1
|
Tsujimura M, Ishikita H, Saito K. Determinants of hydrogen bond distances in proteins. Phys Chem Chem Phys 2025. [PMID: 40275838 DOI: 10.1039/d5cp00511f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Hydrogen bonds (H-bonds) between oxygen atoms, with the O-H bond donated to the acceptor O atom (Odonor-H⋯Oacceptor), are essential for stabilizing protein structures and facilitating enzymatic reactions. The dielectric and electrostatic environment of proteins, as well as structural constraints imposed by protein folding, influence the nature of H-bonds. In this study, we investigated how these factors affect H-bond distances in proteins. Analysis of 906 high-resolution protein structures (≤1.2 Å) from the Protein Data Bank revealed that H-bond distances for H-bonds with the same donor and acceptor groups are distributed around a value primarily determined by the pKa difference between these groups (ΔpKa) in water, with lower ΔpKa values leading to shorter distances. This correlation arises from enhanced electron redistribution from the H-bond acceptor to the donor in lower ΔpKa H-bonds, which increases the covalent character of the H-bond and decreases the H⋯Oacceptor distance. In contrast, H-bond distances are largely unaffected by whether the H-bond is buried in the protein interior or exposed to bulk water, as the strength of the electrostatic interaction between the donor and acceptor groups plays a minor role in determining distances. Furthermore, analysis of H-bonds in microbial rhodopsins using a quantum mechanical/molecular mechanical approach demonstrates that the protein environment primarily influences H-bond distances electrostatically by altering the ΔpKa of the H-bond, while structural constraints impose a secondary influence by altering Odonor-H⋯Oacceptor angles or H⋯Oacceptor distances without changing ΔpKa.
Collapse
Affiliation(s)
- Masaki Tsujimura
- Department of Advanced Interdisciplinary Studies, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
2
|
Yabukarski F. Ensemble-function relationships: From qualitative to quantitative relationships between protein structure and function. J Struct Biol 2025; 217:108152. [PMID: 39577782 DOI: 10.1016/j.jsb.2024.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Structure-function relationships are deeply rooted in modern biochemistry and structural biology and have provided the basis for our understanding of how protein structure defines function. While structure-function relationships continue to provide invaluable qualitative information, they cannot, in principle, provide the quantitative information ultimately needed to fully understand how proteins function and to make quantitative predictions about changes in activity from changes in sequence and structure. These limitations appear to arise from fundamental principles of physics, which dictate that proteins exist as interchanging ensembles of conformations, rather than as static structures that underly conventional structure-function relationships. This perspective discusses the concept of ensemble-function relationships as quantitative relationships that build on and extend traditional structure-function relationships. The concepts of free energy landscapes and conformational ensembles and their application to proteins are reviewed. The perspective summarizes a range of approaches that can provide conformational ensemble information and focuses on X-ray crystallography methods for obtaining experimental protein conformational ensembles. Focusing on enzymes as archetypes of protein function, recent literature examples are reviewed that used ensemble-function relationships to understand how protein residues contribute to function and how changes in protein sequence and structure impact activity, leading to new models and providing previously inaccessible mechanistic insights. Potential applications of conformational ensembles and ensemble-function relationships to protein design are examined. The perspective concludes with current limitations of the ensemble-function relationships and potential paths forward toward the next generation of quantitative ensemble-function models.
Collapse
Affiliation(s)
- Filip Yabukarski
- Protein Homeostasis Structural Biology Group, Bristol Myers Squibb, San Diego, CA 92121, United States.
| |
Collapse
|
3
|
Zhang R, Ye D, Gurung A, Warmuth R, Kuroda DG, Wang L. p Ka Matching Enables Quantum Proton Delocalization in Acid-1-Methylimidazole Binary Mixtures. J Chem Inf Model 2025; 65:798-810. [PMID: 39772573 DOI: 10.1021/acs.jcim.4c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Short hydrogen bonds (SHBs), characterized by donor-acceptor heteroatom separations below 2.7 Å, are prevalent in condensed-phase systems. Recently, we identified SHBs in nonaqueous binary mixtures of acetic acid and 1-methylimidazole (MIm), where electronic and nuclear quantum effects facilitate extensive proton delocalization. In this work, we explore the conditions favoring SHB formation in binary acid-base mixtures and propose that the difference in pKa values between the acid and base, measured in a nonaqueous, aprotic solvent like DMSO, is a key determinant. Using MIm as a model base, we perform electronic structure calculations to systematically analyze pKa matching across 97 acid-MIm pairs in DMSO solutions. Through a combination of first-principles simulations and infrared spectroscopy, we confirm the formation of SHBs and the delocalization of protons in benzoic acid-MIm and salicylic acid-MIm binary mixtures. Our results demonstrate that pKa matching can significantly alter proton behavior in nonaqueous systems, transforming acid-base interactions from conventional proton transfer to quantum mechanical proton delocalization. This work establishes DMSO as a valuable alternative to water for assessing pKa matching and highlights the importance of hydrogen bond networks in modulating these conditions. By elucidating the impact of electronic and nuclear quantum effects, our results provides insights for designing organic mixtures that leverage SHBs for advanced material applications.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Dylan Ye
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Anit Gurung
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Ralf Warmuth
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
4
|
Kostin MA, Alkhuder O, Asfin RE, Tolstoy PM. Twin hydrogen bonds with phosphine oxide: anticooperativity effects caused by competing proton donors. Phys Chem Chem Phys 2025; 27:1143-1154. [PMID: 39688303 DOI: 10.1039/d4cp04041d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In this computational work we study complexes with two equivalent intermolecular hydrogen bonds formed between trimethyl phosphine oxide and two identical proton donors ("twin" hydrogen bonds) for a set of 70 proton donor molecules. The changes in the phosphorus chemical shift and stretching frequency of the PO group upon complexation correlate quite well with the total strength of two hydrogen bonds. A set of explicit numerical dependences is proposed for assessing interatomic distances and hydrogen bond strengths from spectral data. Comparison with the results obtained for analogous previously studied 1 : 1 complexes allowed us to analyze in detail anticooperativity effects on the geometry, energy and spectral parameters. Two hydrogen bonds compete for the PO acceptor group and their mutual weakening increases nonlinearly with the strengthening of the complex, reaching approximately 25% in energy (which corresponds to 0.1 Å lengthening for short strong H-bonds), which is clearly seen in NMR and IR spectra and correlates well with the changes in the spectral parameters.
