iridium/(phosphoramidite, olefin) complex.
Collapse
Affiliation(s)
- Jia Guo
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| | - Hao-Ran Ma
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China,School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)2001 Longxiang Blvd.Shenzhen 518172China
| | - Wen-Bin Xiong
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| | - Luoyi Fan
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| | - You-Yun Zhou
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| | - Henry N. C. Wong
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China,School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)2001 Longxiang Blvd.Shenzhen 518172China,Department of Chemistry, The Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| | - Jian-Fang Cui
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| |
Collapse
|
10
|
Stivala CE, Zbieg JR, Liu P, Krische MJ. Chiral Amines via Enantioselective π-Allyliridium- C, O-Benzoate-Catalyzed Allylic Alkylation: Student Training via Industrial-Academic Collaboration. Acc Chem Res 2022; 55:2138-2147. [PMID: 35830564 PMCID: PMC9608351 DOI: 10.1021/acs.accounts.2c00302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ConspectusCyclometalated π-allyliridium-C,O-benzoate complexes discovered in the Krische laboratory display unique amphiphilic properties, catalyzing both nucleophilic carbonyl allylation and electrophilic allylation of diverse amines as well as nitronates. Given the importance of chiral amines in FDA-approved small-molecule drugs, a collaboration with medicinal chemists at Genentech that included on-site graduate student internships was undertaken to explore and expand the scope of π-allyliridium-C,O-benzoate-catalyzed allylic amination and related processes. As described in this Account, our collective experimental studies have unlocked asymmetric allylic aminations of exceptionally broad utility and scope. Specifically, using racemic branched alkyl-substituted allylic acetate proelectrophiles, primary and secondary aliphatic or aromatic amines, including indoles, engage in highly regio- and enantioselective allylic amination. Additionally, unactivated nitronates were found to be competent nucleophilic partners for regio- and enantioselective allylic alkylation, enabling entry to β-stereogenic α-quaternary primary amines. Notably, these π-allyliridium-C,O-benzoate-catalyzed allylic substitutions, which display complete branched regioselectivity in reactions of alkyl-substituted allyl electrophiles, complement the scope of corresponding iridium phosphoramidite-catalyzed allylic aminations, which require aryl-substituted allyl electrophiles to promote high levels of branched regioselectivity. Computational, kinetic, ESI-CID-MS, and isotopic labeling studies were undertaken to understand the mechanism of these processes, including the origins of regio- and enantioselectivity. Isotopic labeling studies suggest that C-N bond formation occurs through outer-sphere addition to the π-allyl. DFT calculations corroborate C-N bond formation via outer-sphere addition and suggest that early transition states and distinct trans effects of diastereomeric chiral-at-iridium π-allyl complexes render the reaction less sensitive to steric effects, accounting for complete levels of branched regioselectivity in reactions of hindered amine and nitronate nucleophiles. Reaction progress kinetic analysis (RPKA) reveals a zero-order dependence on allyl acetate, a first-order dependence on the catalyst, and a fractional-order dependence on the amine. As corroborated by ESI-CID-MS analysis, the 0.4 kinetic order dependence on the amine may reflect the intervention of cesium-bridged amine dimers, which dissociate to form monomeric cesium amide nucleophiles. Hence, the requirement of cesium carbonate (vs lower alkali metal carbonates) in these processes may reside in cesium's capacity for Lewis acid-enhanced Brønsted acidification of the amine pronucleophile. Beyond the development of catalytic processes for the synthesis of novel chiral amines, the present research was conducted by graduate students who benefited from career development experiences associated with training in both academic and industrial laboratories.
