1
|
Li X, Lu Z, Liu S, Sun M, Duan S, Xie Z. Asymmetric total synthesis of benzenoid cephalotane-type diterpenoids through a cascade C(sp 2) & C(sp 3)-H activation. Nat Commun 2025; 16:4674. [PMID: 40393997 DOI: 10.1038/s41467-025-59816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
Cephalotane diterpenoids, featuring unique and complicated carbon skeletons and remarkable antitumor activities from the Cephalotaxus genus, have been gaining increasing attention. Herein, we report the asymmetric and divergent total synthesis of benzenoid cephalotane-type diterpenoids containing the identical 6/6/6/5 tetracyclic and the bridged δ-lactone skeleton with different oxidation states. A cascade of C(sp2) and C(sp3)-H activation has been developed to efficiently prepare the characteristic and synthetically challenging 6/6/6/5 tetracyclic skeleton through a pivotal palladium/NBE-cocatalyzed process. The feature of this strategy is the construction of three C-C bonds (two C(sp2)-C(sp3) bonds and one C(sp3)-C(sp3) bond) and the formation of two cycles with two chiral centers in a single step. The application of this method for the rapid assembly of the skeleton of benzenoid cephalotane-type diterpenoids is demonstrated through the concise and asymmetric total synthesis of cephanolides A-D (1-4) and ceforalide B (5) via late-stage modification.
Collapse
Affiliation(s)
- Xiangxin Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Zhaoxu Lu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Shaocong Liu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Mengyao Sun
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Shengfu Duan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Gan XC, Zhang ZA, Shi XY, Tian G, Cheng Z, Zhou TP, Qin C, Li Z, Wang J. Unified Total Synthesis of Benzenoid and Troponoid Cephalotaxus Diterpenoids Enabled by Regiocontrolled Phenol-to-Tropone Ring Expansion. JACS AU 2025; 5:1213-1220. [PMID: 40151270 PMCID: PMC11938033 DOI: 10.1021/jacsau.4c01067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/29/2025]
Abstract
Herein, we present a unified strategy for the total synthesis of benzenoid and troponoid Cephalotaxus diterpenoids, specifically cephanolides A and B (benzenoids) and harringtonolide and cephinoid H (troponoids), in 13 to 19 longest linear steps. This synthesis relies on a palladium-catalyzed Csp2-Csp3 cross-coupling followed by an intramolecular doubly electron-deficient Diels-Alder reaction to establish the core skeleton and complete the synthesis of the Cephalotaxus benzenoids. A late-stage regioselective phenol-to-tropone ring expansion was developed to convert the benzenoids to the corresponding troponoid congeners. This work provides a regiocontrolled approach for achieving the synthetic connectivity between benzenoid and troponoid Cephalotaxus diterpenoids.
Collapse
Affiliation(s)
- Xu-Cheng Gan
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zi-An Zhang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Yu Shi
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Guang Tian
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department
of Chemistry, Shanxi Key Laboratory of Polymer Science & Technology,
MOE Key Laboratory of Supernomal Material Physics & Chemistry,
School of Chemical & Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Zhixiao Cheng
- Department
of Chemistry, Fudan University, Shanghai 200438, China
| | - Tian-Peng Zhou
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chuanguang Qin
- Department
of Chemistry, Shanxi Key Laboratory of Polymer Science & Technology,
MOE Key Laboratory of Supernomal Material Physics & Chemistry,
School of Chemical & Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Zhiming Li
- Department
of Chemistry, Fudan University, Shanghai 200438, China
| | - Jie Wang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Mao HK, Wang Q, Xu J. Enantioselective Total Synthesis of Fortalpinoid Q via a TEMPO +BF 4--Mediated Dehydrative Nazarov Cyclization. J Am Chem Soc 2025; 147:9079-9084. [PMID: 40063060 DOI: 10.1021/jacs.5c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The family of Cephalotaxus diterpenoids represents a captivating class of natural products that are of significant interest from both structural and biological perspectives within our community. Here we wish to report a 15-step, enantioselective total synthesis of the Cephalotaxus diterpenoid fortalpinoid Q. Our approach highlights (1) a Jacobsen's catalytic enantioselective Claisen rearrangement that enabled the single-step formation of two vicinal stereogenic centers, including an all-carbon quaternary center; (2) a mild, oxoammonium salt (TEMPO+BF4-)-promoted dehydrative Nazarov cyclization that swiftly forged the crucial cyclopentadiene moiety via an unfunctionalized tertiary divinyl carbinol (TDC) substrate; and (3) a facile aldol-lactonization cascade that ultimately resolved the last obstacle in the synthesis.
