1
|
Ratkovec J, Earley JD, Kudisch M, Kopcha WP, Xu EY, Knowles RR, Rumbles G, Reid OG. Electrostatic Work Causes Unexpected Reactivity in Ionic Photoredox Catalysts in Low Dielectric Constant Solvents. J Phys Chem B 2025; 129:3895-3901. [PMID: 40181575 PMCID: PMC12010321 DOI: 10.1021/acs.jpcb.5c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
We show that in low dielectric constant (εr) solvents, the prototypical cationic photoredox catalyst [Ir(III)(dFCF3ppy)2-(5,5'-dCF3bpy)]+ is capable of oxidizing its counterion in an unexpected photoinduced electron transfer (PET) process. Photoinduced oxidation of the tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (abbv. [BAr4F]-) anion leads to its irreversible decomposition and a buildup of the neutral Ir(III)(dFCF3ppy)3-(5,5'-dCF3 bpy·-) (abbv. [Ir(dCF3·-)]0) species. The rate constant of the PET reaction, krxn, between the two oppositely charged ions was determined by monitoring the growth of absorption features associated with the singly reduced product molecule, [Ir(dCF3·-)]0, in various solvents with a range of εr. The PET reaction between the ions of [Ir(dCF3) - BAr4F] is predicted to be nonspontaneous (ΔGPET ≥ 0) in high εr solvents, such as acetonitrile, and we observe that krxn ≃ 0 under these circumstances. However, krxn increases as εr decreases. We attribute this change in spontaneity to the electrostatic work described by the Born (ΔGS) and Coulomb (W ) correction terms to the change in Gibbs free energy of a PET (ΔGPET). The electrostatic work associated with these often-neglected corrections can be utilized to design novel and surprising photoredox chemistry. Our facile preparation of [Ir(dCF3·-)]0 is one example of a general rule: ion-paired reactants can result in energetic neutral products that chemically store photon energy without an associated Coulomb binding between them.
Collapse
Affiliation(s)
- Justin
L. Ratkovec
- Department
of Chemistry, University of Colorado Boulder, Colorado 80309, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80309, United States
| | - Justin D. Earley
- Department
of Chemistry, University of Colorado Boulder, Colorado 80309, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80309, United States
| | - Max Kudisch
- National
Renewable Energy Laboratory, Golden, Colorado 80309, United States
| | - William P. Kopcha
- National
Renewable Energy Laboratory, Golden, Colorado 80309, United States
| | - Eve Yuanwei Xu
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Garry Rumbles
- Department
of Chemistry, University of Colorado Boulder, Colorado 80309, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80309, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Obadiah G. Reid
- National
Renewable Energy Laboratory, Golden, Colorado 80309, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
2
|
Scattergood PA, Elliott PIP. Prediction and Rationalization of Different Photochemical Behaviors of mer- and fac-Isomers of [Ru(pyridyltriazole) 3] 2. Inorg Chem 2024; 63:17287-17297. [PMID: 39235265 PMCID: PMC11409217 DOI: 10.1021/acs.inorgchem.4c03154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Facial and meridional isomerism of metal complexes is known to result in fundamental differences in photophysical properties. One may also envisage differences in their photochemical reactivity and therefore predict different outcomes of their light-triggered transformations. The fac- and mer-isomers of the complex [Ru(pytz)3]2+ (fac-1 & mer-1, pytz = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole) were separated and isolated. mer-1 undergoes a predicted pytz photodechelation process in acetonitrile to yield trans-[Ru(κ2-pytz)2(κ1-pytz)(NCMe)]2+ (2) whereas unfavorable interligand steric interactions are predicted to, and indeed do prevent comparable photoreactivity for fac-1. Reversible photoisomerization of fac-1 and mer-1 is also observed, however. The differences in photochemical reactivity of the two isomers can be rationalized based on structural programming of the preferential accessibility of particular 3MC excited states due to differences in their interligand steric interactions. Here we present an initial predictive thought experiment, subsequent experimental verification, and computational rationalization of the differences in photochemical reactivity of these two isomeric complexes.
