1
|
Almeida ZL, Vaz DC, Brito RMM. Morphological and Molecular Profiling of Amyloid-β Species in Alzheimer's Pathogenesis. Mol Neurobiol 2025; 62:4391-4419. [PMID: 39446217 PMCID: PMC11880078 DOI: 10.1007/s12035-024-04543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia around the world (~ 65%). Here, we portray the neuropathology of AD, biomarkers, and classification of amyloid plaques (diffuse, non-cored, dense core, compact). Tau pathology and its involvement with Aβ plaques and cell death are discussed. Amyloid cascade hypotheses, aggregation mechanisms, and molecular species formed in vitro and in vivo (on- and off-pathways) are described. Aβ42/Aβ40 monomers, dimers, trimers, Aβ-derived diffusible ligands, globulomers, dodecamers, amylospheroids, amorphous aggregates, protofibrils, fibrils, and plaques are characterized (structure, size, morphology, solubility, toxicity, mechanistic steps). An update on AD-approved drugs by regulatory agencies, along with new Aβ-based therapies, is presented. Beyond prescribing Aβ plaque disruptors, cholinergic agonists, or NMDA receptor antagonists, other therapeutic strategies (RNAi, glutaminyl cyclase inhibitors, monoclonal antibodies, secretase modulators, Aβ aggregation inhibitors, and anti-amyloid vaccines) are already under clinical trials. New drug discovery approaches based on "designed multiple ligands", "hybrid molecules", or "multitarget-directed ligands" are also being put forward and may contribute to tackling this highly debilitating and fatal form of human dementia.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
- School of Health Sciences, Polytechnic Institute of Leiria, 2411-901, Leiria, Portugal.
- LSRE-LCM, Laboratory of Separation and Reaction Engineering and Laboratory of Catalysis and Materials, Leiria, 2411-901, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, 4200-465, Porto, Portugal.
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
2
|
Chang HW, Yang CI, Chan JCC. Incubation of Amyloidogenic Peptides in Reverse Micelles Allow Active Control of Oligomer Size and Study of Protein-Protein Interactions. ChemMedChem 2024; 19:e202400310. [PMID: 39090029 DOI: 10.1002/cmdc.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Studies of the structure and dynamics of oligomeric aggregates of amyloidogenic peptides pose challenges due to their transient nature. This concept article provides a brief overview of various nucleation mechanisms with reference to the classical nucleation theory and illustrates the advantages of incubating amyloidogenic peptides in reverse micelles (RMs). The use of RMs not only facilitates size regulation of oligomeric aggregates but also provides an avenue to explore protein-protein interactions among the oligomeric aggregates of various amyloidogenic peptides. Additionally, we envision the feasibility of preparing brain tissue-derived oligomeric aggregates using RMs, potentially advancing the development of monoclonal antibodies with enhanced potency against these pathological species in vivo.
Collapse
Affiliation(s)
- Han-Wen Chang
- Department of Chemistry, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Chien-I Yang
- Department of Chemistry, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
3
|
Meng F, Kim JY, Louis JM, Chung HS. Single-Molecule Characterization of Heterogeneous Oligomer Formation during Co-Aggregation of 40- and 42-Residue Amyloid-β. J Am Chem Soc 2024; 146:24426-24439. [PMID: 39177153 DOI: 10.1021/jacs.4c06372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The two most abundant isoforms of amyloid-β (Aβ) are the 40- (Aβ40) and 42-residue (Aβ42) peptides. Since they coexist and there is a correlation between toxicity and the ratio of the two isoforms, quantitative characterization of their interactions is crucial for understanding the Aβ aggregation mechanism. In this work, we follow the aggregation of individual isoforms in a mixture using single-molecule FRET spectroscopy by labeling Aβ42 and Aβ40 with the donor and acceptor fluorophores, respectively. We found that there are two phases of aggregation. The first phase consists of coaggregation of Aβ42 with a small amount of Aβ40, while the second phase results mostly from aggregation of Aβ40. We also found that the aggregation of Aβ42 is slowed by Aβ40 while the aggregation of Aβ40 is accelerated by Aβ42 in a concentration-dependent manner. The formation of oligomers was monitored by incubating mixtures in a plate reader and performing a single-molecule free-diffusion experiment at several different stages of aggregation. The detailed properties of the oligomers were obtained by maximum likelihood analysis of fluorescence bursts. The FRET efficiency distribution is much broader than that of the Aβ42 oligomers, indicating the diversity in isoform composition of the oligomers. Pulsed interleaved excitation experiments estimate that the fraction of Aβ40 in the co-oligomers in a 1:1 mixture of Aβ42 and Aβ40 varies between 0 and 20%. The detected oligomers were mostly co-oligomers especially at the physiological ratio of Aβ42 and Aβ40 (1:10), suggesting the critical role of Aβ40 in oligomer formation and aggregation.
Collapse
Affiliation(s)
- Fanjie Meng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
4
|
Abstract
Aggregation of the amyloid β (Aβ) peptide into fibrils represents one of the major biochemical pathways underlying the development of Alzheimer's disease (AD). Extensive studies have been carried out to understand the role of fibrillar seeds on the overall kinetics of amyloid aggregation. However, the precise effect of seeds that are structurally or sequentially different from Aβ on the structure of the resulting amyloid aggregates is yet to be fully understood. Herein, nanoscale infrared spectroscopy is used to probe the spectral facets of individual aggregates formed by aggregating Aβ42 with antiparallel fibrillar seeds of Aβ(16-22) and E22Q Aβ(1-40) Dutch mutant and it is demonstrated that Aβ can form heterotypic or mixed polymorphs that deviate significantly from its expected parallel cross β structure. It is further shown that the formation of heterotypic aggregates is not limited to the coaggregation of Aβ and its isomers, and that the former can form heterotypic fibrils with alpha-synuclein and brain protein lysates. These findings highlight the complexity of Aβ aggregation in AD and underscore the need to explore how Aβ interacts with other brain components, which is crucial for developing better therapeutic strategies for AD.