Collapse
Affiliation(s)
- Craig E Stivala
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason R Zbieg
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Jung WO, Mai BK, Yoo M, Shields SWJ, Zbieg JR, Stivala CE, Liu P, Krische MJ. Kinetic, ESI-CID-MS and Computational Studies of π-Allyliridium C,O-Benzoate-Catalyzed Allylic Amination: Understanding the Effect of Cesium Ion. ACS Catal 2022; 12:3660-3668. [PMID: 36092640 PMCID: PMC9456326 DOI: 10.1021/acscatal.2c00470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mechanism of π-allyliridium C,O-benzoate-catalyzed allylic amination was studied by (a) reaction progress kinetic analysis (RPKA), (b) tandem ESI-MS analysis, and (c) computational studies involving density functional theory (DFT) calculations. Reaction progress kinetic analysis (RPKA) reveals a zero-order dependence on allyl acetate, first-order dependence on catalyst and fractional-order dependence on amine. These data corroborate rapid ionization of the allylic acetate followed by turnover limiting C-N bond formation. To illuminate the origins of the 0.4 kinetic order dependence on amine, ESI-MS analyses of quaternary ammonium-labelled piperazine with multistage collision induced dissociation (CID) were conducted that corroborate intervention of cesium-bridged amine dimers that dissociate to form monomeric cesium amide nucleophiles. Computational data align with RPKA and ESI-CID-MS analyses and suggest early transition states mitigate the impact of steric factors, thus enabling formation of highly substituted C-N bonds with complete levels of branched regioselectivity. Specifically, trans-effects of the iridium complex facilitate nucleophilic attack at the more substituted allyl terminus trans to phosphorus with enantioselectivity governed by steric repulsions between the chiral bisphosphine ligand and the π-allyl of a dominant diastereomer of the stereogenic-at-metal complex. Beyond defining aspects of the mechanism of π-allyliridium C,O-benzoate-catalyzed allylic amination, these data reveal that a key feature of cesium carbonate not only lies in its enhanced basicity, but also its capacity for Lewis-acid enhanced Brønsted acidification of amines.
Collapse
Affiliation(s)
- Woo-Ok Jung
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Minjin Yoo
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Samuel W J Shields
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Jason R Zbieg
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Craig E Stivala
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
12
|
Albat D, Köcher A, Witt J, Schmalz HG. On the Asymmetric Ir‐catalyzed N‐Allylation of Amino Acid Esters: Improved Selectivities through Structural Variation of the Chiral Phosphoramidite Ligand. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dominik Albat
- University of Cologne: Universitat zu Koln Department of Chemistry Koeln GERMANY
| | - Alicia Köcher
- University of Cologne: Universitat zu Koln Department of Chemistry Koel GERMANY
| | - Julia Witt
- University of Cologne: Universitat zu Koln Department of Chemistry Koeln GERMANY
| | | |
Collapse
|
13
|
Jung WO, Yoo M, Migliozzi MM, Zbieg JR, Stivala CE, Krische MJ. Regio- and Enantioselective Iridium-Catalyzed Amination of Alkyl-Substituted Allylic Acetates with Secondary Amines. Org Lett 2022; 24:441-445. [PMID: 34905364 PMCID: PMC8764998 DOI: 10.1021/acs.orglett.1c04135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Robust air-stable cyclometalated π-allyliridium C,O-benzoates modified by (S)-tol-BINAP catalyze the reaction of secondary aliphatic amines with racemic alkyl-substituted allylic acetates to furnish products of allylic amination with high levels of enantioselectivity. Complete branched regioselectivities were observed despite the formation of more highly substituted C-N bonds.
Collapse
Affiliation(s)
- Woo-Ok Jung
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Minjin Yoo
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Madyson M Migliozzi
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason R Zbieg
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Craig E Stivala
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Hu F, Zhang H, Chu Y, Hui XP. Efficiently enantioselective synthesis of pyrazolines and isoxazolines enabled by iridium-catalyzed intramolecular allylic substitution reactions. Org Chem Front 2022. [DOI: 10.1039/d2qo00147k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient Ir-catalyzed enantioselective intramolecular allylic substitution reaction of 2-tosylhydrazono or hydroxyimino carbonates for the synthesis of pyrazolines and isoxazolines has been achieved. The products were obtained in high yield...
Collapse
|
15
|
Tang S, Zhang P, Wang C, Shao Y, Sun J. Iridium-catalyzed regio- and enantioselective allylic esterification of secondary allylic alcohols with carboxylic acids. Chem Commun (Camb) 2021; 57:11080-11083. [PMID: 34617093 DOI: 10.1039/d1cc04861a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report herein an iridium-catalyzed asymmetric allylic esterification of racemic secondary allylic alcohols using free carboxylic acids as nucleophiles under mild conditions with broad functional group tolerance, exhibiting excellent regio- and enantioselectivity .