Collapse
Affiliation(s)
- Paul A Scattergood
- Department of Physical and Life Sciences & Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Paul I P Elliott
- Department of Physical and Life Sciences & Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| |
Collapse
|
3
|
Goodwin MJ, Dickenson JC, Ripak A, Deetz AM, McCarthy JS, Meyer GJ, Troian-Gautier L. Factors that Impact Photochemical Cage Escape Yields. Chem Rev 2024; 124:7379-7464. [PMID: 38743869 DOI: 10.1021/acs.chemrev.3c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The utilization of visible light to mediate chemical reactions in fluid solutions has applications that range from solar fuel production to medicine and organic synthesis. These reactions are typically initiated by electron transfer between a photoexcited dye molecule (a photosensitizer) and a redox-active quencher to yield radical pairs that are intimately associated within a solvent cage. Many of these radicals undergo rapid thermodynamically favored "geminate" recombination and do not diffuse out of the solvent cage that surrounds them. Those that do escape the cage are useful reagents that may undergo subsequent reactions important to the above-mentioned applications. The cage escape process and the factors that determine the yields remain poorly understood despite decades of research motivated by their practical and fundamental importance. Herein, state-of-the-art research on light-induced electron transfer and cage escape that has appeared since the seminal 1972 review by J. P. Lorand entitled "The Cage Effect" is reviewed. This review also provides some background for those new to the field and discusses the cage escape process of both homolytic bond photodissociation and bimolecular light induced electron transfer reactions. The review concludes with some key goals and directions for future research that promise to elevate this very vibrant field to even greater heights.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John C Dickenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexia Ripak
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jackson S McCarthy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
4
|
Li Y, Wang H, Ye C, Wang X, He P, Yang S, Dong H, Ding G. Fast proton transport enables the magnetic relaxation response of graphene quantum dots for monitoring the oxidative environment in vivo. NANOSCALE 2024; 16:2382-2390. [PMID: 38214402 DOI: 10.1039/d3nr05053j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A magnetic relaxation switch (MRS) that targets small molecules such as H2O2 is difficult to realize because of the small size of the targets, which cannot gather enough MRS probes to form aggregates and generate a difference in magnetic relaxation times. Therefore, the development of small molecule-targeted MRS is strongly dependent on changes in the interfacial structure of the probe, which modulates the proton transport behavior near the probe. Herein, functionalized graphene quantum dots (GQDs) consisting of GQDs with disulfide bonds, polyethylene glycol (PEG), and paramagnetic Gd3+ were used as the MRS probe to sense H2O2. The structure of GQDs changed after reacting with H2O2. The PEG assembled a tube for transmitting changes in GQDs via proton transport and thus enabled the magnetic relaxation response of the probe towards H2O2. Pentaethylene glycol was experimentally and theoretically proven to have the strongest ability to transport protons. Such a probe can be applied in the differentiation of healthy and senescent cells/tissues using in vitro fluorescent imaging and in vivo magnetic resonance imaging. This work provides a reliable solution for building a proton transport route, which not only enables the response of the MRS probe towards the targets but also demonstrates the design of carbon nanostructures with proton transport behaviors.
Collapse
Affiliation(s)
- Yongqiang Li
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, People's Republic of China
| | - Hang Wang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, People's Republic of China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Xuelian Wang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Peng He
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, People's Republic of China
| | - Siwei Yang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, People's Republic of China
| | - Hui Dong
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, People's Republic of China
| | - Guqiao Ding
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, People's Republic of China
| |
Collapse
|
5
|
Marchini E, Caramori S, Carli S. Metal Complexes for Dye-Sensitized Photoelectrochemical Cells (DSPECs). Molecules 2024; 29:293. [PMID: 38257206 PMCID: PMC10818894 DOI: 10.3390/molecules29020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Since Mallouk's earliest contribution, dye-sensitized photoelectrochemical cells (DSPECs) have emerged as a promising class of photoelectrochemical devices capable of storing solar light into chemical bonds. This review primarily focuses on metal complexes outlining stabilization strategies and applications. The ubiquity and safety of water have made its splitting an extensively studied reaction; here, we present some examples from the outset to recent advancements. Additionally, alternative oxidative pathways like HX splitting and organic reactions mediated by a redox shuttle are discussed.