Collapse
Affiliation(s)
- Mikhail A Kostin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia.
| | - Omar Alkhuder
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia.
| | - Ruslan E Asfin
- Department of Physics, St. Petersburg State University, St. Petersburg, Russia
| | - Peter M Tolstoy
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
5
|
Du S, Kretsch RC, Parres-Gold J, Pieri E, Cruzeiro VWD, Zhu M, Pinney MM, Yabukarski F, Schwans JP, Martínez TJ, Herschlag D. Conformational ensembles reveal the origins of serine protease catalysis. Science 2025; 387:eado5068. [PMID: 39946472 DOI: 10.1126/science.ado5068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/22/2024] [Indexed: 04/23/2025]
Abstract
Enzymes exist in ensembles of states that encode the energetics underlying their catalysis. Conformational ensembles built from 1231 structures of 17 serine proteases revealed atomic-level changes across their reaction states. By comparing the enzymatic and solution reaction, we identified molecular features that provide catalysis and quantified their energetic contributions to catalysis. Serine proteases precisely position their reactants in destabilized conformers, creating a downhill energetic gradient that selectively favors the motions required for reaction while limiting off-pathway conformational states. The same catalytic features have repeatedly evolved in proteases and additional enzymes across multiple distinct structural folds. Our ensemble-function analyses revealed previously unknown catalytic features, provided quantitative models based on simple physical and chemical principles, and identified motifs recurrent in nature that may inspire enzyme design.
Collapse
Affiliation(s)
- Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Rachael C Kretsch
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Biophysics Program, Stanford University, Stanford, CA, USA
| | | | - Elisa Pieri
- Department of Chemistry, Stanford University, Stanford, CA, USA
- The PULSE Institute, Stanford University, Stanford, CA, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Vinícius Wilian D Cruzeiro
- Department of Chemistry, Stanford University, Stanford, CA, USA
- The PULSE Institute, Stanford University, Stanford, CA, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Mingning Zhu
- Department of Chemistry, Stanford University, Stanford, CA, USA
- The PULSE Institute, Stanford University, Stanford, CA, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Margaux M Pinney
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Jason P Schwans
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Todd J Martínez
- Department of Chemistry, Stanford University, Stanford, CA, USA
- The PULSE Institute, Stanford University, Stanford, CA, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Peng F, Ke Z, Jin H, Wang W, Zhang H, Li Y. Structural insights into the regulation mechanism of Mycobacterium tuberculosis MftR. FASEB J 2024; 38:e23724. [PMID: 38837712 DOI: 10.1096/fj.202302409rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Mycobacterium tuberculosis, the pathogen of the deadly disease tuberculosis, depends on the redox cofactor mycofactocin (MFT) to adapt to and survive under hypoxic conditions. MftR is a TetR family transcription regulator that binds upstream of the MFT gene cluster and controls MFT synthesis. To elucidate the structural basis underlying MftR regulation, we determined the crystal structure of Mycobacterium tuberculosis MftR (TB-MftR). The structure revealed an interconnected hydrogen bond network in the α1-α2-α3 helices of helix-turn-helix (HTH) DNA-binding domain that is essential for nucleic acid interactions. The ligand-binding domain contains a hydrophobic cavity enclosing long-chain fatty acyl-CoAs like the key regulatory ligand oleoyl-CoA. Despite variations in ligand-binding modes, comparative analyses suggest regulatory mechanisms are largely conserved across TetR family acyl-CoA sensors. By elucidating the intricate structural mechanisms governing DNA and ligand binding by TB-MftR, our study enhances understanding of the regulatory roles of this transcription factor under hypoxic conditions, providing insights that could inform future research into Mycobacterium tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Fei Peng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Zunhui Ke
- Department of Blood Transfusion, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoruo Jin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Medical Subcenter of HUST Analytical & Testing Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haoran Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| |
Collapse
|
7
|
Yu J, Quan H, Huang Z, Shi J, Chang S, Zhang L, Chen X, Hu Y. Interaction between hydrophobic chitosan derivative and asphaltene in heavy oil to reduce viscosity of heavy oil. Int J Biol Macromol 2023; 247:125573. [PMID: 37442502 DOI: 10.1016/j.ijbiomac.2023.125573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
The high viscosity of heavy oil made it difficult to exploit and transport heavy oil in pipeline. In this research, N-[(2-hydroxy-3-trimethylammonium) propyl] O-stearoyl chitosan tetraphenylboride (sc-CTS-st) was synthesized from chitosan, 2, 3-epoxy-propyl trimethyl ammonium chloride, sodium tetraphenylboron and stearyl chloride. sc-CTS-st contains long chain saturated aliphatic hydrocarbon, hydroxyl group and benzene ring, which could be dissolved in heavy oil fully and interacted with asphaltene. At 50 °C, the viscosity of heavy oil could be reduced to 13,800 mPa·s at most, with a viscosity reduction rate of 57.54 %. SEM and XRD showed that sc-CTS-st could affect the supramolecular accumulation structure of asphaltenes. Using FT-IR, sc-CTS-st could interact with asphaltene in the form of hydrogen bonds using the polar parts of the molecule, thereby weakening the self-association between asphaltene molecules. Molecular simulation was used to demonstrate the interaction mechanism between chitosan derivatives and asphaltenes. sc-CTS-st interacted with asphaltene through chemical bonding and influenced the self-association of asphaltene molecules. In addition, the non-polar portion of sc-CTS-st molecules could form a coating on the outside of the asphaltenes stacking structure, thus shielding or reducing the polarity of the stacking structure surface.