Collapse
Affiliation(s)
- Siddhartha Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Divya Baghel
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Harrison O. Edmonds
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35487, USA
| |
Collapse
|
5
|
Tehrani MJ, Matsuda I, Yamagata A, Kodama Y, Matsunaga T, Sato M, Toyooka K, McElheny D, Kobayashi N, Shirouzu M, Ishii Y. E22G Aβ40 fibril structure and kinetics illuminate how Aβ40 rather than Aβ42 triggers familial Alzheimer's. Nat Commun 2024; 15:7045. [PMID: 39147751 PMCID: PMC11327332 DOI: 10.1038/s41467-024-51294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Arctic (E22G) mutation in amyloid-β (Aβ enhances Aβ40 fibril accumulation in Alzheimer's disease (AD). Unlike sporadic AD, familial AD (FAD) patients with the mutation exhibit more Aβ40 in the plaque core. However, structural details of E22G Aβ40 fibrils remain elusive, hindering therapeutic progress. Here, we determine a distinctive W-shaped parallel β-sheet structure through co-analysis by cryo-electron microscopy (cryoEM) and solid-state nuclear magnetic resonance (SSNMR) of in-vitro-prepared E22G Aβ40 fibrils. The E22G Aβ40 fibrils displays typical amyloid features in cotton-wool plaques in the FAD, such as low thioflavin-T fluorescence and a less compact unbundled morphology. Furthermore, kinetic and MD studies reveal previously unidentified in-vitro evidence that E22G Aβ40, rather than Aβ42, may trigger Aβ misfolding in the FAD, and prompt subsequent misfolding of wild-type (WT) Aβ40/Aβ42 via cross-seeding. The results provide insight into how the Arctic mutation promotes AD via Aβ40 accumulation and cross-propagation.
Collapse
Affiliation(s)
- Mohammad Jafar Tehrani
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Isamu Matsuda
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Atsushi Yamagata
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yu Kodama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Tatsuya Matsunaga
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Dan McElheny
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St, Chicago, IL, 60607, USA
| | - Naohiro Kobayashi
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshitaka Ishii
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
6
|
Golota NC, Michael B, Saliba EP, Linse S, Griffin RG. Structural characterization of E22G Aβ 1-42 fibrils via1H detected MAS NMR. Phys Chem Chem Phys 2024; 26:14664-14674. [PMID: 38715538 PMCID: PMC11110645 DOI: 10.1039/d4cp00553h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Amyloid fibrils have been implicated in the pathogenesis of several neurodegenerative diseases, the most prevalent example being Alzheimer's disease (AD). Despite the prevalence of AD, relatively little is known about the structure of the associated amyloid fibrils. This has motivated our studies of fibril structures, extended here to the familial Arctic mutant of Aβ1-42, E22G-Aβ1-42. We found E22G-AβM0,1-42 is toxic to Escherichia coli, thus we expressed E22G-Aβ1-42 fused to the self-cleavable tag NPro in the form of its EDDIE mutant. Since the high surface activity of E22G-Aβ1-42 makes it difficult to obtain more than sparse quantities of fibrils, we employed 1H detected magic angle spinning (MAS) nuclear magnetic resonance (NMR) experiments to characterize the protein. The 1H detected 13C-13C methods were first validated by application to fully protonated amyloidogenic nanocrystals of GNNQQNY, and then applied to fibrils of the Arctic mutant of Aβ, E22G-Aβ1-42. The MAS NMR spectra indicate that the biosynthetic samples of E22G-Aβ1-42 fibrils comprise a single conformation with 13C chemical shifts extracted from hCH, hNH, and hCCH spectra that are very similar to those of wild type Aβ1-42 fibrils. These results suggest that E22G-Aβ1-42 fibrils have a structure similar to that of wild type Aβ1-42.
Collapse
Affiliation(s)
- Natalie C Golota
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Brian Michael
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Edward P Saliba
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sara Linse
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, SE 22100, Sweden
| | - Robert G Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
7
|
Banerjee S, Baghel D, Edmonds HO, Ghosh A. Heterotypic Seeding Generates Mixed Amyloid Polymorphs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585264. [PMID: 38559069 PMCID: PMC10980072 DOI: 10.1101/2024.03.15.585264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Aggregation of the amyloid β (Aβ) peptide into fibrils represents one of the major biochemical pathways underlying the development of Alzheimer's disease (AD). Extensive studies have been carried out to understand the role of fibrillar seeds on the overall kinetics of amyloid aggregation. However, the precise effect of seeds that are structurally or sequentially different from Aβ on the structure of the resulting amyloid aggregates is yet to be fully understood. In this work, we use nanoscale infrared spectroscopy to probe the spectral facets of individual aggregates formed by aggregating Aβ42 with antiparallel fibrillar seeds of Aβ (16-22) and E22Q Aβ (1-40) Dutch mutant and demonstrate that Aβ can form heterotypic or mixed polymorphs that deviate significantly from its expected parallel cross β structure. We further show that formation of heterotypic aggregates is not limited to coaggregation of Aβ and its isomers, and that the former can form heterotypic fibrils with alpha synuclein and brain protein lysates. These findings highlight the complexity of Aβ aggregation in AD and underscore the need to explore how Aβ interacts with other brain components, which is crucial for developing better therapeutic strategies for AD.