Collapse
Affiliation(s)
- Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Peng Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Changkai Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
16
|
Xiang M, Pfaffinger DE, Krische MJ. Allenes and Dienes as Chiral Allylmetal Pronucleophiles in Catalytic Enantioselective C=X Addition: Historical Perspective and State-of-The-Art Survey. Chemistry 2021; 27:13107-13116. [PMID: 34185926 PMCID: PMC8446312 DOI: 10.1002/chem.202101890] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 12/18/2022]
Abstract
The use of allenes and 1,3-dienes as chiral allylmetal pronucleophiles in intermolecular catalytic enantioselective reductive additions to aldehydes, ketones, imines, carbon dioxide and other C=X electrophiles is exhaustively catalogued together with redox-neutral hydrogen auto-transfer processes. Coverage is limited to processes that result in both C-H and C-C bond formation. The use of alkynes as latent allylmetal pronucleophiles and multicomponent C=X allylations involving allenes and dienes is not covered. As illustrated in this review, the ability of allenes and 1,3-dienes to serve as tractable non-metallic pronucleophiles has evoked many useful transformations that have no counterpart in traditional allylmetal chemistry.
Collapse
Affiliation(s)
- Ming Xiang
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Dana E. Pfaffinger
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| |
Collapse
|
17
|
Arachchi MK, Nguyen HM. Iridium‐Catalyzed Enantioselective Allylic Substitutions of Racemic, Branched Trichloroacetimidates with Heteroatom Nucleophiles: Formation of Allylic C−O, C−N, and C−S Bonds. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Madhawee K. Arachchi
- Department of Chemistry Wayne State University Detroit Michigan 48202 United States
| | - Hien M. Nguyen
- Department of Chemistry Wayne State University Detroit Michigan 48202 United States
| |
Collapse
|
18
|
Jung WO, Mai BK, Spinello BJ, Dubey ZJ, Kim SW, Stivala CE, Zbieg JR, Liu P, Krische MJ. Enantioselective Iridium-Catalyzed Allylation of Nitroalkanes: Entry to β-Stereogenic α-Quaternary Primary Amines. J Am Chem Soc 2021; 143:9343-9349. [PMID: 34152145 PMCID: PMC8284932 DOI: 10.1021/jacs.1c05212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first systematic study of simple nitronate nucleophiles in iridium-catalyzed allylic alkylation is described. Using a tol-BINAP-modified π-allyliridium C,O-benzoate catalyst, α,α-disubstituted nitronates substitute racemic branched alkyl-substituted allylic acetates, thus providing entry to β-stereogenic α-quaternary primary amines. DFT calculations reveal early transition states that render the reaction less sensitive to steric effects and distinct trans-effects of diastereomeric chiral-at-iridium π-allyl complexes that facilitate formation of congested tertiary-quaternary C-C bonds.
Collapse
Affiliation(s)
- Woo-Ok Jung
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brian J Spinello
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary J Dubey
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Seung Wook Kim
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Craig E Stivala
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason R Zbieg
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Xu WB, Sun M, Shu M, Li C. Rhodium-Catalyzed Regio- and Enantioselective Allylic Amination of Racemic 1,2-Disubstituted Allylic Phosphates. J Am Chem Soc 2021; 143:8255-8260. [PMID: 34029072 DOI: 10.1021/jacs.1c04016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alkynylphosphines are rarely used as ligands in asymmetric metal catalysis. We synthesized a series of chiral bis(oxazoline)alkynylphosphine ligands and used them in Rh-catalyzed highly regio- and enantioselective allylic amination reactions of 1,2-disubstituted allylic phosphates. Chiral 1,2-disubstituted allylic amines were synthesized in up to 95% yield with >20:1 branched/linear (b/l) ratio and 99% ee from racemic 1,2-disubstituted allylic precursors. The sterically smaller linear alkynyl group on the P atom in the bis(oxazoline)alkynylphosphine ligands was the key to fit the new requirements of the introduction of bulky 2-R' groups.
Collapse
Affiliation(s)
- Wen-Bin Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Minghe Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mouhai Shu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
20
|
Sun M, Liu M, Li C. Rhodium-Catalyzed Chemodivergent Regio- and Enantioselective Allylic Alkylation of Indoles. Chemistry 2021; 27:3457-3462. [PMID: 33289185 DOI: 10.1002/chem.202004613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Indexed: 12/25/2022]
Abstract
The control of C3/N1 chemoselectivity in indole alkylation with the same electrophiles is still challenging. An Rh/bisoxazolinephosphane-catalyzed chemodivergent regio- and enantioselective allylic alkylation of indoles was developed. Chiral C3- and N1-allylindoles can be selectively obtained with high branched/linear ratio and up to 99 % ee by changing the counteranion of Rh, the allylic carbonate, the reaction temperature, and the ligand.