Collapse
Affiliation(s)
- Edoardo Marchini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Carli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
6
|
McNicholas BJ, Tong ZJ, Bím D, Turro RF, Kazmierczak NP, Chalupský J, Reisman SE, Hadt RG. Electronic Structures of Nickel(II)-Bis(indanyloxazoline)-dihalide Catalysts: Understanding Ligand Field Contributions That Promote C(sp 2)-C(sp 3) Cross-Coupling. Inorg Chem 2023; 62:14010-14027. [PMID: 37584501 PMCID: PMC10530056 DOI: 10.1021/acs.inorgchem.3c02048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
NiII(IB) dihalide [IB = (3aR,3a'R,8aS,8a'S)-2,2'-(cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8H-indeno[1,2-d]-oxazole)] complexes are representative of a growing class of first-row transition-metal catalysts for the enantioselective reductive cross-coupling of C(sp2) and C(sp3) electrophiles. Recent mechanistic studies highlight the complexity of these ground-state cross-couplings but also illuminate new reactivity pathways stemming from one-electron redox and their significant sensitivities to reaction conditions. For the first time, a diverse array of spectroscopic methods coupled to electrochemistry have been applied to NiII-based precatalysts to evaluate specific ligand field effects governing key Ni-based redox potentials. We also experimentally demonstrate DMA solvent coordination to catalytically relevant Ni complexes. Coordination is shown to favorably influence key redox-based reaction steps and prevent other deleterious Ni-based equilibria. Combined with electronic structure calculations, we further provide a direct correlation between reaction intermediate frontier molecular orbital energies and cross-coupling yields. Considerations developed herein demonstrate the use of synergic spectroscopic and electrochemical methods to provide concepts for catalyst ligand design and rationalization of reaction condition optimization.
Collapse
Affiliation(s)
- Brendon J. McNicholas
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Z. Jaron Tong
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Daniel Bím
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Raymond F. Turro
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nathanael P. Kazmierczak
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Jakub Chalupský
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Sarah E. Reisman
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Highly selective photocatalytic oxidation of alcohols under the application of novel metal organic frameworks (MOFs) based catalytic system. J Colloid Interface Sci 2023; 629:136-143. [DOI: 10.1016/j.jcis.2022.08.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
|
8
|
Wang Q, Bai FY, Wang Y, Niu F, Zhang Y, Mi Q, Hu K, Pan X. Photoinduced Ion-Pair Inner-Sphere Electron Transfer-Reversible Addition-Fragmentation Chain Transfer Polymerization. J Am Chem Soc 2022; 144:19942-19952. [PMID: 36266241 DOI: 10.1021/jacs.2c08173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoredox-mediated reversible deactivation radical polymerization (RDRP) is a promising method of precise synthesis of polymers with diverse structures and properties. However, its mechanism mainly based on the outer-sphere electron transfer (OSET) leads to stringent requirements for an efficient photocatalyst. In this paper, the zwitterionic organoboranes [L2B]+X- are prepared and applied in reversible addition-fragmentation chain transfer (RAFT) polymerization with the photoinduced ion-pair inner-sphere electron transfer (IP-ISET) mechanism. The ion-pair electron transfer mechanism and the formation of the radical [L2B]• are supported by electron paramagnetic resonance (EPR) radical capture experiments, 1H/11B NMR spectroscopy, spectroelectrochemical spectroscopy, transient absorption spectroscopy, theoretical calculation, and photoluminescence quenching experiments. Photoluminescence quenching experiments show that when [CTA]/[[L2B]+] ≥ 0.6, it is static quenching because of the in situ formation of [L2B]+[ZCS2]-, the real catalytic species. [L2B]+[C3H7SCS2]- is synthesized, and its photoluminescence lifetime is the same as the lifetime in the static quenching experiment, indicating the formation of [L2B]+[ZCS2]- in polymerization and the IP-ISET mechanism. The matrix-assisted laser desorption ionization time-of-flight mass (MALDI-TOF MS) spectra show that the structure of [C3H7SCS2] was incorporated into the polymer, indicating that ion-pair electron transfer occurs in catalytic species. The polymerization shows high catalytic activity at ppb catalyst loading, a wide range of monomers, excellent tolerance in the presence of 5 mol % phenolic inhibitors, and the synthesis of ultrahigh-molecular-weight polymers. This protocol with the IP-ISET mechanism exhibits a value in the development of new organic transformations and polymerization methods.