Collapse
Affiliation(s)
- Hai-Kang Mao
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Wang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Chen P, Chen L, Lin H, Jia Y. Total Synthesis of (+)-Mannolide B. J Am Chem Soc 2025; 147:636-643. [PMID: 39688933 DOI: 10.1021/jacs.4c12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
(+)-Mannolide B possesses an intriguing and complex 5/7/5/6/6/6-fused hexacyclic scaffold including two bridged-lactone moieties and nine contiguous stereocenters, and thus represents a formidable challenge for total synthesis. Herein, the evolution of a successful strategy for the synthesis of mannolide B is described. The 7/5 ring system of the 7/5/6/6 tetracyclic carbon skeleton was efficiently constructed by a ring-closing metathesis starting from commercially available (-)-methyl jasmonate. Attempts to access the 6/6 ring system were unexpectedly challenging. Initially, an intramolecular Diels-Alder reaction was designed; however, the desired cyclization precursor could not be obtained. Furthermore, a radical cascade cyclization was investigated and produced only one six-membered ring with poor stereoselectivity at C5. Finally, the 6/6 ring system was successfully generated through a Pauson-Khand reaction, followed by a highly regioselective Büchner-Curtius-Schlotterbeck reaction, enabling us to achieve the first total synthesis of (+)-mannolide B in 24 steps.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Southwest United Graduate School, Kunming 650092, China
| | - Lijun Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Southwest United Graduate School, Kunming 650092, China
| | - Hongpeng Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Southwest United Graduate School, Kunming 650092, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
5
|
Sun Z, Shu X, Ma F, Li A, Li Y, Jin S, Wang Y, Hu X. Divergent Synthesis of 17-nor-Cephalotane Diterpenoids through Developed Ynol-diene Cyclization. Angew Chem Int Ed Engl 2024; 63:e202407757. [PMID: 38978264 DOI: 10.1002/anie.202407757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/10/2024]
Abstract
On the basis of a novel ynol-diene cyclization developed as a rapid access to tropone unit, the first divergent strategy to 17-nor-cephalotane diterpenoids has been successfully established. Combining with a bioinspired stereoselective dual hydrogenation, the divergent total synthesis of (+)-3-deoxyfortalpinoid F, (+)-harringtonolide, (-)-fortalpinoids M/N/P, and analog (-)-20-deoxocephinoid P have been achieved in 14-17 linear longest steps starting from commercially available materials.
Collapse
Affiliation(s)
- Zezhong Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Xin Shu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Fuli Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Ao Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Yali Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Shuang Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Yunxia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Xiangdong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| |
Collapse
|
6
|
Zhao JX, Ge ZP, Yue JM. Cephalotane diterpenoids: structural diversity, biological activity, biosynthetic proposal, and chemical synthesis. Nat Prod Rep 2024; 41:1152-1179. [PMID: 38482919 DOI: 10.1039/d3np00067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Covering: up to the end of 2023Cephalotane diterpenoids are a unique class of natural products exclusive to the genus Cephalotaxus, featuring a rigid 7,6,5,6-fused tetracyclic architecture. The study of cephalotanes dates back to the 1970s, when harringtonolide (1), a Cephalotaxus troponoid with a peculiar norditerpenoid carbon skeleton, was first discovered. In recent years, prototype C20 diterpenoids proposed as cephalotane were disclosed, which triggered intense studies on this diterpenoid family. To date, a cumulative total of 105 cephalotane diterpenoids with great structural diversity and biological importance have been isolated. In addition, significant advances have been made in the field of total synthesis and biosynthesis of cephalotanes in recent years. This review provides a complete overview of the chemical structures, bioactivities, biosynthetic aspects, and completed total synthesis of all the isolated cephalotane diterpenoids, which will help guide future research on this class of compounds.