Collapse
Affiliation(s)
- Minghe Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Min Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
21
|
Zhang TY, Deng Y, Wei K, Yang YR. Enantioselective Iridium-Catalyzed Allylic Alkylation of Racemic Branched Alkyl-Substituted Allylic Acetates with Malonates. Org Lett 2021; 23:1086-1089. [PMID: 33480703 DOI: 10.1021/acs.orglett.0c04309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The regio- and enantioselective allylic substitution of branched alkyl-substituted allylic acetates employing malonates has been achieved through a process that calls for Krische's π-allyliridium C,O-benzoate catalyst. The protocol reported herein can be applied to a diverse set of branched alkyl substrates that are generally not well tolerated in the other two types of Ir-catalyzed allylation.
Collapse
Affiliation(s)
- Tian-Yuan Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yu-Rong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
22
|
Shi Y, Wu H, Huang G. Rhodium( i)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates: a computational study. Org Chem Front 2021. [DOI: 10.1039/d1qo00370d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DFT calculations were performed to investigate the rhodium(i)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates.
Collapse
Affiliation(s)
- Yu Shi
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Hongli Wu
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Genping Huang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
23
|
Rossi‐Ashton JA, Clarke AK, Donald JR, Zheng C, Taylor RJK, Unsworth WP, You S. Iridium-Catalyzed Enantioselective Intermolecular Indole C2-Allylation. Angew Chem Int Ed Engl 2020; 59:7598-7604. [PMID: 32091146 PMCID: PMC7217203 DOI: 10.1002/anie.202001956] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 12/22/2022]
Abstract
The enantioselective intermolecular C2-allylation of 3-substituted indoles is reported for the first time. This directing group-free approach relies on a chiral Ir-(P, olefin) complex and Mg(ClO4 )2 Lewis acid catalyst system to promote allylic substitution, providing the C2-allylated products in typically high yields (40-99 %) and enantioselectivities (83-99 % ee) with excellent regiocontrol. Experimental studies and DFT calculations suggest that the reaction proceeds via direct C2-allylation, rather than C3-allylation followed by in situ migration. Steric congestion at the indole-C3 position and improved π-π stacking interactions have been identified as major contributors to the C2-selectivity.
Collapse
Affiliation(s)
| | | | | | - Chao Zheng
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences345 Lingling LuShanghai200032China
| | | | | | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences345 Lingling LuShanghai200032China
| |
Collapse
|
24
|
Lynch CC, Balaraman K, Wolf C. Catalytic Asymmetric Allylic Amination with Isatins, Sulfonamides, Imides, Amines, and N-Heterocycles. Org Lett 2020; 22:3180-3184. [PMID: 32255635 PMCID: PMC7369029 DOI: 10.1021/acs.orglett.0c00936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A generally useful palladium-catalyzed method for the asymmetric allylic amination with a large variety of isatins, sulfonamides, imides, amines, and N-heterocycles is introduced. A single protocol with a readily available catalyst accomplishes this reaction at room temperature with high yields and enantioselectivities often exceeding 90%, which is demonstrated with 31 examples.