Collapse
Affiliation(s)
- Qianyi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Yinling Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Fushuang Niu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yifei Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Qixi Mi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ke Hu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Li P, Deetz AM, Hu J, Meyer GJ, Hu K. Chloride Oxidation by One- or Two-Photon Excitation of N-Phenylphenothiazine. J Am Chem Soc 2022; 144:17604-17610. [DOI: 10.1021/jacs.2c07107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pengju Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Alexander M. Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Jiaming Hu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Ke Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| |
Collapse
|
10
|
Wang C, Kitzmann WR, Weigert F, Förster C, Wang X, Heinze K, Resch-Genger U. Matrix Effects on Photoluminescence and Oxygen Sensitivity of a Molecular Ruby. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Cui Wang
- BAM Federal Institute for Materials Research and Testing: Bundesanstalt fur Materialforschung und -prufung Division Biophotonics Richard-Willstaetter-Str. 11 12489 Berlin GERMANY
| | - Winald R. Kitzmann
- Johannes Gutenberg University: Johannes Gutenberg Universitat Mainz Department of Chemistry GERMANY
| | - Florian Weigert
- BAM Federal Institute for Materials Research and Testing: Bundesanstalt fur Materialforschung und -prufung Division Biophotonics GERMANY
| | - Christoph Förster
- Johannes Gutenberg University: Johannes Gutenberg Universitat Mainz Department of Chemistry GERMANY
| | - Xifan Wang
- BAM Federal Institute for Materials Research and Testing: Bundesanstalt fur Materialforschung und -prufung Division Biophotonics GERMANY
| | - Katja Heinze
- Johannes Gutenberg University: Johannes Gutenberg Universitat Mainz Department of Chemistry GERMANY
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM) Analytische Chemie und Referenzmaterialien Richard-Willstaetter-Str. 11 12489 Berlin GERMANY
| |
Collapse
|
11
|
Rand AW, Chen M, Montgomery J. Investigations into mechanism and origin of regioselectivity in the metallaphotoredox-catalyzed α-arylation of N-alkylbenzamides. Chem Sci 2022; 13:10566-10573. [PMID: 36277638 PMCID: PMC9473500 DOI: 10.1039/d2sc01962k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
A mechanistic study on the α-arylation of N-alkylbenzamides catalyzed by a dual nickel/photoredox system using aryl bromides is reported herein. This study elucidates the origins of site-selectivity of the transformation, which is controlled by the generation of a hydrogen atom transfer (HAT) agent by a photocatalyst and bromide ions in solution. Tetrabutylammonium bromide was identified as a crucial additive and source of a potent HAT agent, which led to increases in yields and a lowering of the stoichiometries of the aryl bromide coupling partner. NMR titration experiments and Stern–Volmer quenching studies provide evidence for complexation to and oxidation of bromide by the photocatalyst, while elementary steps involving deprotonation of the N-alkylbenzamide or 1,5-HAT were ruled out through mechanistic probes and kinetic isotope effect analysis. This study serves as a valuable tool to better understand the α-arylation of N-alkylbenzamides, and has broader implications in halide-mediated C–H functionalization reactions. A mechanistic study of the α-arylation of N-alkylbenzamides catalyzed by a dual nickel/photoredox system using aryl bromides elucidates the origins of site-selectivity of the transformation and identifies the hydrogen atom transfer agent.![]()
Collapse
Affiliation(s)
- Alexander W. Rand
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - Mo Chen
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - John Montgomery
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
12
|
Deetz AM, Troian-Gautier L, Wehlin SAM, Piechota EJ, Meyer GJ. On the Determination of Halogen Atom Reduction Potentials with Photoredox Catalysts. J Phys Chem A 2021; 125:9355-9367. [PMID: 34665634 DOI: 10.1021/acs.jpca.1c06772] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The standard one-electron reduction potentials of halogen atoms, E°'(X•/-), and many other radical or unstable species, are not accessible through standard electrochemical methods. Here, we report the use of two Ir(III) photoredox catalysts to initiate chloride, bromide, and iodide oxidation in organic solvents. The kinetic rate constants were critically analyzed through a derived diffusional model with Marcus theory to estimate E°'(X•/-) in propylene carbonate, acetonitrile, butyronitrile, and dichloromethane. The approximations commonly used to determine diffusional rate constants in water gave rise to serious disagreements with the experiment, particularly in high-ionic-strength dichloromethane solutions, indicating the need to utilize the exact Debye expression. The Fuoss equation was adequate for determining photocatalyst-halide association constants with photocatalysts that possessed +2, +1, and 0 ionic charges. Similarly, the work term contribution in the classical Rehm-Weller expression, necessary for E°'(X•/-) determination, accounted remarkably well for the stabilization of the charged reactants as the solution ionic strength was increased. While a sensitivity analysis indicated that the extracted reduction potentials were all within experimental error the same, use of fixed parameters established for aqueous solution provided the periodic trend expected, E°'(I•/-) <E°'(Br•/-) <E°'(Cl•/-), in all of the organic solvents investigated; however, the potentials were more closely spaced than what would have been predicted based on gas-phase electron affinities or aqueous reduction potentials. The origin(s) of such behavior are discussed that provide new directions for future research.