Collapse
Affiliation(s)
- Jin-Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| | - Zhan-Peng Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| |
Collapse
|
7
|
Shao H, Ma ZH, Cheng YY, Guo XF, Sun YK, Liu WJ, Zhao YM. Bioinspired Total Synthesis of Cephalotaxus Diterpenoids and Their Structural Analogues. Angew Chem Int Ed Engl 2024; 63:e202402931. [PMID: 38527934 DOI: 10.1002/anie.202402931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Herein, we present a unified chemical synthesis of three subgroups of cephalotaxus diterpenoids. Key to the success lies in adopting a synthetic strategy that is inspired by biosynthesis but is opposite in nature. By employing selective one-carbon introduction and ring expansion operations, we have successfully converted cephalotane-type C18 dinorditerpenoids (using cephanolide B as a starting material) into troponoid-type C19 norditerpenoids and intact cephalotane-type C20 diterpenoids. This synthetic approach has enabled us to synthesize cephinoid H, 13-oxo-cephinoid H, 7-oxo-cephinoid H, fortalpinoid C, 7-epi-fortalpinoid C, cephanolide E, and 13-epi-cephanolide E. Furthermore, through the development of an intermolecular asymmetric Michael reaction between β-oxo esters and β-substituted enones, we have achieved the enantioselective synthesis of advanced intermediates within our synthetic sequence, thus formally realizing the asymmetric total synthesis of the cephalotaxus diterpenoids family.
Collapse
Affiliation(s)
- Hui Shao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Zhi-Hua Ma
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Yang-Yang Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Xiao-Feng Guo
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Ya-Kui Sun
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Wen-Jie Liu
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Yu-Ming Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| |
Collapse
|
8
|
Ge ZP, Xu JB, Zhao P, Xiang M, Zhou Y, Lin ZM, Zuo JP, Zhao JX, Yue JM. Highly modified cephalotane-type diterpenoids from Cephalotaxus fortunei var. alpina and C. sinensis. PHYTOCHEMISTRY 2024; 221:114038. [PMID: 38395211 DOI: 10.1016/j.phytochem.2024.114038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Cephalotanes are a rare class of diterpenoids occurring exclusively in Cephalotaxus plants. The intriguing structures and promising biological activities for this unique compound class prompt us to investigate C. fortunei var. alpina and C. sinensis, leading to the isolation of six undescribed cephalotane-type diterpenoids and/or norditerpenoids, ceforloids A-F (1-6). Their structures were elucidated by comprehensive analysis of spectroscopic data, including ECD and single-crystal X-ray diffraction studies, as well as quantum chemical calculations. Compound 1 possesses an unprecedented norditerpenoid skeleton featuring an unusual acetophenone moiety, and originated putatively from a disparate biogenetic pathway. Compounds 4 and 5 incorporate a unique 12,13-p-hydroxybenzylidene acetal motif. Compound 6 is a rare cephalotane-type diterpenoid glycoside. Immunosuppressive assays showed that compounds 2 and 6 exhibited mild suppressive activity against the activated T and B lymphocytes proliferation. These findings not only expanded the structural diversity of this small group of diterpenoids, but also explored their potential as novel structures for the development of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhan-Peng Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Jin-Biao Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Peng Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Mai Xiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Ze-Min Lin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Jian-Ping Zuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong, 264117, China.
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong, 264117, China.
| |
Collapse
|
9
|
Sun Z, Jin S, Song J, Niu L, Zhang F, Gong H, Shu X, Wang Y, Hu X. Enantioselective Total Synthesis of (-)-Cephalotanin B. Angew Chem Int Ed Engl 2023; 62:e202312599. [PMID: 37821726 DOI: 10.1002/anie.202312599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Cephalotaxus diterpenoids are attractive natural products with intriguing molecular frameworks and promising biological features. As a structurally unusual member, (-)-cephalotanin B possesses an extraordinarily congested heptacyclic skeleton, three lactone units, and nine consecutive stereocenters. Herein, we report an enantioselective total synthesis of (-)-cephalotanin B based on a divergent asymmetric Michael addition reaction, a novel Pauson-Khand/deacyloxylation process discovered in the development of a second-generation stereoselective Pauson-Khand reaction protocol, and an epoxide-opening/elimination/dual-lactonization cascade to construct the challenging propeller-shaped A-B-C ring system as key transformations.