Collapse
Affiliation(s)
- Jie Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Hongping Quan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu, Sichuan 610500, PR China.
| | - Zhiyu Huang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu, Sichuan 610500, PR China.
| | - Junbang Shi
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Shihao Chang
- Research Institute of Shaanxi Yanchang Petroleum (Group) Co., Ltd., Xi'an, Shaanxi 710075, PR China
| | - Lilong Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fujian 350002, PR China
| | - Xuewen Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yuling Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| |
Collapse
|
8
|
Zhou S, Liu Y, Wang S, Wang L. Chemical features and machine learning assisted predictions of protein-ligand short hydrogen bonds. Sci Rep 2023; 13:13741. [PMID: 37612311 PMCID: PMC10447522 DOI: 10.1038/s41598-023-40614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
There are continuous efforts to elucidate the structure and biological functions of short hydrogen bonds (SHBs), whose donor and acceptor heteroatoms reside more than 0.3 Å closer than the sum of their van der Waals radii. In this work, we evaluate 1070 atomic-resolution protein structures and characterize the common chemical features of SHBs formed between the side chains of amino acids and small molecule ligands. We then develop a machine learning assisted prediction of protein-ligand SHBs (MAPSHB-Ligand) model and reveal that the types of amino acids and ligand functional groups as well as the sequence of neighboring residues are essential factors that determine the class of protein-ligand hydrogen bonds. The MAPSHB-Ligand model and its implementation on our web server enable the effective identification of protein-ligand SHBs in proteins, which will facilitate the design of biomolecules and ligands that exploit these close contacts for enhanced functions.
Collapse
Affiliation(s)
| | - Yuanhao Liu
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Sijian Wang
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
9
|
Aloke C, Iwuchukwu EA, Achilonu I. Exploiting Copaifera salikounda compounds as treatment against diabetes: An insight into their potential targets from a computational perspective. Comput Biol Chem 2023; 104:107851. [DOI: 10.1016/j.compbiolchem.2023.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/25/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
|
10
|
Liu W, Tang S, Peng J, Zhu Y, Pan L, Wang J, Peng X, Cheng H, Chen Z, Wang Y, Zhou H. Enhancing lactose recognition of a key enzyme in 2'-fucosyllactose synthesis: α-1,2-fucosyltransferase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1303-1314. [PMID: 36116126 DOI: 10.1002/jsfa.12224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND 2'-Fucosyllactose, a representative oligosaccharide in human milk, is an emerging and promising food and pharmaceutical ingredient due to its powerful health benefits, such as participating in immune regulation, regulation of intestinal flora, etc. To enable economically viable production of 2'-fucosyllactose, different biosynthesis strategies using precursors and pathway enzymes have been developed. The α-1,2-fucosyltransferases are an essential part involved in these strategies, but their strict substrate selectivity and unsatisfactory substrate tolerance are one of the key roadblocks limiting biosynthesis. RESULTS To tackle this issue, a semi-rational manipulation combining computer-aided designing and screening with biochemical experiments were adopted. The mutant had a 100-fold increase in catalytic efficiency compared to the wild-type. The highest 2'-fucosyllactose yield was up to 0.65 mol mol-1 lactose with a productivity of 2.56 g mL-1 h-1 performed by enzymatic catalysis in vitro. Further analysis revealed that the interactions between the mutant and substrates were reduced. The crucial contributions of wild-type and mutant to substrate recognition ability were closely related to their distinct phylotypes in terms of amino acid preference. CONCLUSION It is envisioned that the engineered α-1,2-fucosyltransferase could be harnessed to relieve constraints imposed on the bioproduction of 2'-fucosyllactose and lay a theoretical foundation for elucidating the substrate recognition mechanisms of fucosyltransferases. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenxian Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
| | - Shizhe Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
| | - Jing Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
| | - Yuling Zhu
- Changsha Yunkang Biotechnology Co Ltd, Changsha, P. R. China
| | - Lina Pan
- Ausnutria Institute Food & Nutrition, Ausnutria Dairy China Co Ltd, Changsha, P. R. China
| | - Jiaqi Wang
- Ausnutria Institute Food & Nutrition, Ausnutria Dairy China Co Ltd, Changsha, P. R. China
| | - Xiaoyu Peng
- Ausnutria Institute Food & Nutrition, Ausnutria Dairy China Co Ltd, Changsha, P. R. China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, P. R. China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, P. R. China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, P. R. China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, P. R. China
| |
Collapse
|
11
|
Hu S, Zhou G, Xu X, Zhang W, Li C. Insight into the impacts of Jinhua ham processing conditions on cathepsin B activity and conformation changes based on molecular simulation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Li J, Chen J, Wang Y, Yao L. Detecting the Hydrogen Bond Cooperativity in a Protein β-Sheet by H/D Exchange. Int J Mol Sci 2022; 23:ijms232314821. [PMID: 36499147 PMCID: PMC9740688 DOI: 10.3390/ijms232314821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The hydrogen bond (H-bond) cooperativity in the β-sheet of GB3 is investigated by a NMR hydrogen/deuterium (H/D) exchange method. It is shown that the weakening of one backbone N-H…O=C H-bond between two β-strands, β1 and β2, due to the exchange of NH to ND of the H-bond donor in β1, perturbs the chemical shift of 13Cα, 13Cβ, 1Hα, 1HN, and 15N of the H-bond acceptor and its following residue in β2. Quantum mechanical calculations suggest that the -H-bond chemical shift isotope effect is caused by the structural reorganization in response to the H-bond weakening. This structural reorganization perturbs four neighboring H-bonds, with three being weaker and one being stronger, indicating that three H-bonds are cooperative and one is anticooperative with the perturbed H-bond. The sign of the cooperativity depends on the relative position of the H-bonds. This H-bond cooperativity, which contributes to β-sheet stability overall, can be important for conformational coupling across the β-sheet.