Collapse
Affiliation(s)
- Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Sara A M Wehlin
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Eric J Piechota
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
13
|
Aydogan A, Bangle RE, De Kreijger S, Dickenson JC, Singleton ML, Cauët E, Cadranel A, Meyer GJ, Elias B, Sampaio RN, Troian-Gautier L. Mechanistic investigation of a visible light mediated dehalogenation/cyclisation reaction using iron( iii), iridium( iii) and ruthenium( ii) photosensitizers. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01771c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification of reaction mechanisms unique to the iron, ruthenium, and iridium PS represents progress towards the long-sought goal of utilizing earth-abundant, first-row transition metals for emerging energy and environmental applications.
Collapse
Affiliation(s)
- Akin Aydogan
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Rachel E. Bangle
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, USA
| | - Simon De Kreijger
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - John C. Dickenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, USA
| | - Michael L. Singleton
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Emilie Cauët
- Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (CP 160/09), Université libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050 Brussels, Belgium
| | - Alejandro Cadranel
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires. Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, USA
| | - Benjamin Elias
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Renato N. Sampaio
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, USA
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
14
|
Soupart A, Alary F, Heully JL, Elliott PIP, Dixon IM. Theoretical Study of the Full Photosolvolysis Mechanism of [Ru(bpy)3]2+: Providing a General Mechanistic Roadmap for the Photochemistry of [Ru(N^N)3]2+-Type Complexes toward Both Cis and Trans Photoproducts. Inorg Chem 2020; 59:14679-14695. [DOI: 10.1021/acs.inorgchem.0c01843] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adrien Soupart
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Jean-Louis Heully
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Paul I. P. Elliott
- Department of Chemistry and Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Isabelle M. Dixon
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
15
|
Wehlin SAM, Troian-Gautier L, Maurer AB, Brennaman MK, Meyer GJ. Photophysical characterization of new osmium (II) photocatalysts for hydrohalic acid splitting. J Chem Phys 2020; 153:054307. [DOI: 10.1063/5.0014269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sara A. M. Wehlin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | - Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), CP 160/06, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium
| | - Andrew B. Maurer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | - M. Kyle Brennaman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| |
Collapse
|
16
|
Soupart A, Alary F, Heully JL, Elliott PI, Dixon IM. Recent progress in ligand photorelease reaction mechanisms: Theoretical insights focusing on Ru(II) 3MC states. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213184] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Topological Dynamics of a Radical Ion Pair: Experimental and Computational Assessment at the Relevant Nanosecond Timescale. CHEMISTRY 2020. [DOI: 10.3390/chemistry2020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chemical processes mostly happen in fluid environments where reaction partners encounter via diffusion. The bimolecular encounters take place at a nanosecond time scale. The chemical environment (e.g., solvent molecules, (counter)ions) has a decisive influence on the reactivity as it determines the contact time between two molecules and affects the energetics. For understanding reactivity at an atomic level and at the appropriate dynamic time scale, it is crucial to combine matching experimental and theoretical data. Here, we have utilized all-atom molecular-dynamics simulations for accessing the key time scale (nanoseconds) using a QM/MM-Hamiltonian. Ion pairs consisting of a radical ion and its counterion are ideal systems to assess the theoretical predictions because they reflect dynamics at an appropriate time scale when studied by temperature-dependent EPR spectroscopy. We have investigated a diketone radical anion with its tetra-ethylammonium counterion. We have established a funnel-like transition path connecting two (equivalent) complexation sites. The agreement between the molecular-dynamics simulation and the experimental data presents a new paradigm for ion–ion interactions. This study exemplarily demonstrates the impact of the molecular environment on the topological states of reaction intermediates and how these states can be consistently elucidated through the combination of theory and experiment. We anticipate that our findings will contribute to the prediction of bimolecular transformations in the condensed phase with relevance to chemical synthesis, polymers, and biological activity.
