1
|
Potter AL, Zare M, Harris JM, Kitt JP. Hybrid Bilayer Interfaces within Reversed-Phase Chromatographic Silica Formed by Self-Assembly of Long-Chain Primary Alcohols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2851-2862. [PMID: 39825216 DOI: 10.1021/acs.langmuir.4c04740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, n-alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase. In this work, we propose modification of C18-functionalized chromatographic silica surfaces through self-assembly of long-chain primary alcohols to form uncharged hybrid-bilayer surfaces. Hybrid bilayers formed from alcohols ranging from C12OH to C22OH are investigated with in situ confocal-Raman microscopy, and the spectra indicate that they form highly ordered n-alkane structures, with order increasing as a function of alcohol chain length. Temperature-dependent Raman spectra of C12OH-C22OH hybrid bilayers were collected to investigate their melting transitions. Multivariate curve resolution of these spectra show broad, two-component melting transitions, indicating alcohol and C18 alkyl chains melt simultaneously. These results suggest an interdigitated interfacial structure, where the hydrocarbon chains of the adsorbed alcohol extend into the underlying C18 chains, ordering both layers. Interdigitation is confirmed by a temperature-dependent study of a deuterated C16-OH bilayer, where spectrally resolved Raman bands from deuterated and protiated hydrocarbons melt together. Finally, n-alkyl alcohol bilayers were tested for protein repellency, where no protein adsorption was observed when equilibrated with ∼1 mg/mL bovine serum albumin. Bilayers C16OH in chain length are shelf stable at refrigerated temperatures for months. These results demonstrate long-chain alcohol bilayers can be utilized to control the interfacial hydrocarbon structure of C18-modified silica and have potential for use in separations, biosensing, and anti-biofouling applications.
Collapse
Affiliation(s)
- Aric Larry Potter
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Maryam Zare
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Jay P Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
2
|
Myres GJ, Kitt JP, Harris JM. Inter-Leaflet Phospholipid Exchange Impacts the Ligand Density Available for Protein Binding at Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6967-6976. [PMID: 35617691 DOI: 10.1021/acs.langmuir.2c00526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phospholipid bilayers formed at solid-liquid interfaces have garnered interest as mimics of cell membranes to model association reactions of proteins with lipid bilayer-tethered ligands. Despite the importance of understanding how ligand density in a lipid bilayer impacts the protein-ligand association response, relating the ligand-modified lipid fraction to the absolute density of solution-accessible ligands in a lipid bilayer remains a challenge in interfacial quantitative analysis. In this work, confocal Raman microscopy is employed to quantify the association of anti-biotin IgG with a small fraction of biotinylated lipids dispersed in either gel-phase or liquid-crystalline supported lipid bilayers deposited on the interior surfaces of wide-pore silica surfaces. We examine the question of whether inter-leaflet lipid translocation contributes to the population of solution-accessible biotin ligands on the distal leaflet of a supported lipid bilayer by comparing their protein accumulation response with ligands dispersed in lipid monolayers on nitrile-derivatized silica surfaces. The binding of the antibody to biotin ligands dispersed in gel-phase bilayers exhibited an equivalent biotin coverage response as the accumulation of IgG onto gel-phase monolayers, indicating that gel-phase bilayer symmetry was preserved. This result contrasts with the ∼60% greater anti-biotin capture observed at fluid-phase bilayers compared to fluid-phase monolayers prepared at equivalent biotin fractions. This enhanced protein capture is attributed to biotin-capped lipids being transferred from the surface-associated proximal leaflet of the bilayer to the solution-exposed distal leaflet by the inter-leaflet exchange or lipid flip-flop, a facile process in fluid-phase supported lipid bilayers. The results suggest caution in interpreting the results of quantitative studies of protein binding to lipid-tethered ligands dispersed in fluid-phase phospholipid bilayers.