Collapse
Affiliation(s)
- S. Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - D. Baghel
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - H. O. Edmonds
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
8
|
Tian Y, Shang Q, Liang R, Viles JH. Copper(II) Can Kinetically Trap Arctic and Italian Amyloid-β 40 as Toxic Oligomers, Mimicking Cu(II) Binding to Wild-Type Amyloid-β 42: Implications for Familial Alzheimer's Disease. JACS AU 2024; 4:578-591. [PMID: 38425915 PMCID: PMC10900208 DOI: 10.1021/jacsau.3c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
The self-association of amyloid-β (Aβ) peptide into neurotoxic oligomers is believed to be central to Alzheimer's disease (AD). Copper is known to impact Aβ assembly, while disrupted copper homeostasis impacts phenotype in Alzheimer's models. Here we show the presence of substoichiometric Cu(II) has very different impacts on the assembly of Aβ40 and Aβ42 isoforms. Globally fitting microscopic rate constants for fibril assembly indicates copper will accelerate fibril formation of Aβ40 by increasing primary nucleation, while seeding experiments confirm that elongation and secondary nucleation rates are unaffected by Cu(II). In marked contrast, Cu(II) traps Aβ42 as prefibrillar oligomers and curvilinear protofibrils. Remarkably, the Cu(II) addition to preformed Aβ42 fibrils causes the disassembly of fibrils back to protofibrils and oligomers. The very different behaviors of the two Aβ isoforms are centered around differences in their fibril structures, as highlighted by studies of C-terminally amidated Aβ42. Arctic and Italian familiar mutations also support a key role for fibril structure in the interplay of Cu(II) with Aβ40/42 isoforms. The Cu(II) dependent switch in behavior between nonpathogenic Aβ40 wild-type and Aβ40 Arctic or Italian mutants suggests heightened neurotoxicity may be linked to the impact of physiological Cu(II), which traps these familial mutants as oligomers and curvilinear protofibrils, which cause membrane permeability and Ca(II) cellular influx.
Collapse
Affiliation(s)
- Yao Tian
- School of Biological and Behavioral
Sciences, Queen Mary University of London, London E1 4NS, U.K.
| | - Qi Shang
- School of Biological and Behavioral
Sciences, Queen Mary University of London, London E1 4NS, U.K.
| | - Ruina Liang
- School of Biological and Behavioral
Sciences, Queen Mary University of London, London E1 4NS, U.K.
| | - John H. Viles
- School of Biological and Behavioral
Sciences, Queen Mary University of London, London E1 4NS, U.K.
| |
Collapse
|
9
|
Wu Y, Huang S, Wu M, Tu L, Lee M, Chan JCC. Aβ
42
oligomers can seed the fibrillization of Aβ
40
peptides. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yi‐Shan Wu
- Department of Chemistry National Taiwan University Taipei Taiwan
| | | | - Meng‐Hsin Wu
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| | - Ling‐Hsien Tu
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| | - Ming‐Che Lee
- Department of Chemistry National Taiwan University Taipei Taiwan
| | | |
Collapse
|
10
|
Liang R, Tian Y, Viles JH. Cross-seeding of WT amyloid-β with Arctic but not Italian familial mutants accelerates fibril formation in Alzheimer's disease. J Biol Chem 2022; 298:102071. [PMID: 35643314 PMCID: PMC9243174 DOI: 10.1016/j.jbc.2022.102071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) involves the neurotoxic self-assembly of a 40 and 42 residue peptide, Amyloid-β (Aβ). Inherited early-onset AD can be caused by single point mutations within the Aβ sequence, including Arctic (E22G) and Italian (E22K) familial mutants. These mutations are heterozygous, resulting in an equal proportion of the WT and mutant Aβ isoform expression. It is therefore important to understand how these mixtures of Aβ isoforms interact with each other and influence the kinetics and morphology of their assembly into oligomers and fibrils. Using small amounts of nucleating fibril seeds, here, we systematically monitored the kinetics of fibril formation, comparing self-seeding with cross-seeding behavior of a range of isoform mixtures of Aβ42 and Aβ40. We confirm that Aβ40(WT) does not readily cross-seed Aβ42(WT) fibril formation. In contrast, fibril formation of Aβ40(Arctic) is hugely accelerated by Aβ42(WT) fibrils, causing an eight-fold reduction in the lag-time to fibrillization. We propose that cross-seeding between the more abundant Aβ40(Arctic) and Aβ42(WT) may be important for driving early-onset AD and will propagate fibril morphology as indicated by fibril twist periodicity. This kinetic behavior is not emulated by the Italian mutant, where minimal cross-seeding is observed. In addition, we studied the cross-seeding behavior of a C-terminal-amidated Aβ42 analog to probe the coulombic charge interplay between Glu22/Asp23/Lys28 and the C-terminal carboxylate. Overall, these studies highlight the role of cross-seeding between WT and mutant Aβ40/42 isoforms, which can impact the rate and structure of fibril assembly.
Collapse
Affiliation(s)
- Ruina Liang
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, United Kingdom
| | - Yao Tian
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, United Kingdom
| | - John H Viles
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, United Kingdom.
| |
Collapse
|
11
|
Spatial sequestration of misfolded proteins in neurodegenerative diseases. Biochem Soc Trans 2022; 50:759-771. [PMID: 35311889 DOI: 10.1042/bst20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
Abstract
Properly folded, functional proteins are essential for cell health. Cells sustain protein homeostasis, or proteostasis, via protein quality control (PQC) mechanisms. It is currently hypothesized that a breakdown in proteostasis during ageing leads to the accumulation of protein aggregates in the cell and disease. Sequestration of misfolded proteins into PQC compartments represents one branch of the PQC network. In neurodegenerative diseases, certain proteins form abnormal protein deposits. Which PQC compartments house misfolded proteins associated with neurodegenerative diseases is still being investigated. It remains unclear if sequestration of these misfolded proteins is toxic or protective to the cell. Here, we review the current knowledge on various PQC compartments that form in the cell, the kinds of protein aggregates found in neurodegenerative diseases, and what is known about their sequestration. Understanding how protein sequestration occurs can shed light on why aggregates are toxic to the cell and are linked to neurodegenerative diseases like Huntington's, Alzheimer's, and Parkinson's diseases.