Collapse
Affiliation(s)
- Zezhong Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Shuang Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Jianing Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Lihua Niu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Fan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Han Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Xin Shu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Yunxia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Xiangdong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| |
Collapse
|
10
|
Zhang YD, Chen M, Li Y, Liu BW, Ren ZH, Guan ZH. Enantioselective Palladium-Catalyzed Domino Carbonylative Heck Esterification of o-Iodoalkenylbenzenes with Arylboronic Acids. Org Lett 2023; 25:8110-8115. [PMID: 37921830 DOI: 10.1021/acs.orglett.3c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The current investigation presents an innovative palladium-catalyzed asymmetric carbonylative Heck esterification method. This approach facilitates the efficient synthesis of various chiral γ-ketoacid esters by utilizing o-alkenyliodobenzenes and arylboronic acids as primary substrates. This reaction achieves the creation of three carbon-carbon bonds, two carbon-oxygen bonds, and the establishment of a quaternary carbon center within a single step. The α-chiral γ-ketoacid esters were obtained in yields ranging from good to high yields, displaying enantiomeric excesses (ee's) levels up to 92% under mild reaction conditions.
Collapse
Affiliation(s)
- Yao-Du Zhang
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Ming Chen
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Yang Li
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Bo-Wen Liu
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
11
|
Bakanas I, Lusi RF, Wiesler S, Hayward Cooke J, Sarpong R. Strategic application of C-H oxidation in natural product total synthesis. Nat Rev Chem 2023; 7:783-799. [PMID: 37730908 DOI: 10.1038/s41570-023-00534-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/22/2023]
Abstract
The oxidation of unactivated C-H bonds has emerged as an effective tactic in natural product synthesis and has altered how chemists approach the synthesis of complex molecules. The use of C-H oxidation methods has simplified the process of synthesis planning by expanding the choice of starting materials, limiting functional group interconversion and protecting group manipulations, and enabling late-stage diversification. In this Review, we propose classifications for C-H oxidations on the basis of their strategic purpose: type 1, which installs functionality that is used to establish the carbon skeleton of the target; type 2, which is used to construct a heterocyclic ring; and type 3, which installs peripheral functional groups. The reactions are further divided based on whether they are directed or undirected. For each classification, examples from recent literature are analysed. Finally, we provide two case studies of syntheses from our laboratory that were streamlined by the judicious use of C-H oxidation reactions.
Collapse
Affiliation(s)
- Ian Bakanas
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Robert F Lusi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Stefan Wiesler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jack Hayward Cooke
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Gayyur, Choudhary S, Kant R, Ghosh N. Twofold Heteroannulation Reactions Enabled by Gold(I)/Zinc(II) Catalysts: Synthesis of Amine-Substituted Diaryl[ c, h][1,6]naphthyridines. Org Lett 2023; 25:7400-7405. [PMID: 37787541 DOI: 10.1021/acs.orglett.3c02899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A straightforward and atom-economical one-pot protocol catalyzed by gold(I) and zinc(II) for the synthesis of amine-substituted diaryl[c,h][1,6]naphthyridines from two different aromatic nitriles has been showcased. This dual-catalytic strategy is highly efficient, offering an array of tetracyclic heteroaromatic products in good to excellent yields. Furthermore, the base can efficiently catalyze the second annulation step, yielding structurally unique thiophene-fused [1,6]naphthyridines in good yields.
Collapse
Affiliation(s)
- Gayyur
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shivani Choudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchir Kant
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nayan Ghosh
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Fernandes RA. Deciphering the quest in the divergent total synthesis of natural products. Chem Commun (Camb) 2023; 59:12205-12230. [PMID: 37746673 DOI: 10.1039/d3cc03564f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The divergent synthesis of natural products is rapidly developing towards achieving the goal of efficiency and economy in total synthesis. However, presently, the sustainable development of the synthesis of natural products does not permit the linear synthesis of a single target. In this case, divergent total synthesis is based on the identification of an advanced intermediate with structural features that can be mapped in more than two molecules. However, the identification of this intermediate and its scalable synthesis in enantiopure form are challenging. Herein, we present the details of the ingenious efforts by researchers in the last six years toward the divergent synthesis of two to as many as eight natural products initially via a single route, and then diverging from a common intermediate and further branching out toward several natural products. The planning and strategies adopted can serve as guidelines for the future development of efficient divergent routes aimed at achieving higher efficiency toward multiple targets, causing divergent synthesis to become an accepted common practice.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| |
Collapse
|
14
|
Sun YK, Qiao JB, Xin YM, Zhou Q, Ma ZH, Shao H, Zhao YM. Total Synthesis of Metaphanine and Oxoepistephamiersine. Angew Chem Int Ed Engl 2023; 62:e202310917. [PMID: 37602680 DOI: 10.1002/anie.202310917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
Herein, we report a concise and divergent synthesis of the complex hasubanan alkaloids metaphanine and oxoepistephamiersine from commercially available and inexpensive cyclohexanedione monoethylene acetal. Our synthesis features a palladium-catalyzed cascade cyclization reaction to set the tricyclic carbon framework of the desired molecules, a regioselective Baeyer-Villiger oxidation followed by a MeNH2 triggered skeletal reorganization cascade to construct the benzannulated aza[4.4.3]propellane, and a strategically late-stage regio-/diastereoselective oxidative annulation of sp3 C-H bond to form the challenging THF ring system and hemiketal moiety in a single step. In addition, a highly enantioselective alkylation of cyclohexanedione monoethylene acetal paved the way for the asymmetric synthesis of target molecular.