Collapse
Affiliation(s)
- Grant J Myres
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Jay P Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
3
|
Lozano H, Devis S, Aliaga J, Alegría M, Guzmán H, Villarroel R, Benavente E, González G. Two-Dimensional Titanium Dioxide-Surfactant Photoactive Supramolecular Networks: Synthesis, Properties, and Applications for the Conversion of Light Energy. Int J Mol Sci 2022; 23:4006. [PMID: 35409363 PMCID: PMC8999612 DOI: 10.3390/ijms23074006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023] Open
Abstract
The desire to harness solar energy to address current global environmental problems led us to investigate two-dimensional (2D) core-shell hybrid photocatalysts in the form of a 2D-TiO2-surfactant, mainly composed of fatty acids. The bulk products, prepared by two slightly different methods, consist of stacked host-guest hybrid sheets held together by van der Waals forces between alkyl carboxylate moieties, favoring the synergistic conjugation of the photophysical properties of the core and the hydrophobicity of the self-assembled surfactant monolayer of the shell. X-ray diffraction and the vibrational characteristics of the products revealed the influence of synthesis strategies on two types of supramolecular aggregates that differ in the core chemical structure, guest conformers of alkyl surfactant tails and type, and the bilayer and monolayer of the structure of nanocomposites. The singular ability of the TiO2 core to anchor carboxylate leads to commensurate hybrids, in contrast to both layered clay and layered double-hydroxide-based ion exchangers which have been previously reported, making them potentially interesting for modeling the role of fatty acids and lipids in bio-systems. The optical properties and photocatalytic activity of the products, mainly in composites with smaller bandgap semiconductors, are qualitatively similar to those of nanostructured TiO2 but improve their photoresponse due to bandgap shifts and the extreme aspect-ratio characteristics of two-dimensional TiO2 confinement. These results could be seen as a proof-of-concept of the potential of these materials to create custom-designed 2D-TiO2-surfactant supramolecular photocatalysts.
Collapse
Affiliation(s)
- Harold Lozano
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Sindy Devis
- Facultad de Ciencias de la Salud, Instituto de Investigación Interdisciplinar en Ciencias Biomédicas, Universidad SEK, Santiago 7520317, Chile;
| | - Juan Aliaga
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana Santiago, Santiago 7800003, Chile; (J.A.); (M.A.)
| | - Matías Alegría
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana Santiago, Santiago 7800003, Chile; (J.A.); (M.A.)
| | - Hernán Guzmán
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Roberto Villarroel
- Instituto de Física, Pontificia, Universidad Católica de Chile, Santiago 7830614, Chile;
| | - Eglantina Benavente
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana Santiago, Santiago 7800003, Chile; (J.A.); (M.A.)
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 7750000, Chile
| | - Guillermo González
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| |
Collapse
|
4
|
Bryce DA, Kitt JP, Harris JM. Raman Microscopy Investigation of GLP-1 Peptide Association with Supported Phospholipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14265-14274. [PMID: 34856805 DOI: 10.1021/acs.langmuir.1c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A wide range of important biological processes occur at phospholipid membranes including cell signaling, where a peptide or small molecule targets a membrane-localized receptor protein. In this work, we report the adaptation of confocal Raman microscopy to quantify populations of unlabeled glucagon-like peptide-1 (GLP-1), a membrane-active 30-residue incretin peptide, in supported phospholipid bilayers deposited on the interior surfaces of wide-pore porous silica particles. Quantification of lipid bilayer-associated peptide is achieved by measuring the Raman scattering intensity of the peptide relative to that of the supported lipid bilayer, which serves as an internal standard. The dependence of the bilayer-associated GLP-1 population on the solution concentration of GLP-1 produces an isotherm used to determine the equilibrium constant for peptide-bilayer association and the maximum peptide surface coverage. The maximum coverage of GLP-1 in the lipid bilayer was found to be only 1/5th of a full monolayer based on its hydrodynamic radius. The saturation coverage, therefore, is not limited by the size of GLP-1 but by the ability of the bilayer to accommodate the peptide at high concentrations within the bilayer. Raman spectra show that GLP-1 association with the supported bilayer is accompanied by structural changes consistent with the intercalation of the peptide into the bilayer, where the observed increase in acyl-chain order would increase the lipid density and provide free volume needed to accommodate the peptide. These results were compared with previous measurements of the association of fluorescently labeled GLP-1 with a planar-supported bilayer; the unlabeled peptide exhibits a 3-fold greater affinity for the lipid bilayer on the porous silica support, suggesting that the fluorescent label alters the GLP-1 lipid bilayer association.