Collapse
|
18
|
Cerfontaine S, Wehlin SAM, Elias B, Troian-Gautier L. Photostable Polynuclear Ruthenium(II) Photosensitizers Competent for Dehalogenation Photoredox Catalysis at 590 nm. J Am Chem Soc 2020; 142:5549-5555. [DOI: 10.1021/jacs.0c01503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Simon Cerfontaine
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Sara A. M. Wehlin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Benjamin Elias
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), CP 160/06, 50 avenue F.D. Roosevelt, 1050 Brussels, Belgium
| |
Collapse
|
19
|
Treiling S, Wang C, Förster C, Reichenauer F, Kalmbach J, Boden P, Harris JP, Carrella LM, Rentschler E, Resch‐Genger U, Reber C, Seitz M, Gerhards M, Heinze K. Luminescence and Light-Driven Energy and Electron Transfer from an Exceptionally Long-Lived Excited State of a Non-Innocent Chromium(III) Complex. Angew Chem Int Ed Engl 2019; 58:18075-18085. [PMID: 31600421 PMCID: PMC6916301 DOI: 10.1002/anie.201909325] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/01/2019] [Indexed: 01/10/2023]
Abstract
Photoactive metal complexes employing Earth-abundant metal ions are a key to sustainable photophysical and photochemical applications. We exploit the effects of an inversion center and ligand non-innocence to tune the luminescence and photochemistry of the excited state of the [CrN6 ] chromophore [Cr(tpe)2 ]3+ with close to octahedral symmetry (tpe=1,1,1-tris(pyrid-2-yl)ethane). [Cr(tpe)2 ]3+ exhibits the longest luminescence lifetime (τ=4500 μs) reported up to date for a molecular polypyridyl chromium(III) complex together with a very high luminescence quantum yield of Φ=8.2 % at room temperature in fluid solution. Furthermore, the tpe ligands in [Cr(tpe)2 ]3+ are redox non-innocent, leading to reversible reductive chemistry. The excited state redox potential and lifetime of [Cr(tpe)2 ]3+ surpass those of the classical photosensitizer [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine) enabling energy transfer (to oxygen) and photoredox processes (with azulene and tri(n-butyl)amine).
Collapse
Affiliation(s)
- Steffen Treiling
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Cui Wang
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Christoph Förster
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Florian Reichenauer
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Jens Kalmbach
- Institute of Inorganic ChemistryUniversity of TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Pit Boden
- Department of Chemistry and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße67663KaiserslauternGermany
| | - Joe P. Harris
- Département de chimieUniversité de MontréalMontréalQuébecH3C 3J7Canada
| | - Luca M. Carrella
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Eva Rentschler
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Ute Resch‐Genger
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| | - Christian Reber
- Département de chimieUniversité de MontréalMontréalQuébecH3C 3J7Canada
| | - Michael Seitz
- Institute of Inorganic ChemistryUniversity of TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Markus Gerhards
- Department of Chemistry and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße67663KaiserslauternGermany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
20
|
Treiling S, Wang C, Förster C, Reichenauer F, Kalmbach J, Boden P, Harris JP, Carrella LM, Rentschler E, Resch‐Genger U, Reber C, Seitz M, Gerhards M, Heinze K. Luminescence and Light‐Driven Energy and Electron Transfer from an Exceptionally Long‐Lived Excited State of a Non‐Innocent Chromium(III) Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Steffen Treiling
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Cui Wang
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM) Richard-Willstätter-Straße 11 12489 Berlin Germany
- Institute of Chemistry and BiochemistryFreie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Christoph Förster
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Florian Reichenauer
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Jens Kalmbach
- Institute of Inorganic ChemistryUniversity of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Pit Boden
- Department of Chemistry and Research Center OptimasTU Kaiserslautern Erwin-Schrödinger-Straße 67663 Kaiserslautern Germany
| | - Joe P. Harris
- Département de chimieUniversité de Montréal Montréal Québec H3C 3J7 Canada
| | - Luca M. Carrella
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Eva Rentschler
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Ute Resch‐Genger
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM) Richard-Willstätter-Straße 11 12489 Berlin Germany
| | - Christian Reber
- Département de chimieUniversité de Montréal Montréal Québec H3C 3J7 Canada
| | - Michael Seitz
- Institute of Inorganic ChemistryUniversity of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Markus Gerhards
- Department of Chemistry and Research Center OptimasTU Kaiserslautern Erwin-Schrödinger-Straße 67663 Kaiserslautern Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
21
|
Guo H, Dang C, Zhao J, Dick B. Lighting the Flavin Decorated Ruthenium(II) Polyimine Complexes: A Theoretical Investigation. Inorg Chem 2019; 58:8486-8493. [PMID: 31185537 DOI: 10.1021/acs.inorgchem.9b00713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emission properties of a series of flavin (FL) decorated Ru (II) polyimine complexes were investigated by extensive time-dependent (TD) density functional theory (DFT) and DFT based calculations. We attributed the moderate emission properties of FL decorated Ru(II) polyimine complex (Ru-1), such as triplet lifetime and luminescence quantum yield, to the dominant fast nonradiative decay due to the small adiabatic energy gap between the ground state and the lowest lying triplet state (Δ Ead) and the slow radiative decay owing to the ligand localized triplet (3IL) nature of the emissive state. Electron withdrawing groups such as F and Cl were attached to the FL moiety of Ru-1 to alter Δ Ead. Both the radiative and nonradiative decay rates were found to be sensitive to Δ Ead and may result in a drastic change of the photophysical properties of the Ru(II) complexes. Specifically, substitution with F leads to an increase in the Δ Ead from 1.85 to 1.93 eV, resulting in a nearly doubled phosphorescent quantum yield and triplet lifetime with respect to Ru-1. These findings are vital for the rational design of phosphorescent transition metal complexes.