Collapse
Affiliation(s)
- Ya-Kui Sun
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Jin-Bao Qiao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Yu-Meng Xin
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Qin Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Zhi-Hua Ma
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Hui Shao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Yu-Ming Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| |
Collapse
|
15
|
Li C, Wang S, Yin X, Guo A, Xie K, Chen D, Sui S, Han Y, Liu J, Chen R, Dai J. Functional Characterization and Cyclization Mechanism of a Diterpene Synthase Catalyzing the Skeleton Formation of Cephalotane-Type Diterpenoids. Angew Chem Int Ed Engl 2023; 62:e202306020. [PMID: 37326357 DOI: 10.1002/anie.202306020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/17/2023]
Abstract
CsCTS, a new diterpene synthase from Cephalotaxus sinensis responsible for forming cephalotene, the core skeleton of cephalotane-type diterpenoids with a highly rigid 6/6/5/7 tetracyclic ring system, was functionally characterized. The stepwise cyclization mechanism is proposed mainly based on structural investigation of its derailment products, and further demonstrated through isotopic labeling experiments and density functional theory calculations. Homology modeling and molecular dynamics simulation combined with site-directed mutagenesis revealed the critical amino acid residues for the unique carbocation-driven cascade cyclization mechanism of CsCTS. Altogether, this study reports the discovery of the diterpene synthase that catalyzes the first committed step of cephalotane-type diterpenoid biosynthesis and delineates its cyclization mechanism, laying the foundation to decipher and artificially construct the complete biosynthetic pathway of this type diterpenoids.
Collapse
Affiliation(s)
- Changkang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Xinxin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Aobo Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Songyang Sui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yaotian Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
16
|
Wang H, Liu Y, Zhang H, Yang B, He H, Gao S. Asymmetric Total Synthesis of Cephalotaxus Diterpenoids: Cephinoid P, Cephafortoid A, 14- epi-Cephafortoid A and Fortalpinoids M-N, P. J Am Chem Soc 2023; 145:16988-16994. [PMID: 37493585 DOI: 10.1021/jacs.3c05455] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The asymmetric total syntheses of cephalotaxus C19 diterpenoids, bearing a unique cycloheptene A ring with a chiral methyl group at C-12, were disclosed based on a universal strategy. Six members, including cephinoid P, cephafortoid A, 14-epi-cephafortoid A and fortalpinoids M-N, P, were accomplished for the first time. The concise approach relies on two crucial steps: (1) a Nicholas/Hosomi-Sakurai cascade reaction was developed to efficiently generate the cycloheptene ring bearing a chiral methyl group; (2) an intramolecular Pauson-Khand reaction was followed to facilitate the construction of the complete skeleton of target molecules. Our studies provide a new strategy for the synthetic analysis of cephalotaxus diterpenoids and structurally related polycyclic natural products.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Yi Liu
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hongyuan Zhang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Baochao Yang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Haibing He
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Shuanhu Gao
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
17
|
Cai J, Sun B, Yu S, Zhang H, Zhang W. Heck Macrocyclization in Forging Non-Natural Large Rings including Macrocyclic Drugs. Int J Mol Sci 2023; 24:ijms24098252. [PMID: 37175956 PMCID: PMC10179193 DOI: 10.3390/ijms24098252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The intramolecular Heck reaction is a well-established strategy for natural product total synthesis. When constructing large rings, this reaction is also referred to as Heck macrocyclization, which has proved a viable avenue to access diverse naturally occurring macrocycles. Less noticed but likewise valuable, it has created novel macrocycles of non-natural origin that neither serve as nor derive from natural products. This review presents a systematic account of the title reaction in forging this non-natural subset of large rings, thereby addressing a topic rarely covered in the literature. Walking through two complementary sections, namely (1) drug discovery research and (2) synthetic methodology development, it demonstrates that beyond the well-known domain of natural product synthesis, Heck macrocyclization also plays a remarkable role in forming synthetic macrocycles, in particular macrocyclic drugs.