Collapse
|
12
|
Lucas MJ, Pan HS, Verbeke EJ, Partipilo G, Helfman EC, Kann L, Keitz BK, Taylor DW, Webb LJ. Cross-Seeding Controls Aβ Fibril Populations and Resulting Functions. J Phys Chem B 2022; 126:2217-2229. [PMID: 35276047 DOI: 10.1021/acs.jpcb.1c09995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amyloid peptides nucleate from monomers to aggregate into fibrils through primary nucleation. Pre-existing fibrils can then act as seeds for additional monomers to fibrillize through secondary nucleation. Both nucleation processes occur simultaneously, yielding a distribution of fibril polymorphs that can generate a spectrum of neurodegenerative effects. Understanding the mechanisms driving polymorph structural distribution during both nucleation processes is important for uncovering fibril structure-function relationships, as well as for creating polymorph distributions in vitro that better match fibril structures found in vivo. Here, we explore how cross-seeding wild-type (WT) Aβ1-40 with Aβ1-40 mutants E22G (Arctic) and E22Δ (Osaka), as well as with WT Aβ1-42, affects the distribution of fibril structural polymorphs and how changes in structural distribution impact toxicity. Transmission electron microscopy analysis revealed that fibril seeds derived from mutants of Aβ1-40 imparted their structure to WT Aβ1-40 monomers during secondary nucleation, but WT Aβ1-40 fibril seeds do not affect the structure of fibrils assembled from mutant Aβ1-40 monomers, despite the kinetic data indicating accelerated aggregation when cross-seeding of any combination of mutants. Additionally, WT Aβ1-40 fibrils seeded with mutant fibrils produced similar structural distributions to the mutant seeds with similar cytotoxicity profiles. This indicates that mutant fibril seeds not only impart their structure to growing WT Aβ1-40 aggregates but also impart cytotoxic properties. Our findings establish a relationship between the fibril structure and the phenotype on a polymorph population level and that these properties can be passed on through secondary nucleation to the succeeding generations of fibrils.
Collapse
Affiliation(s)
- Michael J Lucas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Henry S Pan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric J Verbeke
- Interdisciplinary Life Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Gina Partipilo
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ethan C Helfman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Leah Kann
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - David W Taylor
- Interdisciplinary Life Sciences, University of Texas at Austin, Austin, Texas 78712, United States.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States.,Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States.,LIVESTRONG Cancer Institutes, Dell Medical School, Austin, Texas 78712, United States
| | - Lauren J Webb
- Interdisciplinary Life Sciences, University of Texas at Austin, Austin, Texas 78712, United States.,Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Subedi S, Sasidharan S, Nag N, Saudagar P, Tripathi T. Amyloid Cross-Seeding: Mechanism, Implication, and Inhibition. Molecules 2022; 27:1776. [PMID: 35335141 PMCID: PMC8955620 DOI: 10.3390/molecules27061776] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/21/2023] Open
Abstract
Most neurodegenerative diseases such as Alzheimer's disease, type 2 diabetes, Parkinson's disease, etc. are caused by inclusions and plaques containing misfolded protein aggregates. These protein aggregates are essentially formed by the interactions of either the same (homologous) or different (heterologous) sequences. Several experimental pieces of evidence have revealed the presence of cross-seeding in amyloid proteins, which results in a multicomponent assembly; however, the molecular and structural details remain less explored. Here, we discuss the amyloid proteins and the cross-seeding phenomena in detail. Data suggest that targeting the common epitope of the interacting amyloid proteins may be a better therapeutic option than targeting only one species. We also examine the dual inhibitors that target the amyloid proteins participating in the cross-seeding events. The future scopes and major challenges in understanding the mechanism and developing therapeutics are also considered. Detailed knowledge of the amyloid cross-seeding will stimulate further research in the practical aspects and better designing anti-amyloid therapeutics.