Collapse
Affiliation(s)
- Jingwen Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jingfei Chen
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Yefei Wang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Correspondence: (Y.W.); (L.Y.)
| | - Lishan Yao
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Correspondence: (Y.W.); (L.Y.)
| |
Collapse
|
13
|
Yabukarski F, Doukov T, Pinney MM, Biel JT, Fraser JS, Herschlag D. Ensemble-function relationships to dissect mechanisms of enzyme catalysis. SCIENCE ADVANCES 2022; 8:eabn7738. [PMID: 36240280 PMCID: PMC9565801 DOI: 10.1126/sciadv.abn7738] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/30/2022] [Indexed: 05/27/2023]
Abstract
Decades of structure-function studies have established our current extensive understanding of enzymes. However, traditional structural models are snapshots of broader conformational ensembles of interchanging states. We demonstrate the need for conformational ensembles to understand function, using the enzyme ketosteroid isomerase (KSI) as an example. Comparison of prior KSI cryogenic x-ray structures suggested deleterious mutational effects from a misaligned oxyanion hole catalytic residue. However, ensemble information from room-temperature x-ray crystallography, combined with functional studies, excluded this model. Ensemble-function analyses can deconvolute effects from altering the probability of occupying a state (P-effects) and changing the reactivity of each state (k-effects); our ensemble-function analyses revealed functional effects arising from weakened oxyanion hole hydrogen bonding and substrate repositioning within the active site. Ensemble-function studies will have an integral role in understanding enzymes and in meeting the future goals of a predictive understanding of enzyme catalysis and engineering new enzymes.
Collapse
Affiliation(s)
- Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Margaux M. Pinney
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Justin T. Biel
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Significant impact of deprotonated status on the photoisomerization dynamics of bacteriophytochrome chromophore. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Hruska E, Gale A, Huang X, Liu F. AutoSolvate: A toolkit for automating quantum chemistry design and discovery of solvated molecules. J Chem Phys 2022; 156:124801. [PMID: 35364887 DOI: 10.1063/5.0084833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The availability of large, high-quality datasets is crucial for artificial intelligence design and discovery in chemistry. Despite the essential roles of solvents in chemistry, the rapid computational dataset generation of solution-phase molecular properties at the quantum mechanical level of theory was previously hampered by the complicated simulation procedure. Software toolkits that can automate the procedure to set up high-throughput explicit-solvent quantum chemistry (QC) calculations for arbitrary solutes and solvents in an open-source framework are still lacking. We developed AutoSolvate, an open-source toolkit, to streamline the workflow for QC calculation of explicitly solvated molecules. It automates the solvated-structure generation, force field fitting, configuration sampling, and the final extraction of microsolvated cluster structures that QC packages can readily use to predict molecular properties of interest. AutoSolvate is available through both a command line interface and a graphical user interface, making it accessible to the broader scientific community. To improve the quality of the initial structures generated by AutoSolvate, we investigated the dependence of solute-solvent closeness on solute/solvent identities and trained a machine learning model to predict the closeness and guide initial structure generation. Finally, we tested the capability of AutoSolvate for rapid dataset curation by calculating the outer-sphere reorganization energy of a large dataset of 166 redox couples, which demonstrated the promise of the AutoSolvate package for chemical discovery efforts.
Collapse
Affiliation(s)
- Eugen Hruska
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Ariel Gale
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Xiao Huang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Fang Liu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
16
|
Riel AMS, Decato DA, Sun J, Berryman OB. Halogen bonding organocatalysis enhanced through intramolecular hydrogen bonds. Chem Commun (Camb) 2022; 58:1378-1381. [PMID: 34989732 PMCID: PMC8919959 DOI: 10.1039/d1cc05475a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent results indicate a halogen bond donor is strengthened through direct interaction with a hydrogen bond to the electron-rich belt of the halogen. Here, this Hydrogen Bond enhanced Halogen Bond (HBeXB) plays a clear role in a catalyst. Our HBeXB catalyst improves product conversion in a halide abstraction reaction over a traditional halogen bonding derivative.
Collapse
Affiliation(s)
| | - Daniel A. Decato
- Address University of Montana, 32 Campus Drive, Missoula, MT, USA
| | - Jiyu Sun
- Address University of Montana, 32 Campus Drive, Missoula, MT, USA
| | | |
Collapse
|
17
|
Zhou S, Liu Y, Wang S, Wang L. Effective prediction of short hydrogen bonds in proteins via machine learning method. Sci Rep 2022; 12:469. [PMID: 35013487 PMCID: PMC8748993 DOI: 10.1038/s41598-021-04306-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Short hydrogen bonds (SHBs), whose donor and acceptor heteroatoms lie within 2.7 Å, exhibit prominent quantum mechanical characters and are connected to a wide range of essential biomolecular processes. However, exact determination of the geometry and functional roles of SHBs requires a protein to be at atomic resolution. In this work, we analyze 1260 high-resolution peptide and protein structures from the Protein Data Bank and develop a boosting based machine learning model to predict the formation of SHBs between amino acids. This model, which we name as machine learning assisted prediction of short hydrogen bonds (MAPSHB), takes into account 21 structural, chemical and sequence features and their interaction effects and effectively categorizes each hydrogen bond in a protein to a short or normal hydrogen bond. The MAPSHB model reveals that the type of the donor amino acid plays a major role in determining the class of a hydrogen bond and that the side chain Tyr-Asp pair demonstrates a significant probability of forming a SHB. Combining electronic structure calculations and energy decomposition analysis, we elucidate how the interplay of competing intermolecular interactions stabilizes the Tyr-Asp SHBs more than other commonly observed combinations of amino acid side chains. The MAPSHB model, which is freely available on our web server, allows one to accurately and efficiently predict the presence of SHBs given a protein structure with moderate or low resolution and will facilitate the experimental and computational refinement of protein structures.