Collapse
Affiliation(s)
- Jiayou Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Siqi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Sims HS, Dai M. Palladium-Catalyzed Carbonylations: Application in Complex Natural Product Total Synthesis and Recent Developments. J Org Chem 2023; 88:4925-4941. [PMID: 36705327 PMCID: PMC10127288 DOI: 10.1021/acs.joc.2c02746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Carbon monoxide is a cheap and abundant C1 building block that can be readily incorporated into organic molecules to rapidly build structural complexity. In this Perspective, we outline several recent (since 2015) examples of palladium-catalyzed carbonylations in streamlining complex natural product total synthesis and highlight the strategic importance of these carbonylation reactions in the corresponding synthesis. The selected examples include spinosyn A, callyspongiolide, perseanol, schizozygane alkaloids, cephanolides, and bisdehydroneostemoninine and related stemona alkaloids. We also provide our perspective about the recent advancements and future developments of palladium-catalyzed carbonylations.
Collapse
Affiliation(s)
- Hunter S Sims
- Department of Chemistry, Emory University, Atlanta, Georgia30322, United States.,Department of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Mingji Dai
- Department of Chemistry, Emory University, Atlanta, Georgia30322, United States
| |
Collapse
|
19
|
Li Q, Zhang Y, Liu P, Zhong J, Gong B, Yao H, Lin A. Pd-Catalyzed Asymmetric 5-exo-trig Cyclization/Cyclopropanation/Carbonylation of 1,6-Enynes for the Construction of Chiral 3-Azabicyclo[3.1.0]hexanes. Angew Chem Int Ed Engl 2023; 62:e202211988. [PMID: 36426561 DOI: 10.1002/anie.202211988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
We herein disclose a mild and efficient access to chiral 3-azabicyclo[3.1.0]hexanes via a Pd-catalyzed asymmetric 5-exo-trig cyclization/cyclopropanation/carbonylation of 1,6-enynes. Various nucleophiles, such as alcohols, phenols, amines and water, are well compatible with the reaction system. This reaction forms three C-C bonds, two rings, two adjacent quaternary carbon stereocenters as well as one C-O/C-N bond with excellent regio- and enantioselectivities. The products could be further functionalized to generate a library of 3-azabicyclo[3.1.0]hexane frameworks.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yunchu Zhang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Pengyun Liu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jing Zhong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Baihui Gong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
20
|
Chen L, Shi C, Li W, Li B, Zhu J, Lin A, Yao H. Palladium-Catalyzed Asymmetric C–C Bond Activation/Carbonylation of Cyclobutanones. Org Lett 2022; 24:9157-9162. [DOI: 10.1021/acs.orglett.2c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Long Chen
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Cong Shi
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Wei Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Bo Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Jie Zhu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| |
Collapse
|
21
|
Sun Z, Fan X, Sun Z, Li Z, Niu L, Guo H, Ren Z, Wang Y, Hu X. Total Synthesis of (-)-Ceforalide B and (-)-Cephanolides B-D. Org Lett 2022; 24:7507-7511. [PMID: 36222428 DOI: 10.1021/acs.orglett.2c02679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(-)-Ceforalide B (1) and (-)-cephanolides B-D (2-4) are benzenoid cephanolide diterpenoids possessing the same pentacyclic skeleton, which contains three C13-C15 substituent patterns and different benzylic oxidation states. An olefination/6π-electrocyclization/oxidative aromatization cascade has been verified as divergent access to three C13-C15 patterns. The benzylic aerobic oxidations enabled by the Co(OAc)2·4H2O/bromide salt/O2/PPh3/N-hydroxyphthalimide system have been developed to deliver expected site-selectivity and different oxidation states. Through the divergent strategy, total synthesis of (-)-ceforalide B and (-)-cephanolides B-D is accomplished.