Collapse
Affiliation(s)
- Ciarán C Lynch
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC 20057, United States
| | - Kaluvu Balaraman
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC 20057, United States
| | - Christian Wolf
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC 20057, United States
| |
Collapse
|
25
|
Ghorai S, Ur Rehman S, Xu WB, Huang WY, Li C. Cobalt-Catalyzed Regio- and Enantioselective Allylic Alkylation of Malononitriles. Org Lett 2020; 22:3519-3523. [DOI: 10.1021/acs.orglett.0c00962] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Samir Ghorai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Sajid Ur Rehman
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wen-Bin Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wen-Yu Huang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
26
|
Xu WB, Ghorai S, Huang W, Li C. Rh(I)/Bisoxazolinephosphine-Catalyzed Regio- and Enantioselective Allylic Substitutions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wen-Bin Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Samir Ghorai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenyu Huang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
27
|
Rossi‐Ashton JA, Clarke AK, Donald JR, Zheng C, Taylor RJK, Unsworth WP, You S. Iridium‐Catalyzed Enantioselective Intermolecular Indole C2‐Allylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | - Chao Zheng
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | | | | | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
28
|
Metal- and acid-free, TBN-mediated direct C H nitration of arenes. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Rössler SL, Petrone DA, Carreira EM. Iridium-Catalyzed Asymmetric Synthesis of Functionally Rich Molecules Enabled by (Phosphoramidite,Olefin) Ligands. Acc Chem Res 2019; 52:2657-2672. [PMID: 31243973 DOI: 10.1021/acs.accounts.9b00209] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The catalytic, asymmetric synthesis of complex molecules has been a core focus of our research program for some time because developments in the area can have an immediate impact on the identification of novel strategies for the synthesis of value-added molecules. In concert with this central interest, we have emphasized the design of ligand scaffolds as a tactic to discover and develop novel chemistry and overcome well-recognized synthetic challenges. Based on our group's work on chiral pool-derived diolefin ligands, we designed and implemented a class of hybrid (phosphoramidite,olefin) ligands, which combines the properties of both phosphoramidite and olefin motifs to impact, fine-tune, and even override the inherent reactivity of the metal center. Specifically, we have utilized these unique modifying ligands to address several recognized limitations in the field of iridium-catalyzed, asymmetric allylic substitution. The methods we have documented typically employ branched, unprotected allylic alcohols as substrates and obviate the need for rigorous exclusion of air and moisture. Following Takeuchi's seminal report demonstrating the high aptitude of Ir(I)-phosphite catalysts for branch-selective allylic substitution, concerted efforts from numerous research laboratories have led to a broadening of the synthetic utility of this reaction class. The first section of this Account outlines the process leading to our discovery of an unprecedented (phosphoramidite,olefin) ligand and its validation in the first iridium-catalyzed amination of branched, unprotected allylic alcohols. This section continues with our work involving heteroatom-based nucleophiles within inter- and intramolecular etherification, thioetherification and spiroketalization processes. The second section highlights the use of readily available carbon nucleophiles possessing sp, sp2, and sp3 hybridization in a series of enantioselective carbon-carbon bond-forming reactions. We describe how alkylzinc, allylsilane, and several classes of organotrifluoroborate nucleophiles can be coupled enantioselectively to enable construction of several key motifs including 1,5-dienes, 1,4-dienes, and 1,4-enynes. Since the unique electronic and steric properties of this class of ligands renders the (η3-allyl)-Ir(III) intermediate highly electrophilic, even weak nucleophiles such as alkyl olefins can be used. We also show that more nucleophilic alkene motifs such as enamines and in situ generated ketene acetals smoothly participate in substitution reactions with allylic alcohols to yield valuable piperidines and γ,δ-unsaturated esters, respectively. The concept of stereodivergent dual catalysis, which synergistically combines chiral amine catalysis with iridium catalysis to furnish α-allylated aldehydes containing two independently controllable stereocenters is then discussed. This process has enabled the independent, stereoselective synthesis of all four possible product stereoisomers from a single set of starting materials, and was highlighted in the stereodivergent synthesis of Δ9-tetrahydrocannabinol. This Account concludes with an overview of our organometallic mechanistic studies regarding relevant intermediates within the catalytic cycle of this class of allylic substitution. These studies have allowed us to better understand the origin of the unique characteristics exhibited by this catalyst in comparison to related systems.
Collapse
|
30
|
Tang S, Li Z, Shao Y, Sun J. Ir-Catalyzed Regiocontrolled Allylic Amination of Di-/Trienyl Allylic Alcohols with Secondary Amines. Org Lett 2019; 21:7228-7232. [PMID: 31508973 DOI: 10.1021/acs.orglett.9b02435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An unprecedented regio-controllable allylic amination of unactivated dienyl and trienyl allylic alcohols has been developed, providing an efficient approach toward the site-selective formation of C1-, C3-, and C5-/C7-amination products from the sole substrates. Key to this protocol is the use of secondary amines as the amination reagents, as well as the presence of an iridium catalyst and scandium triflate.