Collapse
Affiliation(s)
- Shengmin Zhou
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Yuanhao Liu
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Sijian Wang
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
18
|
Mokhtari DA, Appel MJ, Fordyce PM, Herschlag D. High throughput and quantitative enzymology in the genomic era. Curr Opin Struct Biol 2021; 71:259-273. [PMID: 34592682 PMCID: PMC8648990 DOI: 10.1016/j.sbi.2021.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022]
Abstract
Accurate predictions from models based on physical principles are the ultimate metric of our biophysical understanding. Although there has been stunning progress toward structure prediction, quantitative prediction of enzyme function has remained challenging. Realizing this goal will require large numbers of quantitative measurements of rate and binding constants and the use of these ground-truth data sets to guide the development and testing of these quantitative models. Ground truth data more closely linked to the underlying physical forces are also desired. Here, we describe technological advances that enable both types of ground truth measurements. These advances allow classic models to be tested, provide novel mechanistic insights, and place us on the path toward a predictive understanding of enzyme structure and function.
Collapse
Affiliation(s)
- D A Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - M J Appel
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - P M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA, 94305, USA; Department of Genetics, Stanford University, Stanford, CA, 94305, USA; Chan Zuckerberg Biohub San Francisco, CA, 94110, USA.
| | - D Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Koeppe B, Tolstoy PM, Guo J, Denisov GS, Limbach HH. Combined NMR and UV-Vis Spectroscopic Studies of Models for the Hydrogen Bond System in the Active Site of Photoactive Yellow Protein: H-Bond Cooperativity and Medium Effects. J Phys Chem B 2021; 125:5874-5884. [PMID: 34060830 DOI: 10.1021/acs.jpcb.0c09923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intramolecular hydrogen bonds in aprotic media were studied by combined (simultaneous) NMR and UV-vis spectroscopy. The species under investigation were anionic and featured single or coupled H-bonds between, for example, carboxylic groups and phenolic oxygen atoms (COO···H···OC)-, among phenolic oxygen atoms (CO···H···OC)-, and hydrogen bond chains between a carboxylic group and two phenolic oxygen atoms (COO···H···(OC)···H···OC)-. The last anion may be regarded as a small molecule model for the hydrogen bond system in the active site of wild-type photoactive yellow protein (PYP) while the others mimic the corresponding H-bonds in site-selective mutants. Proton positions in isolated hydrogen bonds and hydrogen bond chains were assessed by calculations for vacuum conditions and spectroscopically for the two media, CD2Cl2 and the liquefied gas mixture CDClF2/CDF3 at low temperatures. NMR parameters allow for the estimation of time-averaged H-bond geometries, and optical spectra give additional information about geometry distributions. Comparison of the results from the various systems revealed the effects of the formation of hydrogen bond chains and changes of medium conditions on the geometry of individual H-bonds. In particular, the proton in a hydrogen bond to a carboxylic group shifts from the phenolic oxygen atom in the system COO-···H-OC to the carboxylic group in COO-H···(OC)-···H-OC as a result of hydrogen bond formation to the additional phenolic donor. Increase in medium polarity may, however, induce the conversion of a structure of a type COO-H···(OC)-···H-OC to the type COO-···H-(OC)···H-OC. Application of these results obtained from the model systems to PYP suggests that both cooperative effects within the hydrogen bond chain and a low-polarity protein environment are prerequisites for the stabilization of negative charge on the cofactor and hence for the spectral tuning of the photoreceptor.
Collapse
Affiliation(s)
- Benjamin Koeppe
- J. Heyrovský Institute of Physical Chemistry, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Peter M Tolstoy
- Institute of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russia
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Gleb S Denisov
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russian Federation
| | | |
Collapse
|
20
|
Pinney MM, Mokhtari DA, Akiva E, Yabukarski F, Sanchez DM, Liang R, Doukov T, Martinez TJ, Babbitt PC, Herschlag D. Parallel molecular mechanisms for enzyme temperature adaptation. Science 2021; 371:371/6533/eaay2784. [PMID: 33674467 DOI: 10.1126/science.aay2784] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/23/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
The mechanisms that underly the adaptation of enzyme activities and stabilities to temperature are fundamental to our understanding of molecular evolution and how enzymes work. Here, we investigate the molecular and evolutionary mechanisms of enzyme temperature adaption, combining deep mechanistic studies with comprehensive sequence analyses of thousands of enzymes. We show that temperature adaptation in ketosteroid isomerase (KSI) arises primarily from one residue change with limited, local epistasis, and we establish the underlying physical mechanisms. This residue change occurs in diverse KSI backgrounds, suggesting parallel adaptation to temperature. We identify residues associated with organismal growth temperature across 1005 diverse bacterial enzyme families, suggesting widespread parallel adaptation to temperature. We assess the residue properties, molecular interactions, and interaction networks that appear to underly temperature adaptation.
Collapse
Affiliation(s)
- Margaux M Pinney
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.
| | - Daniel A Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences and Quantitative Biosciences Institute, University of California, San Francisco, CA 94158, USA
| | - Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94110, USA
| | - David M Sanchez
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Photon Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ruibin Liang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Photon Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Todd J Martinez
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Photon Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences and Quantitative Biosciences Institute, University of California, San Francisco, CA 94158, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA. .,Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Kemp MT, Lewandowski EM, Chen Y. Low barrier hydrogen bonds in protein structure and function. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2021; 1869:140557. [PMID: 33148530 PMCID: PMC7736181 DOI: 10.1016/j.bbapap.2020.140557] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023]
Abstract
Low-barrier hydrogen bonds (LBHBs) are a special type of short hydrogen bond (HB) that is characterized by the equal sharing of a hydrogen atom. The existence and catalytic role of LBHBs in proteins has been intensely contested. Advancements in X-ray and neutron diffraction methods has revealed delocalized hydrogen atoms involved in potential LBHBs in a number of proteins, while also demonstrating that short HBs are not necessarily LBHBs. More importantly, a series of experiments on ketosteroid isomerase (KSI) have suggested that LBHBs are significantly stronger than standard HBs in the protein microenvironment in terms of enthalpy, but not free energy. The discrepancy between the enthalpy and free energy of LBHBs offers clues to the challenges, and potential solutions, of the LBHB debate, where the unique strength of LBHBs plays a special role in the kinetic processes of enzyme function and structure, together with other molecular forces in a pre-organized environment.