Collapse
Affiliation(s)
- David A Bryce
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jay P Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
- Department of Biomedical Informatics, University of Utah, 421 Wakara Way Ste. 140, Salt Lake City, Utah 84108, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Continuous gradient temperature Raman spectroscopy of 1-stearoyl- 2-docosahexaenoyl, 1-stearoyl- 2-arachidonoyl, and 1,2-stearoyl phosphocholines. Chem Phys Lipids 2021; 239:105116. [PMID: 34271000 DOI: 10.1016/j.chemphyslip.2021.105116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022]
Abstract
Mixed chain phospholipids containing a saturated fatty acid at sn1 and a polyunsaturated fatty acid in sn2 are common in the specialized biological membranes prevalent in neural, retinal and organ tissues. Particularly important are mixed lipids containing palmitic or stearic acid and arachidonic or docosahexaenoic acid. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements and phase transitions. Herein we utilize GTRS for 1-18:0, 2-20:4n-6 PC; 1-18:0 2-22:6n-3 PC; and 1-18:0, 2-18:0 PC from -80 to 50 °C temperatures. 20 Mb three-dimensional data arrays with 0.2 °C increments and first/second derivatives allowed detailed vibrational mode assignment and analysis. Samples were analyzed neat and with molecular hydration. Previously reported phase transitions for hydrated 18:0-20:4PC and 18:0-22:6PC and numerous spectral differences resulting from hydration and the double bond structure were clearly observed. Molecular models showed that the addition of minimal water molecules results in significant structural differences compared to the neat molecules; 18:0-22:6PC is strikingly compact with water when viewed from the hydrophilic end. This precise Raman data cannot be observed in typically utilized fully hydrated vesicle samples, however the improved GTRS will allow for more precise analysis in fully hydrated vesicles because the underlying modes in the unavoidably broadened spectra can be identified.
Collapse
|
6
|
Bordanaba-Florit G, Royo F, Kruglik SG, Falcón-Pérez JM. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc 2021; 16:3163-3185. [PMID: 34135505 DOI: 10.1038/s41596-021-00551-z] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers with a complex molecular cargo comprising several populations with unique roles in biological processes. These vesicles are closely associated with specific physiological features, which makes them invaluable in the detection and monitoring of various diseases. EVs play a key role in pathophysiological processes by actively triggering genetic or metabolic responses. However, the heterogeneity of their structure and composition hinders their application in medical diagnosis and therapies. This diversity makes it difficult to establish their exact physiological roles, and the functions and composition of different EV (sub)populations. Ensemble averaging approaches currently employed for EV characterization, such as western blotting or 'omics' technologies, tend to obscure rather than reveal these heterogeneities. Recent developments in single-vesicle analysis have made it possible to overcome these limitations and have facilitated the development of practical clinical applications. In this review, we discuss the benefits and challenges inherent to the current methods for the analysis of single vesicles and review the contribution of these approaches to the understanding of EV biology. We describe the contributions of these recent technological advances to the characterization and phenotyping of EVs, examination of the role of EVs in cell-to-cell communication pathways and the identification and validation of EVs as disease biomarkers. Finally, we discuss the potential of innovative single-vesicle imaging and analysis methodologies using microfluidic devices, which promise to deliver rapid and effective basic and practical applications for minimally invasive prognosis systems.