Collapse
Affiliation(s)
- Zhongliu Sun
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministryof Education of China, Northwest University, Xi'an 710127, China
| | - Xin Fan
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministryof Education of China, Northwest University, Xi'an 710127, China
| | - Zezhong Sun
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministryof Education of China, Northwest University, Xi'an 710127, China
| | - Zhijie Li
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministryof Education of China, Northwest University, Xi'an 710127, China
| | - Lihua Niu
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministryof Education of China, Northwest University, Xi'an 710127, China
| | - Hao Guo
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministryof Education of China, Northwest University, Xi'an 710127, China
| | - Zhiqiang Ren
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministryof Education of China, Northwest University, Xi'an 710127, China
| | - Yunxia Wang
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministryof Education of China, Northwest University, Xi'an 710127, China
| | - Xiangdong Hu
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministryof Education of China, Northwest University, Xi'an 710127, China
| |
Collapse
|
22
|
Sennari G, Gardner KE, Wiesler S, Haider M, Eggert A, Sarpong R. Unified Total Syntheses of Benzenoid Cephalotane-Type Norditerpenoids: Cephanolides and Ceforalides. J Am Chem Soc 2022; 144:19173-19185. [PMID: 36198090 PMCID: PMC11620759 DOI: 10.1021/jacs.2c08803] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Detailed herein are our synthetic studies toward the preparation of the C18- and C19-benzenoid cephalotane-type norditerpenoids. Guided by chemical network analysis, the core structure of this natural product family was constructed in a concise manner using an iterative cross-coupling, followed by a formal inverse-electron-demand [4 + 2] cycloaddition. Initial efforts to functionalize an alkene group in the [4 + 2] cycloadduct using a Mukaiyama hydration and a subsequent olefination led to the complete C18-carbon framework. While effective, this approach proved lengthy and prompted the development of a direct alkene difunctionalization that relies on borocupration to advance the cycloadduct to the natural products. Late-stage peripheral C-H functionalization facilitated access to all of the known cephanolides in 6-10 steps as well as five recently isolated ceforalides in 8-13 steps.
Collapse
Affiliation(s)
- Goh Sennari
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Kristen E Gardner
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Stefan Wiesler
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Maximilian Haider
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Alina Eggert
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Ghosh T, Biswas D, Bhakta S. Palladium-Catalyzed Synthesis of Fused Carbo- and Heterocycles: Recent Advances. Chem Asian J 2022; 17:e202200725. [PMID: 36065137 DOI: 10.1002/asia.202200725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/03/2022] [Indexed: 11/10/2022]
Abstract
The use of palladium catalysts in fused ring synthesis has been increasingly noteworthy in recent years in organic synthesis. It has a lot of potential compared to other transition metal catalysts, because of its one-of-a-kind feature that makes them more widely applicable in a variety of disciplines application. Palladium is important in a variety of Heck processes, including intramolecular, intermolecular, and reductive Heck reactions, which produce diverse carbocycles and heterocycles of biological importance. Under optimal reaction conditions, carbocyclization or heterocyclization occurs, resulting in the production of numerous structural building blocks of naturally occurring compounds. Beside intramolecular Heck-type reactions, cycloaddition, cycloalkylation, oxidative coupling, C-H functionalization, cross-coupling reactions, and carboamidation reactions have also been employed extensively to access fused carbo- and heterocycles of immense biological importance. This review article provides a well-summarized discussion (since 2001) on fused carbo- and heterocycle ring synthesis using palladium catalysts, overviewing their applications, and mechanistic insights.
Collapse
Affiliation(s)
- Tapas Ghosh
- Maulana Abul Kalam Azad University of Technology, Applied Sciences, Simhat, Haringhata, 741249, Haringhata, INDIA
| | - Diptam Biswas
- Maulana Abul Kalam Azad University of Technology, Applied Chemistry, INDIA
| | - Sayantika Bhakta
- Maulana Abul Kalam Azad University of Technology, Applied Chemistry, INDIA
| |
Collapse
|
24
|
Li Y, Zhang L, Wang W, Liu Y, Sun D, Li H, Chen L. A review on natural products with cage-like structure. Bioorg Chem 2022; 128:106106. [PMID: 36037599 DOI: 10.1016/j.bioorg.2022.106106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
Natural products with diverse structures and significant biological activities are essential sources of drug lead compounds, and play an important role in the research and development of innovative drugs. Cage-like compounds have various structures and are widely distributed in nature, especially caged xanthones isolated from Garcinia genus, paeoniflorin and its derivatives isolated from Paeonia lactiflora Pall, tetrodotoxin (TTX) and its derivatives, and so on. In recent years, the development and utilization of cage-like compounds have been a research hotspot in chemistry, biology and other fields due to their special structures and remarkable biological activities. In this review, we mainly summarized the cage-like compounds with various structures found and isolated from natural drugs since 1956, summarized its broad biological activities, and introduced the progress in the biosynthesis of some compounds, so as to provide a reference for the discovery of more novel compounds, and the development and application of innovative drugs.