Collapse
Affiliation(s)
- M Trent Kemp
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Eric M Lewandowski
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States.
| |
Collapse
|
22
|
Assessment of enzyme active site positioning and tests of catalytic mechanisms through X-ray-derived conformational ensembles. Proc Natl Acad Sci U S A 2020; 117:33204-33215. [PMID: 33376217 DOI: 10.1073/pnas.2011350117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How enzymes achieve their enormous rate enhancements remains a central question in biology, and our understanding to date has impacted drug development, influenced enzyme design, and deepened our appreciation of evolutionary processes. While enzymes position catalytic and reactant groups in active sites, physics requires that atoms undergo constant motion. Numerous proposals have invoked positioning or motions as central for enzyme function, but a scarcity of experimental data has limited our understanding of positioning and motion, their relative importance, and their changes through the enzyme's reaction cycle. To examine positioning and motions and test catalytic proposals, we collected "room temperature" X-ray crystallography data for Pseudomonas putida ketosteroid isomerase (KSI), and we obtained conformational ensembles for this and a homologous KSI from multiple PDB crystal structures. Ensemble analyses indicated limited change through KSI's reaction cycle. Active site positioning was on the 1- to 1.5-Å scale, and was not exceptional compared to noncatalytic groups. The KSI ensembles provided evidence against catalytic proposals invoking oxyanion hole geometric discrimination between the ground state and transition state or highly precise general base positioning. Instead, increasing or decreasing positioning of KSI's general base reduced catalysis, suggesting optimized Ångstrom-scale conformational heterogeneity that allows KSI to efficiently catalyze multiple reaction steps. Ensemble analyses of surrounding groups for WT and mutant KSIs provided insights into the forces and interactions that allow and limit active-site motions. Most generally, this ensemble perspective extends traditional structure-function relationships, providing the basis for a new era of "ensemble-function" interrogation of enzymes.
Collapse
|
23
|
Forrestall KL, Burley DE, Cash MK, Pottie IR, Darvesh S. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease. Chem Biol Interact 2020; 335:109348. [PMID: 33278462 PMCID: PMC7710351 DOI: 10.1016/j.cbi.2020.109348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/05/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
The disease, COVID-19, is caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2) for which there is currently no treatment. The SARS-CoV-2 main protease (Mpro) is an important enzyme for viral replication. Small molecules that inhibit this protease could lead to an effective COVID-19 treatment. The 2-pyridone scaffold was previously identified as a possible key pharmacophore to inhibit SARS-CoV-2 Mpro. A search for natural, antimicrobial products with the 2-pyridone moiety was undertaken herein, and their calculated potency as inhibitors of SARS-CoV-2 Mpro was investigated. Thirty-three natural products containing the 2-pyridone scaffold were identified from the literature. An in silico methodology using AutoDock was employed to predict the binding energies and inhibition constants (Ki values) for each 2-pyridone-containing compound with SARS-CoV-2 Mpro. This consisted of molecular optimization of the 2-pyridone compound, docking of the compound with a crystal structure of SARS-CoV-2 Mpro, and evaluation of the predicted interactions and ligand-enzyme conformations. All compounds investigated bound to the active site of SARS-CoV-2 Mpro, close to the catalytic dyad (His-41 and Cys-145). Thirteen molecules had predicted Ki values <1 μM. Glu-166 formed a key hydrogen bond in the majority of the predicted complexes, while Met-165 had some involvement in the complex binding as a close contact to the ligand. Prominent 2-pyridone compounds were further evaluated for their ADMET properties. This work has identified 2-pyridone natural products with calculated potent inhibitory activity against SARS-CoV-2 Mpro and with desirable drug-like properties, which may lead to the rapid discovery of a treatment for COVID-19. 2-pyridone-scaffold is an inhibitory pharmacophore for SARS-CoV-2 Mpro. Thirty-three natural, antimicrobial products identified with 2-pyridone moiety. All 2-pyridone natural products bind to active site of SARS-CoV-2 Mproin silico. Thirteen molecules found to have potent inhibitory activity against SARS-CoV-2 Mpro. Inhibition of SARS-CoV-2 by natural 2-pyridones may lead to treatment of COVID-19.
Collapse
Affiliation(s)
- Katrina L Forrestall
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Darcy E Burley
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Meghan K Cash
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Ian R Pottie
- Department of Chemistry and Physics, Faculty of Arts and Science, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada; Department of Chemistry, Faculty of Science, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Sultan Darvesh
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada; Department of Chemistry and Physics, Faculty of Arts and Science, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada; Department of Medicine (Neurology), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
24
|
Lin CY, Boxer SG. Unusual Spectroscopic and Electric Field Sensitivity of Chromophores with Short Hydrogen Bonds: GFP and PYP as Model Systems. J Phys Chem B 2020; 124:9513-9525. [DOI: 10.1021/acs.jpcb.0c07730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chi-Yun Lin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Li J, Chen J, An L, Yuan X, Yao L. Polyol and sugar osmolytes can shorten protein hydrogen bonds to modulate function. Commun Biol 2020; 3:528. [PMID: 32968183 PMCID: PMC7511342 DOI: 10.1038/s42003-020-01260-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Polyol and sugar osmolytes are commonly used in therapeutic protein formulations. How they may affect protein structure and function is an important question. In this work, through NMR measurements, we show that glycerol and sorbitol (polyols), as well as glucose (sugar), can shorten protein backbone hydrogen bonds. The hydrogen bond shortening is also captured by molecular dynamics simulations, which suggest a hydrogen bond competition mechanism. Specifically, osmolytes weaken hydrogen bonds between the protein and solvent to strengthen those within the protein. Although the hydrogen bond change is small, with the average experimental cross hydrogen bond 3hJNC' coupling of two proteins GB3 and TTHA increased by ~ 0.01 Hz by the three osmolytes (160 g/L), its effect on protein function should not be overlooked. This is exemplified by the PDZ3-peptide binding where several intermolecular hydrogen bonds are formed and osmolytes shift the equilibrium towards the bound state.