Collapse
Affiliation(s)
- Guillermo Bordanaba-Florit
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| | - Sergei G Kruglik
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
7
|
Cholesterol-phospholipid interactions resist the detergent effect of bovine bile. Colloids Surf B Biointerfaces 2021; 205:111842. [PMID: 34022699 DOI: 10.1016/j.colsurfb.2021.111842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022]
Abstract
Sphingomyelin (SM) and cholesterol complexation gives rise to detergent-resistant liquid-ordered domains. The persistence of these domains and subsequent mixed micelle formation was examined in the presence of bile under physiological digestive in vitro conditions for vesicles comprising either SM/cholesterol, porcine brain phosphatidylcholine (BPC)/cholesterol, or soy phosphatidylcholine (SPC)/cholesterol bilayers, the latter two systems having no liquid-ordered domains. Micellization of these digested phospholipid multilamellar vesicle systems was confirmed by transmission electron microscopy. Bovine bile was found to consist of large multilamellar sheets which subsumed phospholipid vesicles to form aggregated superstructures. Budding off from these superstructures were vesicle-to-micelle transition intermediates: unilamellar vesicles and cylindrical micelles. The presence of cholesterol (60/40 phospholipid/cholesterol mol/mol) delayed the initial rapid onset of digestion, but not for BPC and SPC vesicle systems. Acyl chain order/disorder before and after vesicle-to-micelle transition of all three phospholipid/cholesterol systems was examined using Raman spectroscopy. The addition of bovine bile to both PC/cholesterol vesicle systems reduced the overall ratio of acyl chain disorder to order. In SM/cholesterol vesicles with ≤ 20% mol cholesterol, only the lateral inter-acyl chain packing was reduced, whereas for SM/cholesterol vesicles with ≥ 30% mol cholesterol, a higher proportion of gauche-to-trans isomerization was apparent, demonstrating that SM/cholesterol complexes modify the acyl chain structure of micelles.
Collapse
|
8
|
Zare M, Kitt JP, Harris JM. Hybrid-Supported Bilayers Formed with Mixed-Charge Surfactants on C 18-Functionalized Silica Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7609-7618. [PMID: 32503363 DOI: 10.1021/acs.langmuir.0c01210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mixtures of cationic-anionic surfactants have been shown to spontaneously form ordered monolayers at hydrophobic-hydrophilic boundaries, including air-water and oil-water interfaces. In this work, confocal Raman microscopy is used to investigate the structure of hybrid-supported surfactant bilayers (HSSBs) formed by deposition of a distal leaflet of mixed cationic-anionic surfactants onto a proximal leaflet of n-alkane (C18) chains on the interior surfaces of chromatographic silica particles. The surface coverage of the two surfactants in a hybrid bilayer was determined from carbon analysis and the relative Raman scattering of their respective head-groups. Within the measurement uncertainty, the stoichiometric ratio of the two surfactants is one-to-one, equivalent to mixed-charge-surfactant monolayers at air-water and oil-water interfaces and consistent with the role of the head-group electrostatic interactions in their formation. When self-assembled on the hydrophobic surface, pairs of oppositely charged n-alkyl chain surfactants resemble a phospholipid (phosphatidylcholine) molecule, with its zwitterionic head-group and two hydrophobic acyl chain tails. Indeed, the structure of these hybrid-supported surfactant bilayers on C18-modified silica surfaces is similar to that of hybrid-supported lipid bilayers (HSLBs) on the same supports, but with denser and more-ordered n-alkyl chains. Hybrid-supported surfactant bilayers exhibit a melting phase transition (gel to liquid-crystalline phase) with structural and energetic characteristics similar to those of hybrid-supported bilayers prepared from a zwitterionic phospholipid of the same alkyl chain length. These mixed-charge surfactants on n-alkane-modified silica are stable in water over time (months), results that suggest the potential use of these hybrid bilayers for generating supported lipid-bilayer-like surfaces or for separation applications.