Collapse
Affiliation(s)
- Sushma Subedi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India;
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India;
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| |
Collapse
|
14
|
Chang HW, Ma HI, Wu YS, Lee MC, Chung-Yueh Yuan E, Huang SJ, Cheng YS, Wu MH, Tu LH, Chan JCC. Site specific NMR characterization of abeta-40 oligomers cross seeded by abeta-42 oligomers. Chem Sci 2022; 13:8526-8535. [PMID: 35974768 PMCID: PMC9337746 DOI: 10.1039/d2sc01555b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/12/2022] [Indexed: 12/18/2022] Open
Abstract
Extracellular accumulation of β amyloid peptides of 40 (Aβ40) and 42 residues (Aβ42) has been considered as one of the hallmarks in the pathology of Alzheimer's disease. In this work, we are able to prepare oligomeric aggregates of Aβ with uniform size and monomorphic structure. Our experimental design is to incubate Aβ peptides in reverse micelles (RMs) so that the peptides could aggregate only through a single nucleation process and the size of the oligomers is confined by the physical dimension of the reverse micelles. The hence obtained Aβ oligomers (AβOs) are 23 nm in diameter and they belong to the category of high molecular-weight (MW) oligomers. The solid-state NMR data revealed that Aβ40Os adopt the structural motif of β-loop-β but the chemical shifts manifested that they may be structurally different from low-MW AβOs and mature fibrils. From the thioflavin-T results, we found that high-MW Aβ42Os can accelerate the fibrillization of Aβ40 monomers. Our protocol allows performing cross-seeding experiments among oligomeric species. By comparing the chemical shifts of Aβ40Os cross seeded by Aβ42Os and those of Aβ40Os prepared in the absence of Aβ42Os, we observed that the chemical states of E11, K16, and E22 were altered, whereas the backbone conformation of the β-sheet region near the C-terminus was structurally invariant. The use of reverse micelles allows hitherto the most detailed characterization of the structural variability of Aβ40Os. Extracellular accumulation of β amyloid peptides of 40 (Aβ40) and 42 residues (Aβ42) has been considered as one of the hallmarks in the pathology of Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Han-Wen Chang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ho-I. Ma
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yi-Shan Wu
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ming-Che Lee
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Eric Chung-Yueh Yuan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yu-Sheng Cheng
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Meng-Hsin Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
15
|
Hu S, Yang C, Li Y, Luo Q, Luo H. Nanozyme sensor array based on manganese dioxide for the distinction between multiple amyloid β peptides and their dynamic aggregation process. Biosens Bioelectron 2021; 199:113881. [PMID: 34915216 DOI: 10.1016/j.bios.2021.113881] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023]
Abstract
The determination of the amyloid β (Aβ) peptide and its aggregation intermediates helps to understand the pathological mechanism of Alzheimer's disease (AD) caused by toxic amyloid fragments. Because of the transient and heterogeneous properties of Aβ aggregates, it is very difficult to dynamically detect Aβ and its aggregation intermediates. Herein, we successfully constructed a two-dimensional manganese dioxide (MnO2) nanozyme sensor array by modulating the peroxidase-mimicking activity using various Aβ species and accurately distinguished among six types of Aβ within 1 h through linear discriminant analysis (LDA), with a dynamic detection range of 0.01-500 nmol/L and a detection limit of 0.44 pmol/L. Subsequently, 30 unknown blind samples were used to verify the practicability of the sensor array, and all unknown samples were identified with 100% accuracy. It is worth noting that the sensor array successfully distinguished healthy individuals from AD patients using clinical blood samples. This study provides a convenient and reliable nanozyme biosensing system for detecting Aβ species and their related aggregation processes.
Collapse
Affiliation(s)
- Shun Hu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Changwen Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China; School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Sun Y, Kakinen A, Wan X, Moriarty N, Hunt CP, Li Y, Andrikopoulos N, Nandakumar A, Davis TP, Parish CL, Song Y, Ke PC, Ding F. Spontaneous Formation of β-sheet Nano-barrels during the Early Aggregation of Alzheimer's Amyloid Beta. NANO TODAY 2021; 38:101125. [PMID: 33936250 PMCID: PMC8081394 DOI: 10.1016/j.nantod.2021.101125] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Soluble low-molecular-weight oligomers formed during the early aggregation of amyloid peptides have been hypothesized as a major toxic species of amyloidogenesis. Herein, we performed the first synergic in silico, in vitro and in vivo validations of the structure, dynamics and toxicity of Aβ42 oligomers. Aβ peptides readily assembled into β-rich oligomers comprised of extended β-hairpins and β-strands. Nanosized β-barrels were observed with certainty with simulations, transmission electron microscopy and Fourier transform infrared spectroscopy, corroborated by immunohistochemistry, cell viability, apoptosis, inflammation, autophagy and animal behavior assays. Secondary and tertiary structural proprieties of these oligomers, such as the sequence regions with high β-sheet propensities and inter-residue contact frequency patterns, were similar to the properties known for Aβ fibrils. The unambiguous spontaneous formation of β-barrels in the early aggregation of Aβ42 supports their roles as the common toxic intermediates in Alzheimer's pathobiology and a target for Alzheimer's therapeutics.