Collapse
Affiliation(s)
- Jingwen Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jingfei Chen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Liaoyuan An
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiang Yuan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lishan Yao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
26
|
Zhou S, Wang L. Symmetry and 1H NMR chemical shifts of short hydrogen bonds: impact of electronic and nuclear quantum effects. Phys Chem Chem Phys 2020; 22:4884-4895. [DOI: 10.1039/c9cp06840f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Electronic and nuclear quantum effects determine the symmetry and highly downfield 1H NMR chemical shifts of short hydrogen bonds.
Collapse
Affiliation(s)
- Shengmin Zhou
- Department of Chemistry and Chemical Biology
- Institute for Quantitative Biomedicine
- Rutgers University
- Piscataway
- USA
| | - Lu Wang
- Department of Chemistry and Chemical Biology
- Institute for Quantitative Biomedicine
- Rutgers University
- Piscataway
- USA
| |
Collapse
|
27
|
Welborn VV, Head-Gordon T. Fluctuations of Electric Fields in the Active Site of the Enzyme Ketosteroid Isomerase. J Am Chem Soc 2019; 141:12487-12492. [DOI: 10.1021/jacs.9b05323] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Valerie Vaissier Welborn
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
28
|
Beckett D, El-Baba TJ, Gilbert K, Clemmer DE, Raghavachari K. Untangling Hydrogen Bond Networks with Ion Mobility Spectrometry and Quantum Chemical Calculations: A Case Study on H +XPGG. J Phys Chem B 2019; 123:5730-5741. [PMID: 31241336 DOI: 10.1021/acs.jpcb.9b03803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ion mobility spectrometry-mass spectrometry and quantum chemical calculations are used to determine the structures and stabilities of singly protonated XaaProGlyGly peptides: H+DPGG, H+NPGG, H+EPGG, and H+QPGG. The IMS distributions are similar, suggesting the peptides adopt closely related structures in the gas phase. Quantum chemical calculations show that all conformers seen in the experimental spectrum correspond to the cis configuration about the Xaa-Pro peptide bond, significantly different from the behavior seen previously for H+GPGG. Density functional theory and quantum theory of atoms in molecules (QTAIM) investigations uncover a silent drama as a minor conformer not observed in the H+DPGG spectrum becomes the preferred conformer in H+QPGG, with both conformers being coincident in collision cross section. Investigation of the highly coupled hydrogen bond network, replete with CH···O interactions and bifurcated hydrogen bonds, reveals the cause of this effect as well as the absence of trans conformers from the spectra. A series of generalized observations are provided to aid in enzyme and ligand design using these coupled hydrogen bond motifs.
Collapse
Affiliation(s)
- Daniel Beckett
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| | - Tarick J El-Baba
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| | - Kevin Gilbert
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| | - David E Clemmer
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| | - Krishnan Raghavachari
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| |
Collapse
|
29
|
Zhou S, Wang L. Unraveling the structural and chemical features of biological short hydrogen bonds. Chem Sci 2019; 10:7734-7745. [PMID: 31588321 PMCID: PMC6764281 DOI: 10.1039/c9sc01496a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/30/2019] [Indexed: 02/06/2023] Open
Abstract
Short hydrogen bonds are ubiquitous in biological macromolecules and exhibit distinctive proton potential energy surfaces and proton sharing properties.
The three-dimensional architecture of biomolecules often creates specialized structural elements, notably short hydrogen bonds that have donor–acceptor separations below 2.7 Å. In this work, we statistically analyze 1663 high-resolution biomolecular structures from the Protein Data Bank and demonstrate that short hydrogen bonds are prevalent in proteins, protein–ligand complexes and nucleic acids. From these biological macromolecules, we characterize the preferred location, connectivity and amino acid composition in short hydrogen bonds and hydrogen bond networks, and assess their possible functional importance. Using electronic structure calculations, we further uncover how the interplay of the structural and chemical features determines the proton potential energy surfaces and proton sharing conditions in biological short hydrogen bonds.
Collapse
Affiliation(s)
- Shengmin Zhou
- Department of Chemistry and Chemical Biology , Institute for Quantitative Biomedicine , Rutgers University , Piscataway , NJ 08854 , USA .
| | - Lu Wang
- Department of Chemistry and Chemical Biology , Institute for Quantitative Biomedicine , Rutgers University , Piscataway , NJ 08854 , USA .
| |
Collapse
|
30
|
Peng F, Cheng X, Wang H, Song S, Chen T, Li X, He Y, Huang Y, Liu S, Yang F, Su Z. Structure-based reconstruction of a Mycobacterium hypothetical protein into an active Δ 5-3-ketosteroid isomerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:821-830. [PMID: 31226491 DOI: 10.1016/j.bbapap.2019.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022]
Abstract
Protein engineering based on structure homology holds the potential to engineer steroid-transforming enzymes on demand. Based on the genome sequencing analysis of industrial Mycobacterium strain HGMS2 to produce 4-androstene-3,17-dione (4-AD), three hypothetical proteins were predicted as putative Δ5-3-ketosteroid isomerases (KSIs) to catalyze an intramolecular proton transfer involving the transformation of 5-androstene-3,17-dione (5-AD) into 4-AD, which were defined as mKSI228, mKSI291 and mKSI753. Activity assays indicated that mKSI228 and mKSI291 exhibited weak activity, as low as 0.7% and 1.5%, respectively, of a well-studied and highly active KSI from Pseudomonas putida KSI (pKSI), while mKSI753 had no activity similar to Mycobacterium tuberculosis KSI (mtKSI). Although the 3D structures of the putative mKSIs were homologous to pKSI, their amino acid sequences were significantly different from those of pKSI and tKSI. Thus, by use of these two KSIs as homology models, we were able to convert the low-active mKSI291 into a high-active active KSI by site-directed mutagenesis. On the other hand, an X-ray crystallographic structure of mKSI291 identified a water molecule in its active site. This unique water molecule might function as a bridge to connect Ser-OH, Tyr57-OH and C3O of the intermediate form a hydrogen-bonding network that was responsible for its weak activity, compared with that of mtKSI. Our results not only demonstrated the use of a protein engineering approach to understanding KSI catalytic mechanism, but also provided an example for engineering the catalytic active sites and gaining a functional enzyme based on homologous structures.