Collapse
Affiliation(s)
- Huimin Guo
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian , 116024 , P. R. China
| | - Can Dang
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian , 116024 , P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian , 116024 , P. R. China
| | - Bernhard Dick
- Institut für Physikalische und Theoretische Chemie , Universität Regensburg , Regensburg , 93053 , Germany
| |
Collapse
|
22
|
Troian-Gautier L, Turlington MD, Wehlin SAM, Maurer AB, Brady MD, Swords WB, Meyer GJ. Halide Photoredox Chemistry. Chem Rev 2019; 119:4628-4683. [PMID: 30854847 DOI: 10.1021/acs.chemrev.8b00732] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halide photoredox chemistry is of both practical and fundamental interest. Practical applications have largely focused on solar energy conversion with hydrogen gas, through HX splitting, and electrical power generation, in regenerative photoelectrochemical and photovoltaic cells. On a more fundamental level, halide photoredox chemistry provides a unique means to generate and characterize one electron transfer chemistry that is intimately coupled with X-X bond-breaking and -forming reactivity. This review aims to deliver a background on the solution chemistry of I, Br, and Cl that enables readers to understand and utilize the most recent advances in halide photoredox chemistry research. These include reactions initiated through outer-sphere, halide-to-metal, and metal-to-ligand charge-transfer excited states. Kosower's salt, 1-methylpyridinium iodide, provides an early outer-sphere charge-transfer excited state that reports on solvent polarity. A plethora of new inner-sphere complexes based on transition and main group metal halide complexes that show promise for HX splitting are described. Long-lived charge-transfer excited states that undergo redox reactions with one or more halogen species are detailed. The review concludes with some key goals for future research that promise to direct the field of halide photoredox chemistry to even greater heights.
Collapse
Affiliation(s)
- Ludovic Troian-Gautier
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Michael D Turlington
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Sara A M Wehlin
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Andrew B Maurer
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Matthew D Brady
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Wesley B Swords
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Gerald J Meyer
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
23
|
Turlington MD, Troian-Gautier L, Sampaio RN, Beauvilliers EE, Meyer GJ. Control of Excited-State Supramolecular Assembly Leading to Halide Photorelease. Inorg Chem 2019; 58:3316-3328. [DOI: 10.1021/acs.inorgchem.8b03383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Michael D. Turlington
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Renato N. Sampaio
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Evan E. Beauvilliers
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
24
|
Pang J, Yuan S, Qin JS, Lollar CT, Huang N, Li J, Wang Q, Wu M, Yuan D, Hong M, Zhou HC. Tuning the Ionicity of Stable Metal–Organic Frameworks through Ionic Linker Installation. J Am Chem Soc 2019; 141:3129-3136. [DOI: 10.1021/jacs.8b12530] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jiandong Pang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Shuai Yuan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Jun-Sheng Qin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Christina T. Lollar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Ning Huang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Jialuo Li
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Qi Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Mingyan Wu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
25
|
Abstract
Iodide redox chemistry is intimately coupled with the formation and breaking of chemical bonds that are relevant to emerging solar energy technologies. In this Account, recent advances in dye-sensitized iodide oxidation chemistry in organic solutions are described. Here RuII sensitizers with high cationic charge, tuned reduction potentials, and specific iodide receptor site(s) are shown to self-assemble in organic solvents and yield structures that rapidly oxidize iodide and generate I-I bonds when illuminated with visible light. These studies provided new insights into the fascinating behavior of our most polarizable and easily oxidized monatomic anion. Sensitized iodide photo-oxidation in CH3CN solutions consists of two mechanistic steps. In the first step, an excited-state sensitizer oxidizes iodide (I-) to an iodine atom (I•) through diffusional encounters. The second step involves the reaction of I• with I- to form the I-I bond of diiodide, I2•-. The overall reaction converts a green photon into about 1.64 eV of free energy in the form of I2•- and the reduced sensitizer. The free energy is only transiently available, as back-electron transfer to yield ground-state products is quantitative. Interestingly, when the free energy change is near zero, iodide photo-oxidation occurs rapidly with rate constants near the diffusion limit, i.e., >1010 M-1 s-1. Such rapid reactivity is in line with anecdotal knowledge that iodide is an outstanding electron donor and is indicative of adiabatic electron transfer through an inner-sphere mechanism. In low-dielectric-constant solvents, dicationic RuII sensitizers were found to form tight ion pairs with iodide. Diimine ligands with additional cationic charge, or "binding pockets" that recognize halides, have been utilized to position one or more halides at specific locations about the sensitizer before light absorption. Diverse photochemical reactions observed with these supramolecular assemblies range from the photorelease of halides to the formation of I-I bonds where both iodides present in the ground-state assembly react. Natural population analysis through density functional theory calculations accurately predicts the site(s) of iodide ion-pairing and provides information on the associated free energy change. The ability to direct light-driven bond formation in these ionic assemblies is extended to chloride and bromide ions. The structure-property relationships identified, and those that continue to emerge, may one day allow for the rational design of molecules and materials that drive desired halide transformations when illuminated with light.