Collapse
Affiliation(s)
- Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering , Changzhou University , 1 Gehu Road , 213164 , Changzhou , China
| | - Ziyong Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering , Changzhou University , 1 Gehu Road , 213164 , Changzhou , China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering , Changzhou University , 1 Gehu Road , 213164 , Changzhou , China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering , Changzhou University , 1 Gehu Road , 213164 , Changzhou , China
| |
Collapse
|
31
|
Tran G, Shao W, Mazet C. Ni-Catalyzed Enantioselective Intermolecular Hydroamination of Branched 1,3-Dienes Using Primary Aliphatic Amines. J Am Chem Soc 2019; 141:14814-14822. [DOI: 10.1021/jacs.9b07253] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gaël Tran
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Wen Shao
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
32
|
Ghorai S, Chirke SS, Xu WB, Chen JF, Li C. Cobalt-Catalyzed Regio- and Enantioselective Allylic Amination. J Am Chem Soc 2019; 141:11430-11434. [DOI: 10.1021/jacs.9b06035] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Samir Ghorai
- Shanghai Key Laboratory
for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Sahadev Shrihari Chirke
- Shanghai Key Laboratory
for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wen-Bin Xu
- Shanghai Key Laboratory
for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jia-Feng Chen
- Shanghai Key Laboratory
for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory
for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Beijing National Laboratory of Molecular Sciences (BNLMS), Beijing 100871, China
| |
Collapse
|
33
|
Liu X, Zheng C, Yang Y, Jin S, You S. Iridium‐Catalyzed Asymmetric Allylic Aromatization Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xi‐Jia Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Yi‐Han Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shicheng Jin
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
34
|
Liu X, Zheng C, Yang Y, Jin S, You S. Iridium‐Catalyzed Asymmetric Allylic Aromatization Reaction. Angew Chem Int Ed Engl 2019; 58:10493-10499. [DOI: 10.1002/anie.201904156] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/30/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Xi‐Jia Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Yi‐Han Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shicheng Jin
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
35
|
Takizawa K, Sekino T, Sato S, Yoshino T, Kojima M, Matsunaga S. Cobalt‐Catalyzed Allylic Alkylation Enabled by Organophotoredox Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Koji Takizawa
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Tomoyuki Sekino
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Shunta Sato
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| |
Collapse
|
36
|
Takizawa K, Sekino T, Sato S, Yoshino T, Kojima M, Matsunaga S. Cobalt‐Catalyzed Allylic Alkylation Enabled by Organophotoredox Catalysis. Angew Chem Int Ed Engl 2019; 58:9199-9203. [DOI: 10.1002/anie.201902509] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/15/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Koji Takizawa
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Tomoyuki Sekino
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Shunta Sato
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical SciencesHokkaido University Kita-ku Sapporo 060-0812 Japan
| |
Collapse
|
37
|
Chen J, Liang Q, Zhao X. Chemoselective, Regioselective, and Enantioselective Allylations of NH2OH under Iridium Catalysis. Org Lett 2019; 21:5383-5386. [DOI: 10.1021/acs.orglett.9b01357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiteng Chen
- School of Chemical Technology and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People’s Republic of China
| | - Qingchun Liang
- School of Chemical Technology and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People’s Republic of China
| | - Xiaoming Zhao
- School of Chemical Technology and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People’s Republic of China
| |
Collapse
|
38
|
Kim SW, Schempp TT, Zbieg JR, Stivala CE, Krische MJ. Regio- and Enantioselective Iridium-Catalyzed N-Allylation of Indoles and Related Azoles with Racemic Branched Alkyl-Substituted Allylic Acetates. Angew Chem Int Ed Engl 2019; 58:7762-7766. [PMID: 30964961 DOI: 10.1002/anie.201902799] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 12/16/2022]
Abstract
Cyclometallated π-allyliridium C,O-benzoates modified with (S)-tol-BINAP, which are stable to air, water, and SiO2 , catalyze highly enantioselective N-allylations of indoles and related azoles. This reaction complements previously reported metal-catalyzed indole allylations in that complete levels of N versus C3 and branched versus linear regioselectivity are observed.