Collapse
Affiliation(s)
- Maryam Zare
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 United States
| | - Jay P Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 United States
| |
Collapse
|
9
|
Bryce DA, Kitt JP, Myres GJ, Harris JM. Confocal Raman Microscopy Investigation of Phospholipid Monolayers Deposited on Nitrile-Modified Surfaces in Porous Silica Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4071-4079. [PMID: 32212663 DOI: 10.1021/acs.langmuir.0c00456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phospholipid bilayers deposited on a variety of surfaces provide models for investigation of the lipid membrane structure and supports for biocompatible sensors. Hybrid-supported phospholipid bilayers (HSLBs) are stable membrane models for these investigations, typically prepared by self-assembly of a lipid monolayer over an n-alkane-modified surface. HSLBs have been prepared on n-alkyl chain-modified silica and used for lipophilicity-based chromatographic separations. The structure of these hybrid bilayers differs from vesicle membranes where the lipid head group spacing is greater due to interdigitation of the lipid acyl chains with the underlying n-alkyl chains bound to the silica surface. This interdigitated structure exhibits a broader melting transition at a higher temperature due to strong interactions between the lipid acyl chains and the immobile n-alkyl chains bound to silica. In the present work, we seek to reduce the interactions between a lipid monolayer and its supporting substrate by self-assembly of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) on porous silica functionalized with nitrile-terminated surface ligands. The frequency of Raman scattering of the surface -C≡N stretching mode at the lipid-nitrile interface is consistent with an n-alkane-like environment and insensitive to lipid head group charge, indicating that the lipid acyl chains are in contact with the surface nitrile groups. The head group area of this lipid monolayer was determined from the within-particle phospholipid concentration and silica specific surface area and found to be 54 ± 2 Å2, equivalent to the head group area of a DMPC vesicle bilayer. The structure of these nitrile-supported phospholipid monolayers was characterized below and above their melting transition by confocal Raman microscopy and found to be nearly identical to DMPC vesicle bilayers. Their narrow gel-to-fluid-phase melting transition is equivalent to dispersed DMPC vesicles, suggesting that the acyl chain structure on the nitrile support mimics the outer leaflet structure of a vesicle membrane.
Collapse
Affiliation(s)
- David A Bryce
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Jay P Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Grant J Myres
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
10
|
Su Z, Juhaniewicz-Debinska J, Sek S, Lipkowski J. Water Structure in the Submembrane Region of a Floating Lipid Bilayer: The Effect of an Ion Channel Formation and the Channel Blocker. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:409-418. [PMID: 31815479 DOI: 10.1021/acs.langmuir.9b03271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The structure of water in the submembrane region of the bilayer of DPhPC floating (fBLM) on a monolayer of 1-thio-β-d-glucose (β-Tg)-modified gold nanoparticle film was studied by the surface-enhanced infrared absorption spectroscopy (SEIRAS). SEIRAS employs surface enhancement of the mean square electric field of the photon, which is acting on a few molecular layers above the film of gold nanoparticles. Therefore, it is uniquely suited to probe water molecules in the submembrane region and provides unique information concerning the structure of the hydrogen bond network of water surrounding the lipid bilayer. The IR spectra indicated that water with a strong hydrogen network is separating the membrane from the gold surface. This water is more ordered than the water in the bulk. When alamethicin, a peptide forming ion channels, is inserted into the membrane, the network is only slightly loosened. The addition of amiloride, an ion channel blocker, results in a significant decrease in the amount of water in the submembrane region. The remaining water has a significantly distorted hydrogen bond network. This study provides unique information about the effect of the ion channel on water transport across the bilayer. The electrode potential has a relatively small effect on water structure in the submembrane region. However, the IR studies demonstrated that water is less ordered at positive transmembrane potentials. The present results provide significant insight into the nature of hydration of a floating lipid bilayer on the gold electrode surface.
Collapse
Affiliation(s)
- ZhangFei Su
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Joanna Juhaniewicz-Debinska
- Faculty of Chemistry, Biological and Chemical Research Centre , University of Warsaw , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Slawomir Sek
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
- Faculty of Chemistry, Biological and Chemical Research Centre , University of Warsaw , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Jacek Lipkowski
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
11
|
Bruzas I, Brinson BE, Gorunmez Z, Lum W, Ringe E, Sagle L. Surface-Enhanced Raman Spectroscopy of Fluid-Supported Lipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33442-33451. [PMID: 31411450 DOI: 10.1021/acsami.9b09988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Supported lipid bilayers are essential model systems for studying biological membranes and for membrane-based sensor development. Surface-enhanced Raman spectroscopy (SERS) stands to add considerably to our understanding of the dynamics and interactions of these systems through direct chemical information. Despite this potential, SERS of lipid bilayers is not routinely achieved. Here, we carried out the first measurements of a solid-supported lipid bilayer on a SERS-active substrate and characterized the bilayer using SERS, atomic force microscopy, surface plasmon resonance spectroscopy, ellipsometry, and fluorescence recovery after photobleaching (FRAP). The creation of a fluid, SERS-active supported lipid bilayer was accomplished through use of a novel silica-coated silver film-over-nanosphere substrate. These substrates offer a powerful new platform to couple common surface techniques that are challenging on the nanoscale, for example, ellipsometry and FRAP, with SERS for studying biological membranes and their dynamics.