Collapse
Affiliation(s)
- Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wesley B. Swords
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
26
|
Yang J, Sun L, Hao L, Yang GG, Zou ZC, Cao Q, Ji LN, Mao ZW. A halogen ion-selective phosphorescence turn-on probe based on induction of Pt–Pt interactions. Chem Commun (Camb) 2019; 55:11191-11194. [DOI: 10.1039/c9cc05093k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A halogen ion induced self-assembly of square-planar platinum complexes has been, for the first time, observed and applied as a turn-on phosphorescent probe for Cl−.
Collapse
Affiliation(s)
- Jing Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Lili Sun
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Gang-Gang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Zhi-Cong Zou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
27
|
Brady MD, Troian-Gautier L, Sampaio RN, Motley TC, Meyer GJ. Optimization of Photocatalyst Excited- and Ground-State Reduction Potentials for Dye-Sensitized HBr Splitting. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31312-31323. [PMID: 30130392 DOI: 10.1021/acsami.8b09134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dye-sensitized bromide oxidation was investigated using a series of four ruthenium polypyridyl photocatalysts anchored to SnO2/TiO2 core/shell mesoporous thin films through 2,2'-bipyridine-4,4'-diphosphonic acid anchoring groups. The ground- and excited-state reduction potentials were tuned over 500 mV by the introduction of electron withdrawing groups in the 4 and 4' positions of the ancillary bipyridine ligands. Upon light excitation of the surface-bound photocatalysts, excited-state electron injection yielded an oxidized photocatalyst that was regenerated through bromide oxidation. High injection quantum yields (Φinj) and regeneration quantum yields (Φreg) were essential to obtain efficient bromide oxidation yet required a photocatalyst that is both a potent photoreductant and a strong oxidant after excited-state injection. The four photocatalysts utilized in this manuscript ranged from unity Φinj (1.0) and minimal Φreg (0.037) to minimal Φinj (0.09) and unity Φreg (1.0). The photocatalyst that displayed the highest overall dye-sensitized photoelectrosynthesis cell performances exhibited near unity Φreg (0.99), while a significant Φinj was still preserved (0.59). Thus, these results highlighted the delicate interplay between the ground- and excited-state reduction potentials of photocatalysts for dye-sensitized hydrobromic acid splitting.
Collapse
Affiliation(s)
- Matthew D Brady
- Department of Chemistry , University of North Carolina at Chapel Hill , Murray Hall 2202B , Chapel Hill , North Carolina 27599-3290 , United States
| | - Ludovic Troian-Gautier
- Department of Chemistry , University of North Carolina at Chapel Hill , Murray Hall 2202B , Chapel Hill , North Carolina 27599-3290 , United States
| | - Renato N Sampaio
- Department of Chemistry , University of North Carolina at Chapel Hill , Murray Hall 2202B , Chapel Hill , North Carolina 27599-3290 , United States
| | - Tyler C Motley
- Department of Chemistry , University of North Carolina at Chapel Hill , Murray Hall 2202B , Chapel Hill , North Carolina 27599-3290 , United States
| | - Gerald J Meyer
- Department of Chemistry , University of North Carolina at Chapel Hill , Murray Hall 2202B , Chapel Hill , North Carolina 27599-3290 , United States
| |
Collapse
|
28
|
Turlington MD, Troian-Gautier L, Sampaio RN, Beauvilliers EE, Meyer GJ. Ligand Control of Supramolecular Chloride Photorelease. Inorg Chem 2018; 57:5624-5631. [DOI: 10.1021/acs.inorgchem.8b00559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael D. Turlington
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Renato N. Sampaio
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Evan E. Beauvilliers
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|