Collapse
Affiliation(s)
- Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Address correspondence to: Yunxiang Sun: ; Yang Song: ; Pu Chun Ke: ; Feng Ding:
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Xulin Wan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Niamh Moriarty
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville VIC 3052, Australia
| | - Cameron P.J. Hunt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville VIC 3052, Australia
| | - Yuhuan Li
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville VIC 3052, Australia
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Address correspondence to: Yunxiang Sun: ; Yang Song: ; Pu Chun Ke: ; Feng Ding:
| | - Pu Chun Ke
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Address correspondence to: Yunxiang Sun: ; Yang Song: ; Pu Chun Ke: ; Feng Ding:
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Address correspondence to: Yunxiang Sun: ; Yang Song: ; Pu Chun Ke: ; Feng Ding:
| |
Collapse
|
17
|
Zhang S, Guaglianone G, Morris MA, Yoo S, Howitz WJ, Xing L, Zheng JG, Jusuf H, Huizar G, Lin J, Kreutzer AG, Nowick JS. Expression of N-Terminal Cysteine Aβ 42 and Conjugation to Generate Fluorescent and Biotinylated Aβ 42. Biochemistry 2021; 60:1191-1200. [PMID: 33793198 PMCID: PMC9059633 DOI: 10.1021/acs.biochem.1c00105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescent derivatives of the β-amyloid peptides (Aβ) are valuable tools for studying the interactions of Aβ with cells. Facile access to labeled expressed Aβ offers the promise of Aβ with greater sequence and stereochemical integrity, without impurities from amino acid deletion and epimerization. Here, we report methods for the expression of Aβ42 with an N-terminal cysteine residue, Aβ(C1-42), and its conjugation to generate Aβ42 bearing fluorophores or biotin. The methods rely on the hitherto unrecognized observation that expression of the Aβ(MC1-42) gene yields the Aβ(C1-42) peptide, because the N-terminal methionine is endogenously excised by Escherichia coli. Conjugation of Aβ(C1-42) with maleimide-functionalized fluorophores or biotin affords the N-terminally labeled Aβ42. The expression affords ∼14 mg of N-terminal cysteine Aβ from 1 L of bacterial culture. Subsequent conjugation affords ∼3 mg of labeled Aβ from 1 L of bacterial culture with minimal cost for labeling reagents. High-performance liquid chromatography analysis indicates the N-terminal cysteine Aβ to be >97% pure and labeled Aβ peptides to be 94-97% pure. Biophysical studies show that the labeled Aβ peptides behave like unlabeled Aβ and suggest that labeling of the N-terminus does not substantially alter the properties of the Aβ. We further demonstrate applications of the fluorophore-labeled Aβ peptides by using fluorescence microscopy to visualize their interactions with mammalian cells and bacteria. We anticipate that these methods will provide researchers convenient access to useful N-terminally labeled Aβ, as well as Aβ with an N-terminal cysteine that enables further functionalization.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Gretchen Guaglianone
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Michael A. Morris
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Stan Yoo
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - William J. Howitz
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Li Xing
- Irvine Materials Research Institute (IMRI), University of California-Irvine, Irvine, California 92697-2575, United States
| | - Jian-Guo Zheng
- Irvine Materials Research Institute (IMRI), University of California-Irvine, Irvine, California 92697-2575, United States
| | - Hannah Jusuf
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Grace Huizar
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Jonathan Lin
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - Adam G. Kreutzer
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
| | - James S. Nowick
- Department of Chemistry, University of California-Irvine, Irvine, California 92697-2025, United States
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
18
|
Ivanova MI, Lin Y, Lee YH, Zheng J, Ramamoorthy A. Biophysical processes underlying cross-seeding in amyloid aggregation and implications in amyloid pathology. Biophys Chem 2021; 269:106507. [PMID: 33254009 PMCID: PMC10317075 DOI: 10.1016/j.bpc.2020.106507] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
Abnormal aggregation of proteins into filamentous aggregates commonly associates with many diseases, such as Alzheimer's disease, Parkinson's disease and type-2 diabetes. These filamentous aggregates, also known as amyloids, can propagate their abnormal structures to either the same precursor molecules (seeding) or other protein monomers (cross-seeding). Cross-seeding has been implicated in the abnormal protein aggregation and has been found to facilitate the formation of physiological amyloids. It has risen to be an exciting area of research with a high volume of published reports. In this review article, we focus on the biophysical processes underlying the cross-seeding for some of the most commonly studied amyloid proteins. Here we will discuss the relevant literature related to cross-seeded polymerization of amyloid-beta, human islet amyloid polypeptide (hIAPP, or also known as amylin) and alpha-synuclein. SEVI (semen-derived enhancer of viral infection) amyloid formation by the cross-seeding between the bacterial curli protein and PAP248-286 is also briefly discussed.
Collapse
Affiliation(s)
- Magdalena I Ivanova
- Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea; Research headquarters, Korea Brain Research Institute, Daegu 41068, South Korea
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Yuzu K, Yamamoto N, Noji M, So M, Goto Y, Iwasaki T, Tsubaki M, Chatani E. Multistep Changes in Amyloid Structure Induced by Cross-Seeding on a Rugged Energy Landscape. Biophys J 2020; 120:284-295. [PMID: 33340544 DOI: 10.1016/j.bpj.2020.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/22/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022] Open
Abstract
Amyloid fibrils are aberrant protein aggregates associated with various amyloidoses and neurodegenerative diseases. It is recently indicated that structural diversity of amyloid fibrils often results in different pathological phenotypes, including cytotoxicity and infectivity. The diverse structures are predicted to propagate by seed-dependent growth, which is one of the characteristic properties of amyloid fibrils. However, much remains unknown regarding how exactly the amyloid structures are inherited to subsequent generations by seeding reaction. Here, we investigated the behaviors of self- and cross-seeding of amyloid fibrils of human and bovine insulin in terms of thioflavin T fluorescence, morphology, secondary structure, and iodine staining. Insulin amyloid fibrils exhibited different structures, depending on species, each of which replicated in self-seeding. In contrast, gradual structural changes were observed in cross-seeding, and a new type of amyloid structure with distinct morphology and cytotoxicity was formed when human insulin was seeded with bovine insulin seeds. Remarkably, iodine staining tracked changes in amyloid structure sensitively, and singular value decomposition analysis of the ultraviolet-visible absorption spectra of the fibril-bound iodine has revealed the presence of one or more intermediate metastable states during the structural changes. From these findings, we propose a propagation scheme with multistep structural changes in cross-seeding between two heterologous proteins, which is accounted for as a consequence of the rugged energy landscape of amyloid formation.