Collapse
Affiliation(s)
| | - Bruce E Brinson
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | | | | | - Emilie Ringe
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
- Department of Materials Science and Metallurgy, Department of Earth Science , University of Cambridge , Cambridge CB2 3EQ , U.K
| | | |
Collapse
|
12
|
Piela K, Tyrode EC, Furó I. Cryoporometry in Femtoliter Volumes by Confocal Raman Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8823-8828. [PMID: 31188011 DOI: 10.1021/acs.langmuir.9b00735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The properties of porous material are largely dependent on the size, shape, and connectivity of the pores. Here, we present a method based on confocal Raman spectroscopy to quantify porosity using a cryoporometric approach. We show that the phase transition of water imbibed in porous silica can be accurately determined using two different, but complementary methodologies. The first one relies on integrating the temperature-dependent spectral intensities across the whole OH (H2O) or OD (D2O) stretching region. The second, more quantitative approach, deconvolutes the spectral contributions within the pores in terms of liquid and solid fractions. The results show the expected reciprocal dependence of the average phase transition point with pore size, as well as the typical hysteresis between the freezing and melting transitions. One of the key advantages of the confocal Raman approach is its high spatial resolution, with sampling volumes starting from just a few femtoliters, opening the possibility of mapping the structure in heterogeneous porous materials.
Collapse
Affiliation(s)
- Katarzyna Piela
- Department of Chemistry , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| | - Eric C Tyrode
- Department of Chemistry , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| | - István Furó
- Department of Chemistry , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| |
Collapse
|
13
|
Kitt JP, Bryce DA, Minteer SD, Harris JM. Confocal Raman Microscopy Investigation of Self-Assembly of Hybrid Phospholipid Bilayers within Individual Porous Silica Chromatographic Particles. Anal Chem 2019; 91:7790-7797. [PMID: 31083975 DOI: 10.1021/acs.analchem.9b01359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hybrid-supported phospholipid bilayers are a model structure utilized for measurement of molecular interactions that typically occur at cell membranes. These membrane models are prepared by adsorption of a lipid monolayer onto a stable n-alkyl chain layer that is covalently bound to a support surface. Hybrid bilayers have been adapted to chromatographic retention measurements of lipophilicity through the assembly of a phospholipid monolayer onto n-alkane-modified silica surfaces in reversed-phase chromatographic particles. Recent Raman microscopy studies of these particles have shown that the acyl chains of the phospholipid interact with the C18-alkyl chains immobilized on the silica surface, where both lipid and C18 alkyl chains become ordered because of chain interdigitation. Confocal Raman microscopy has also been used to investigate the association of small molecules with hybrid-lipid bilayers in C18 chromatographic silica particles; the partitioning of model solutes compares favorably to that in lipid vesicle membranes with similar changes in acyl-chain structure (disordering) with solute partitioning. The present study seeks information about how these membrane-mimetic bilayers assemble onto the C18-derivatized silica surfaces of reversed-phase chromatographic silica particles. Confocal Raman microscopy is capable of interrogating the time-dependent internal composition and structure within individual silica particles. The Raman scattering data can be resolved into component Raman spectra and corresponding composition vectors that describe the time-dependent changes in intensity of the component spectra. This analysis provides insight into how the structures of both the lipid and C18 alkyl chains of hybrid lipid bilayers evolve during deposition and organization on the internal surfaces of reversed-phase chromatographic silica particles.