Collapse
Affiliation(s)
- Seung Wook Kim
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Tabitha T Schempp
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Jason R Zbieg
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Craig E Stivala
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| |
Collapse
|
39
|
Kim SW, Schempp TT, Zbieg JR, Stivala CE, Krische MJ. Regio‐ and Enantioselective Iridium‐Catalyzed N‐Allylation of Indoles and Related Azoles with Racemic Branched Alkyl‐Substituted Allylic Acetates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Seung Wook Kim
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Tabitha T. Schempp
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Jason R. Zbieg
- Discovery ChemistryGenentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Craig E. Stivala
- Discovery ChemistryGenentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Michael J. Krische
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
40
|
Huang L, Cai Y, Zhang HJ, Zheng C, Dai LX, You SL. Highly Diastereo- and Enantioselective Synthesis of Quinuclidine Derivatives by an Iridium-Catalyzed Intramolecular Allylic Dearomatization Reaction. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20180006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Asymmetric construction of quinuclidine derivatives has been realized by an iridium-catalyzed allylic dearomatization reaction. The catalytic system, derived from [Ir(cod)Cl] 2 and the Feringa ligand, tolerates a broad range of substrates. A large array of quinuclidine derivatives can be obtained under mild conditions in good to excellent yields (68%–96%), diastereoselectivity (up to >20/1 dr), and enantioselectivity (up to >99% ee). These products feature versatile functional group diversity and can undergo diverse transformations. A model that accounts for the origin of the stereoselectivity has been proposed based on density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Lin Huang
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Yue Cai
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Hui-Jun Zhang
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Chao Zheng
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Li-Xin Dai
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Shu-Li You
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| |
Collapse
|
41
|
Zhukovsky D, Dar'in D, Kantin G, Krasavin M. Synthetic Exploration of α-Diazo γ-Butyrolactams. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Daniil Zhukovsky
- Saint Petersburg State University; 199034 Saint Petersburg Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University; 199034 Saint Petersburg Russian Federation
| | - Grigory Kantin
- Saint Petersburg State University; 199034 Saint Petersburg Russian Federation
| | - Mikhail Krasavin
- Saint Petersburg State University; 199034 Saint Petersburg Russian Federation
| |
Collapse
|
42
|
Sun M, Chen JF, Chen S, Li C. Construction of Vicinal Quaternary Carbon Centers via Cobalt-Catalyzed Asymmetric Reverse Prenylation. Org Lett 2019; 21:1278-1282. [DOI: 10.1021/acs.orglett.8b04030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minghe Sun
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Jia-Feng Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| |
Collapse
|
43
|
Abstract
In the presence of a chiral iridium complex, commercially available 3-chloro-2-chloromethyl-1-propene (1) was selectively activated for various reductive couplings. Depending on the reaction conditions it allows a selective mono- or bidirectional condensation with one or two external aldehydes with excellent enantiocontrol (>90% ee). This approach occurring simply under mild conditions and avoiding premetalated reagents constructs rapidly chiral homoallylic alcohols, key precursors of important molecular fragments such as furans, pyrans, ketodiols, or 1,3,5-polyols.
Collapse
Affiliation(s)
- Adrien Quintard
- Aix Marseille Univ , CNRS, Centrale Marseille, iSm2 , Marseille 13397 , France
| | - Jean Rodriguez
- Aix Marseille Univ , CNRS, Centrale Marseille, iSm2 , Marseille 13397 , France
| |
Collapse
|
44
|
Sun M, Wan X, Zhou SJ, Mei GJ, Shi F. Iridium and a Brønsted acid cooperatively catalyzed chemodivergent and stereoselective reactions of vinyl benzoxazinones with azlactones. Chem Commun (Camb) 2019; 55:1283-1286. [DOI: 10.1039/c8cc08962k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Under cooperative catalysis of iridium and a Brønsted acid, different C4-substituted azlactones react with vinyl benzoxazinones via a formal [4+2] cycloaddition or substitution reaction in a chemo- and stereoselective mode.
Collapse
Affiliation(s)
- Meng Sun
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Xiao Wan
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Si-Jia Zhou
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Guang-Jian Mei
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Feng Shi
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
45
|
Cheng Q, Tu HF, Zheng C, Qu JP, Helmchen G, You SL. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem Rev 2018; 119:1855-1969. [PMID: 30582688 DOI: 10.1021/acs.chemrev.8b00506] [Citation(s) in RCA: 502] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we summarize the origin and advancements of iridium-catalyzed asymmetric allylic substitution reactions during the past two decades. Since the first report in 1997, Ir-catalyzed asymmetric allylic substitution reactions have attracted intense attention due to their exceptionally high regio- and enantioselectivities. Ir-catalyzed asymmetric allylic substitution reactions have been significantly developed in recent years in many respects, including ligand development, mechanistic understanding, substrate scope, and application in the synthesis of complex functional molecules. In this review, an explicit outline of ligands, mechanism, scope of nucleophiles, and applications is presented.