Collapse
Affiliation(s)
- Keisuke Yuzu
- Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Naoki Yamamoto
- School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masahiro Noji
- Institute for Protein Research, Osaka University, Suita, Osaka Japan; Graduate School of Human and Environmental Studies, Kyoto University, Yoshidanihonmatsu, Kyoto, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, Suita, Osaka Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Suita, Osaka Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| | - Tetsushi Iwasaki
- Graduate School of Science, Kobe University, Kobe, Hyogo, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan
| | | | - Eri Chatani
- Graduate School of Science, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
20
|
De Mena L, Smith MA, Martin J, Dunton KL, Ceballos-Diaz C, Jansen-West KR, Cruz PE, Dillon KD, Rincon-Limas DE, Golde TE, Moore BD, Levites Y. Aß40 displays amyloidogenic properties in the non-transgenic mouse brain but does not exacerbate Aß42 toxicity in Drosophila. Alzheimers Res Ther 2020; 12:132. [PMID: 33069251 PMCID: PMC7568834 DOI: 10.1186/s13195-020-00698-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Self-assembly of the amyloid-β (Aβ) peptide into aggregates, from small oligomers to amyloid fibrils, is fundamentally linked with Alzheimer's disease (AD). However, it is clear that not all forms of Aβ are equally harmful and that linking a specific aggregate to toxicity also depends on the assays and model systems used (Haass et al., J Biol. Chem 269:17741-17748, 1994; Borchelt et al., Neuron 17:1005-1013, 1996). Though a central postulate of the amyloid cascade hypothesis, there remain many gaps in our understanding regarding the links between Aβ deposition and neurodegeneration. METHODS In this study, we examined familial mutations of Aβ that increase aggregation and oligomerization, E22G and ΔE22, and induce cerebral amyloid angiopathy, E22Q and D23N. We also investigated synthetic mutations that stabilize dimerization, S26C, and a phospho-mimetic, S8E, and non-phospho-mimetic, S8A. To that end, we utilized BRI2-Aβ fusion technology and rAAV2/1-based somatic brain transgenesis in mice to selectively express individual mutant Aβ species in vivo. In parallel, we generated PhiC31-based transgenic Drosophila melanogaster expressing wild-type (WT) and Aβ40 and Aβ42 mutants, fused to the Argos signal peptide to assess the extent of Aβ42-induced toxicity as well as to interrogate the combined effect of different Aβ40 and Aβ42 species. RESULTS When expressed in the mouse brain for 6 months, Aβ42 E22G, Aβ42 E22Q/D23N, and Aβ42WT formed amyloid aggregates consisting of some diffuse material as well as cored plaques, whereas other mutants formed predominantly diffuse amyloid deposits. Moreover, while Aβ40WT showed no distinctive phenotype, Aβ40 E22G and E22Q/D23N formed unique aggregates that accumulated in mouse brains. This is the first evidence that mutant Aβ40 overexpression leads to deposition under certain conditions. Interestingly, we found that mutant Aβ42 E22G, E22Q, and S26C, but not Aβ40, were toxic to the eye of Drosophila. In contrast, flies expressing a copy of Aβ40 (WT or mutants), in addition to Aβ42WT, showed improved phenotypes, suggesting possible protective qualities for Aβ40. CONCLUSIONS These studies suggest that while some Aβ40 mutants form unique amyloid aggregates in mouse brains, they do not exacerbate Aβ42 toxicity in Drosophila, which highlights the significance of using different systems for a better understanding of AD pathogenicity and more accurate screening for new potential therapies.
Collapse
Affiliation(s)
- Lorena De Mena
- Department of Neurology, McKnight Brain Institute, University of Florida and Norman Fixel Institute for Neurological Diseases, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael A Smith
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jason Martin
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Katie L Dunton
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carolina Ceballos-Diaz
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Pedro E Cruz
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kristy D Dillon
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, University of Florida and Norman Fixel Institute for Neurological Diseases, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Brenda D Moore
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Yona Levites
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Hu S, Xian Y, Fan Y, Mak S, Wang J, Tang J, Pang Y, Pi R, Tsim KW, Liu F, Lin Z, Han Y. Significant combination of Aβ aggregation inhibitory and neuroprotective properties in silico, in vitro and in vivo by bis(propyl)-cognitin, a multifunctional anti-Alzheimer’s agent. Eur J Pharmacol 2020; 876:173065. [DOI: 10.1016/j.ejphar.2020.173065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 01/06/2023]
|
22
|
Ren B, Zhang Y, Zhang M, Liu Y, Zhang D, Gong X, Feng Z, Tang J, Chang Y, Zheng J. Fundamentals of cross-seeding of amyloid proteins: an introduction. J Mater Chem B 2019; 7:7267-7282. [PMID: 31647489 DOI: 10.1039/c9tb01871a] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Misfolded protein aggregates formed by the same (homologous) or different (heterologous/cross) sequences are the pathological hallmarks of many protein misfolding diseases (PMDs) including Alzheimer's disease (AD) and type 2 diabetes (T2D). Different from homologous-amyloid aggregation that is solely associated with a specific PMD, cross-amyloid aggregation (i.e. cross-seeding) of different amyloid proteins is more fundamentally and biologically important for understanding and untangling not only the pathological process of each PMD, but also a potential molecular cross-talk between different PMDs. However, the cross-amyloid aggregation is still a subject poorly explored and little is known about its sequence/structure-dependent aggregation mechanisms, as compared to the widely studied homo-amyloid aggregation. Here, we review the most recent and important findings of amyloid cross-seeding behaviors from in vitro, in vivo, and in silico studies. Some typical cross-seeding phenomena between Aβ/hIAPP, Aβ/tau, Aβ/α-synuclein, and tau/α-synuclein are selected and presented, and the underlying specific or general cross-seeding mechanisms are also discussed to better reveal their sequence-structure-property relationships. The potential use of the cross-seeding concept to design amyloid inhibitors is also proposed. Finally, we offer some personal perspectives on current major challenges and future research directions in this less-studied yet important field, and hopefully this work will stimulate more research to explore all possible fundamental and practical aspects of amyloid cross-seeding.
Collapse
Affiliation(s)
- Baiping Ren
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA.
| | - Yanxian Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA.
| | - Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA.
| | - Yonglan Liu
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA.
| | - Dong Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA.