Collapse
Affiliation(s)
- Jay P Kitt
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - David A Bryce
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Shelley D Minteer
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Joel M Harris
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
14
|
Adishchev SV, Duda TA, Zaitseva YV, Zykova VA, Milekhin AG, Okotrub KA, Surovtsev NV. Stretch Vibrations of CH2 as a Measure of Conformational and Lateral Orders in Fatty Acid and Phospholipid Layers. ACTA ACUST UNITED AC 2019. [DOI: 10.3103/s875669901806002x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Korzeniewski C, Kitt JP, Bukola S, Creager SE, Minteer SD, Harris JM. Single Layer Graphene for Estimation of Axial Spatial Resolution in Confocal Raman Microscopy Depth Profiling. Anal Chem 2018; 91:1049-1055. [PMID: 30512927 DOI: 10.1021/acs.analchem.8b04390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Single layer graphene (SLG), with its angstrom-scale thickness and strong Raman scattering cross section, was adapted for measurement of the axial ( Z-direction) probe beam profile in confocal Raman microscopy depth-profiling experiments. SLG adsorbed to a glass microscope coverslip (SLG/SiO2) served as a platform for the estimation of axial spatial resolution. Profiles were measured by stepping the confocal probe volume through the SLG/SiO2 interface while measuring Raman scattering from the sample. Using a high numerical aperture (1.4 NA) oil immersion objective, axial profiles were derived from the graphene 2D vibrational mode and fit to a Lorentzian instrument response function (IRF). Subsequently, the Z-direction spatial resolution in depth-profiling studies of polymer interfaces was estimated through convolution of the Lorentzian IRF with a step function representing the ideal junction separating the phases of interest. In the study of a bipolar polymer membrane, confocal Raman depth profiles of the AEM/CEM (anion exchange membrane/cation exchange membrane) interface show that the transition region is broader than the limiting response and are consistent with roughness at the boundary on the order of a few micrometers. Using ClO4- as a Raman active mobile ion probe, application of self-modeling curve resolution (SMCR) to spectral data sets within a profile showed ClO4- ions track the spatial distribution of the AEM phase. Finally, in measurements on a liquid-solid interface formed between 1-octanol and a polydimethylsiloxane (PDMS) membrane, the IRF derived from fitting the experimental profile was slightly narrower than those obtained from profiling SLG, indicating the potential to use polymer-liquid interfaces formed from widely available materials and reagents for estimation of axial spatial resolution in confocal Raman depth-profiling.
Collapse
Affiliation(s)
- Carol Korzeniewski
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States.,Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Jay P Kitt
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Saheed Bukola
- Department of Chemistry , Clemson University , Clemson , South Carolina 29634 , United States
| | - Stephen E Creager
- Department of Chemistry , Clemson University , Clemson , South Carolina 29634 , United States
| | - Shelley D Minteer
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Joel M Harris
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
16
|
Živanović V, Kochovski Z, Arenz C, Lu Y, Kneipp J. SERS and Cryo-EM Directly Reveal Different Liposome Structures during Interaction with Gold Nanoparticles. J Phys Chem Lett 2018; 9:6767-6772. [PMID: 30421928 DOI: 10.1021/acs.jpclett.8b03191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The combination of gold nanoparticles with liposomes is important for nano- and biotechnology. Here, we present direct, label-free characterization of liposome structure and composition at the site of its interaction with citrate-stabilized gold nanoparticles by surface-enhanced Raman scattering (SERS) and cryogenic electron microscopy (cryo-EM). Evidenced by the vibrational spectra and cryo-EM, the gold nanoparticles destroy the bilayer structure of interacting liposomes in the presence of a high amount of citrate, while at lower citrate concentration the nanoparticles interact with the surface of the intact liposomes. The spectra of phosphatidylcholine and phosphatidylcholine/sphingomyelin liposomes show that at the site of interaction the lipid chains are in the gel phase. The SERS spectra indicate that cholesterol has strong effects on the contacts of the vesicles with the nanoparticles. By combining cryo-EM and SERS, the structure and properties of lipid-nanoparticle composites could be tailored for the development of drug delivery systems.