Collapse
Affiliation(s)
- Fei Peng
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiyao Cheng
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Amersino Biodevelop Inc, B1-Building, Biolake Park, Wuhan 430075, China
| | - Hongwei Wang
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shikui Song
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Tian Chen
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xin Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yijun He
- Hubei Goto Biotech Inc, No. 1 Baiguoshu Road, Shuidu Industrial Park, Danjiangkou, Hubei 442700, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Fei Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Amersino Biodevelop Inc, B1-Building, Biolake Park, Wuhan 430075, China.
| |
Collapse
|
31
|
Thomson B, Both J, Wu Y, Parrish RM, Martínez TJ, Boxer SG. Perturbation of Short Hydrogen Bonds in Photoactive Yellow Protein via Noncanonical Amino Acid Incorporation. J Phys Chem B 2019; 123:4844-4849. [PMID: 31117606 PMCID: PMC7061054 DOI: 10.1021/acs.jpcb.9b01571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoactive yellow protein (PYP) is a small photoreceptor protein that has two unusually short hydrogen bonds between the deprotonated p-coumaric acid chromophore and two amino acids, a tyrosine and a glutamic acid. This has led to considerable debate as to whether the glutamic acid-chromophore hydrogen bond is a low barrier hydrogen bond, with conflicting results in the literature. We have modified the p Ka of the tyrosine by amber suppression and of the chromophore by chemical substitution. X-ray crystal structures of these modified proteins are nearly identical to the wild-type protein, so the heavy atom distance between proton donor and acceptor is maintained, even though these modifications change the relative proton affinity between donor and acceptor. Despite a considerable change in relative proton affinity, the NMR chemical shifts of the hydrogen-bonded protons are only moderately affected. QM/MM calculations were used to explore the protons' potential energy surface and connect the calculated proton position with empirically measured proton chemical shifts. The results are inconsistent with a low barrier hydrogen bond but in all cases are consistent with a localized proton, suggesting an ionic hydrogen bond rather than a low barrier hydrogen bond.
Collapse
Affiliation(s)
| | | | | | - Robert M. Parrish
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Todd J. Martínez
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
32
|
Fetter CM, Morrison ZA, Nagar M, Douglas CD, Bearne SL. Altering the Y137-K164-K166 triad of mandelate racemase and its effect on the observed pK a of the Brønsted base catalysts. Arch Biochem Biophys 2019; 666:116-126. [PMID: 30935886 DOI: 10.1016/j.abb.2019.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022]
Abstract
Mandelate racemase (MR) catalyzes the interconversion of the enantiomers of mandelate using a two-base mechanism with Lys 166 acting as the Brønsted base to abstract the α-proton from (S)-mandelate. The resulting intermediate is subsequently re-protonated by the conjugate acid of His 297 to yield (R)-mandelate. The roles of these amino acids are reversed when (R)-mandelate is the substrate. The side chains of Tyr 137, Lys 164, and Lys 166 form a H-bonding network and the proximity of the two ε-NH3+ groups is believed to lower the pKa of Lys 166. We used site-directed mutagenesis, kinetics, and pH-rate studies to explore the roles of Lys 164 (K164 C/M) and Tyr 137 (Y137 L/F/S/T) in catalysis. The efficiency (kcat/Km) was reduced ∼3.5 × 105-fold for K164C MR, relative to wild-type MR, indicating a major role for this residue in catalysis. The efficiency of Y137F MR, however, was reduced only 25-30-fold. pH-Rate profiles (log kcat vs. pH) revealed that substitution of Tyr 137 by Phe increased the kinetic pKa of Lys 166 from 5.88 ± 0.02 to 7.3 ± 0.2. Hence, Tyr 137 plays an important role in facilitating the reduction of the pKa of the Brønsted base Lys 166 by ∼1.4 units. Interestingly, the Phe substitution also increased the kinetic pKa of His 297 from 5.97 ± 0.04 to 7.1 ± 0.1. Thus, the Tyr 137-Lys 164-Lys 166 H-bonding network plays a broader role in modulating the pKa of catalytic residues by influencing the electrostatic character of the entire active site, not only by decreasing the observed pKa value of Lys 166, but also by decreasing the pKa of His 297 by 1.1 units.
Collapse
Affiliation(s)
- Christopher M Fetter
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Zachary A Morrison
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Mitesh Nagar
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Colin D Douglas
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
33
|
Qi HW, Kulik HJ. Evaluating Unexpectedly Short Non-covalent Distances in X-ray Crystal Structures of Proteins with Electronic Structure Analysis. J Chem Inf Model 2019; 59:2199-2211. [DOI: 10.1021/acs.jcim.9b00144] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Helena W. Qi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
34
|
Cao J, Liu JY, Zhang YM, Wang ZY, Xu PF. Synergistic promotion by intramolecular hydrogen bonding: a bi-functionally catalyzed cascade reaction for the synthesis of enantiopure chromenopyrrolidines. Org Chem Front 2019. [DOI: 10.1039/c8qo01208c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An effective organocatalytic asymmetric cascade reaction of o-hydroxy aromatic aldimines and β,γ-unsaturated-α-ketoesters was developed.
Collapse
Affiliation(s)
- Jian Cao
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P.R. China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources & School of Mineral Processing and Bioengineering
| | - Jin-Yu Liu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P.R. China
| | - Yi-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P.R. China
| | - Zhu-Yin Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P.R. China
| |
Collapse
|
35
|
He X, Ni D, Lu S, Zhang J. Characteristics of Allosteric Proteins, Sites, and Modulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:107-139. [DOI: 10.1007/978-981-13-8719-7_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|