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, Ohio, USA
| | - Zhangqi Feng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA.
| |
Collapse
|
23
|
Sahoo BR, Genjo T, Nakayama TW, Stoddard AK, Ando T, Yasuhara K, Fierke CA, Ramamoorthy A. A cationic polymethacrylate-copolymer acts as an agonist for β-amyloid and an antagonist for amylin fibrillation. Chem Sci 2019; 10:3976-3986. [PMID: 31015938 PMCID: PMC6457205 DOI: 10.1039/c8sc05771k] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/25/2019] [Indexed: 12/24/2022] Open
Abstract
In humans, β-amyloid and islet amyloid polypeptide (IAPP, also known as amylin) aggregations are linked to Alzheimer's disease and type-2 diabetes, respectively. There is significant interest in better understanding the aggregation process by using chemical tools. Here, we show the ability of a cationic polymethacrylate-copolymer (PMAQA) to quickly induce a β-hairpin structure and accelerate the formation of amorphous aggregates of β-amyloid-1-40, whereas it constrains the conformational plasticity of amylin for several days and slows down its aggregation at substoichiometric polymer concentrations. NMR experiments and microsecond scale atomistic molecular dynamics simulations reveal that PMAQA interacts with β-amyloid-1-40 residues spanning regions K16-V24 and A30-V40 followed by β-sheet induction. For amylin, it binds strongly close to the amyloid core domain (NFGAIL) and restrains its structural rearrangement. High-speed atomic force microscopy and transmission electron microscopy experiments show that PMAQA blocks the nucleation and fibrillation of amylin, whereas it induces the formation of amorphous aggregates of β-amyloid-1-40. Thus, the reported study provides a valuable approach to develop polymer-based amyloid inhibitors to suppress the formation of toxic intermediates of β-amyloid-1-40 and amylin.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
| | - Takuya Genjo
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
| | - Takahiro W Nakayama
- Bio-AFM Frontier Research Center , Kanazawa University , Kanazawa 920-1192 , Japan
| | - Andrea K Stoddard
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
| | - Toshio Ando
- Bio-AFM Frontier Research Center , Kanazawa University , Kanazawa 920-1192 , Japan
| | - Kazuma Yasuhara
- Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Nara 6300192 , Japan
| | - Carol A Fierke
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
- Department of Chemistry , Texas A&M University , College Station , TX 77843 , USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry , University of Michigan , Ann Arbor , MI 48109-1055 , USA .
| |
Collapse
|
24
|
Role of solvent H-bonding and polarity on photophysical properties of a benzothiazole-based ratiometric amyloid fibril sensor. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Witter S, Witter R, Vilu R, Samoson A. Medical Plants and Nutraceuticals for Amyloid-β Fibrillation Inhibition. J Alzheimers Dis Rep 2018; 2:239-252. [PMID: 30599045 PMCID: PMC6311354 DOI: 10.3233/adr-180066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 11/30/2022] Open
Abstract
Plaque formation due to amyloid-β oligomerization and fibrillation is a key issue for its deposition in the brains of dementia and Alzheimer's disease patients. Related drugs preventing this peptide fibril accumulation bear the potential of considerable medical and social value. In this study, we performed in vitro fibrillation inhibition tests with eight different medical plant extracts and nutraceuticals using fluorescence spectroscopy. Successful inhibition of the following plant extracts and nutraceuticals were obtained: Withania somnifera, Centella asiatica, Bacopa monnieri, and Convolvulus pluricaulis, providing new drug candidates for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Steffi Witter
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Raiker Witter
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Eggenstein-Leopoldshafen, Germany
| | - Raivo Vilu
- Competence Center of Food and Fermentation Technology (TFTAK), Tallinn, Estonia
| | - Ago Samoson
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
26
|
Törnquist M, Michaels TCT, Sanagavarapu K, Yang X, Meisl G, Cohen SIA, Knowles TPJ, Linse S. Secondary nucleation in amyloid formation. Chem Commun (Camb) 2018; 54:8667-8684. [PMID: 29978862 DOI: 10.1039/c8cc02204f] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nucleation of new peptide and protein aggregates on the surfaces of amyloid fibrils of the same peptide or protein has emerged in the past two decades as a major pathway for both the generation of molecular species responsible for cellular toxicity and for the autocatalytic proliferation of peptide and protein aggregates. A key question in current research is the molecular mechanism and driving forces governing such processes, known as secondary nucleation. In this context, the analogies with other self-assembling systems for which monomer-dependent secondary nucleation has been studied for more than a century provide a valuable source of inspiration. Here, we present a short overview of this background and then review recent results regarding secondary nucleation of amyloid-forming peptides and proteins, focusing in particular on the amyloid β peptide (Aβ) from Alzheimer's disease, with some examples regarding α-synuclein from Parkinson's disease. Monomer-dependent secondary nucleation of Aβ was discovered using a combination of kinetic experiments, global analysis, seeding experiments and selective isotope-enrichment, which pinpoint the monomer as the origin of new aggregates in a fibril-catalyzed reaction. Insights into driving forces are gained from variations of solution conditions, temperature and peptide sequence. Selective inhibition of secondary nucleation is explored as an effective means to limit oligomer production and toxicity. We also review experiments aimed at finding interaction partners of oligomers generated by secondary nucleation in an ongoing aggregation process. At the end of this feature article we bring forward outstanding questions and testable mechanistic hypotheses regarding monomer-dependent secondary nucleation in amyloid formation.
Collapse
Affiliation(s)
- Mattias Törnquist
- Lund University, Department of Biochemistry and Structural Biology, Chemical Centre, PO Box 124, SE221 00 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|