Collapse
Affiliation(s)
- Vesna Živanović
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany
- School of Analytical Sciences Adlershof SALSA , Humboldt-Universität zu Berlin , Albert-Einstein-Strasse 5-11 , 12489 Berlin , Germany
| | - Zdravko Kochovski
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin , Germany
| | - Christoph Arenz
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany
- School of Analytical Sciences Adlershof SALSA , Humboldt-Universität zu Berlin , Albert-Einstein-Strasse 5-11 , 12489 Berlin , Germany
| | - Yan Lu
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin , Germany
- Institute of Chemistry , University of Potsdam , 14467 Potsdam , Germany
| | - Janina Kneipp
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany
- School of Analytical Sciences Adlershof SALSA , Humboldt-Universität zu Berlin , Albert-Einstein-Strasse 5-11 , 12489 Berlin , Germany
| |
Collapse
|
17
|
Lee W, Nanou A, Rikkert L, Coumans FAW, Otto C, Terstappen LWMM, Offerhaus HL. Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy. Anal Chem 2018; 90:11290-11296. [PMID: 30157378 PMCID: PMC6170952 DOI: 10.1021/acs.analchem.8b01831] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Mammalian cells release extracellular
vesicles (EVs) into their microenvironment that travel the entire
body along the stream of bodily fluids. EVs contain a wide range of
biomolecules. The transported cargo varies depending on the EV origin.
Knowledge of the origin and chemical composition of EVs can potentially
be used as a biomarker to detect, stage, and monitor diseases. In
this paper, we demonstrate the potential of EVs as a prostate cancer
biomarker. A Raman optical tweezer was employed to obtain Raman signatures
from four types of EV samples, which were red blood cell- and platelet-derived
EVs of healthy donors and the prostate cancer cell lines- (PC3 and
LNCaP) derived EVs. EVs’ Raman spectra could be clearly separated/classified
into distinct groups using principal component analysis (PCA) which
permits the discrimination of the investigated EV subtypes. These
findings may provide new methodology to detect and monitor early stage
cancer.
Collapse
Affiliation(s)
- Wooje Lee
- Optical Sciences, MESA+ Institute for Nanotechnology , University of Twente , 7500 AE , Enschede , The Netherlands
| | - Afroditi Nanou
- Department of Medical Cell BioPhysics, MIRA Institute , University of Twente , 7500 AE , Enschede , The Netherlands
| | - Linda Rikkert
- Department of Medical Cell BioPhysics, MIRA Institute , University of Twente , 7500 AE , Enschede , The Netherlands.,Laboratory of Experimental Clinical Chemistry, Academic Medical Center , University of Amsterdam , 1105 AZ , Amsterdam , The Netherlands.,Vesicle Observation Centre, Academic Medical Center , University of Amsterdam , 1105 AZ , Amsterdam , The Netherlands
| | - Frank A W Coumans
- Vesicle Observation Centre, Academic Medical Center , University of Amsterdam , 1105 AZ , Amsterdam , The Netherlands.,Department of Biomedical Engineering and Physics , Academic Medical Centre of the University of Amsterdam , 1105 AZ , Amsterdam , The Netherlands
| | - Cees Otto
- Department of Medical Cell BioPhysics, MIRA Institute , University of Twente , 7500 AE , Enschede , The Netherlands
| | - Leon W M M Terstappen
- Department of Medical Cell BioPhysics, MIRA Institute , University of Twente , 7500 AE , Enschede , The Netherlands
| | - Herman L Offerhaus
- Optical Sciences, MESA+ Institute for Nanotechnology , University of Twente , 7500 AE , Enschede , The Netherlands
| |
Collapse
|
18
|
Bryce DA, Kitt JP, Harris JM. Confocal Raman Microscopy for Label-Free Detection of Protein–Ligand Binding at Nanopore-Supported Phospholipid Bilayers. Anal Chem 2018; 90:11509-11516. [DOI: 10.1021/acs.analchem.8b02791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- David A. Bryce
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Jay P. Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M. Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
19
|
Kitt JP, Bryce DA, Minteer SD, Harris JM. Confocal Raman Microscopy for in Situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles. Anal Chem 2018; 90:7048-7055. [PMID: 29757613 DOI: 10.1021/acs.analchem.8b01452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this work, we employ in situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayers deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically trapped phospholipid vesicle membranes. Additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.
Collapse
Affiliation(s)
- Jay P Kitt
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 United States
| | - David A Bryce
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 United States
| | - Shelley D Minteer
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 United States
| | - Joel M Harris
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 United States
| |
Collapse
|