Collapse
Affiliation(s)
- Qiang Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Hang-Fei Tu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Günter Helmchen
- Organisch-Chemisches Institut der Ruprecht-Karls , Universität Heidelberg , Im Neuenheimer Feld 270 , D-69120 Heidelberg , Germany
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| |
Collapse
|
46
|
Kim SW, Schwartz LA, Zbieg JR, Stivala CE, Krische MJ. Regio- and Enantioselective Iridium-Catalyzed Amination of Racemic Branched Alkyl-Substituted Allylic Acetates with Primary and Secondary Aromatic and Heteroaromatic Amines. J Am Chem Soc 2018; 141:671-676. [PMID: 30571092 DOI: 10.1021/jacs.8b12152] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The air- and water-stable π-allyliridium C,O-benzoate modified by ( S)-tol-BINAP, ( S)-Ir-II, catalyzes highly regio- and enantioselective Tsuji-Trost-type aminations of racemic branched alkyl-substituted allylic acetates using primary or secondary (hetero)aromatic amines. Specifically, in the presence of ( S)-Ir-II (5 mol%) in DME solvent at 60-70 °C, α-methyl allyl acetate 1a (100 mol%) reacts with primary (hetero)aromatic amines 2a-2l (200 mol%) or secondary (hetero)aromatic amines 3a-3l (200 mol%) to form the branched products of allylic amination 4a-4l and 5a-5l, respectively, as single regioisomers in good to excellent yield with uniformly high levels of enantioselectivity. As illustrated by the conversion of heteroaromatic amine 3m to adducts 6a-6g, excellent levels of regio- and enantioselectivity are retained across diverse branched allylic acetates bearing normal alkyl or secondary alkyl substituents. For reactants 3n-3p, which incorporate both primary and secondary aryl amine moieties, regio- and enantioselective amination occurs with complete site-selectivity to furnish adducts 7a-7c. Mechanistic studies involving amination of the enantiomerically enriched, deuterium-labeled acetate 1h corroborate C-N bond formation via outer-sphere addition.
Collapse
Affiliation(s)
- Seung Wook Kim
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Leyah A Schwartz
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jason R Zbieg
- Discovery Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Craig E Stivala
- Discovery Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
47
|
Bai X, Wang J, He Y. Iridium‐Catalyzed Propenylation Reactions for the Synthesis of 4‐Pyridone Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xue‐dan Bai
- School of Chemical EngineeringNanjing University of Science & Technology Nanjing 210094 People's Republic of China
| | - Jie Wang
- School of Chemical EngineeringNanjing University of Science & Technology Nanjing 210094 People's Republic of China
| | - Ying He
- School of Chemical EngineeringNanjing University of Science & Technology Nanjing 210094 People's Republic of China
| |
Collapse
|
48
|
Moon PJ, Wei Z, Lundgren RJ. Direct Catalytic Enantioselective Benzylation from Aryl Acetic Acids. J Am Chem Soc 2018; 140:17418-17422. [DOI: 10.1021/jacs.8b11390] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Patrick J. Moon
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Zhongyu Wei
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rylan J. Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
49
|
Kim SW, Wurm T, Brito GA, Jung WO, Zbieg JR, Stivala CE, Krische MJ. Hydroamination versus Allylic Amination in Iridium-Catalyzed Reactions of Allylic Acetates with Amines: 1,3-Aminoalcohols via Ester-Directed Regioselectivity. J Am Chem Soc 2018; 140:9087-9090. [PMID: 29989803 DOI: 10.1021/jacs.8b05683] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the presence of a neutral dppf-modified iridium catalyst and Cs2CO3, linear allylic acetates react with primary amines to form products of hydroamination with complete 1,3-regioselectivity. The collective data, including deuterium labeling studies, corroborate a catalytic mechanism involving rapid, reversible acetate-directed aminoiridation with inner-sphere/outer-sphere crossover followed by turnover-limiting proto-demetalation mediated by amine.
Collapse
Affiliation(s)
- Seung Wook Kim
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Thomas Wurm
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Gilmar A Brito
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Woo-Ok Jung
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jason R Zbieg
- Discovery Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Craig E Stivala
- Discovery Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
50
|
Petrone DA, Isomura M, Franzoni I, Rössler SL, Carreira EM. Allenylic Carbonates in Enantioselective Iridium-Catalyzed Alkylations. J Am Chem Soc 2018; 140:4697-4704. [DOI: 10.1021/jacs.8b01416] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- David A. Petrone
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Mayuko Isomura
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Ivan Franzoni
- Department of Chemistry, University of Toronto, Toronto, Canada, M5S 3H6
| | - Simon L. Rössler
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | | |
Collapse
|