Collapse
Affiliation(s)
- Yutong Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linlin Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wang Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
25
|
Qing Z, Mao P, Wang T, Zhai H. Asymmetric Total Syntheses of Cephalotane-Type Diterpenoids Cephanolides A-D. J Am Chem Soc 2022; 144:10640-10646. [PMID: 35653731 DOI: 10.1021/jacs.2c03978] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cephanolides A-D are cephalotane-type diterpenoids featuring a novel 6/6/6/5 tetracyclic core embedded with a bridged δ-lactone. The asymmetric and divergent total syntheses of cephanolides A-D have been accomplished, proceeding in 11-14 steps from a known alcohol. The salient features of the present work include (i) a substrate-controlled diastereoselective intermolecular Diels-Alder reaction to form the 6-6 cis-fused rings, (ii) a palladium-catalyzed formal bimolecular [2 + 2 + 2] cycloaddition reaction via a partially intermolecular cascade reaction sequence involving multiple carbometalations to rapidly install the key tetracyclic skeleton, and (iii) lactonization and late-stage oxidative diversification to complete total syntheses of the four benzenoid cephanolides.
Collapse
Affiliation(s)
- Zhineng Qing
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Peng Mao
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Tie Wang
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China.,Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
26
|
Abstract
Terpenoids constitute a broad class of natural compounds with tremendous variability in structure and bioactivity, which resulted in a strong interest of the chemical community to this class of natural products over the last 150 years. The presence of strained small rings renders the terpenoid targets interesting for chemical synthesis, due to limited number of available methods and stability issues. In this feature article, a number of recent examples of total syntheses of terpenoids with complex carbon frameworks featuring small rings are discussed. Specific emphasis is given to the new developments in strategical and tactical approaches to construction of such systems.
Collapse
Affiliation(s)
- Gleb A Chesnokov
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
27
|
Huang J, Chen Y, Zhao H, Pan H, Yao Y. Recent Advances in the Total Synthesis of Cephalotane-Type Norditerpenoids from Cephalotaxus sinensis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1828-2170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Cephalotaxus diterpenoids are well known for their unique structures and biological activities. Cephanolides, as new cephalotane-type norditerpenoids isolated from Cephalotaxus sinensis, have attracted considerable attention from the synthetic community. The present Short Review summarizes strategic approaches toward the total synthesis of cephanolides from 2018 to 2021.1 Introduction2 Synthetic Approaches toward Cephalotane-Type Norditerpenoids2.1 First Total Synthesis of Cephanolides B and C by Zhao (2018)2.2 Total Synthesis of Cephanolides A–D by Sarpong (2021)2.3 Total Synthesis of Cephanolide B by Yang (2021)2.4 Asymmetric Total Synthesis of Cephanolide A by Gao (2020)2.5 Asymmetric Total Synthesis of Cephanolide B by Gao (2021)2.6 Asymmetric Total Synthesis of Cephanolides A and B by Cai (2021)3 Conclusion and Perspectives
Collapse
Affiliation(s)
- Jian Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University
| | - Yang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University
| | - Hongyi Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University
| | - Huanhuan Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University
| | - Yi Yao
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University
| |
Collapse
|
28
|
Li Q, Zhang Y, Zeng Y, Fan Y, Lin A, Yao H. Palladium-Catalyzed Asymmetric Dearomative Carbonylation of Indoles. Org Lett 2022; 24:3033-3037. [PMID: 35436128 DOI: 10.1021/acs.orglett.2c00962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we disclose a strategy for the asymmetric dearomatization of N-arylacyl indoles via a palladium-catalyzed tandem Heck/carbonylation, leading to an array of indoline-3-carboxylates bearing vicinal C2-aza-quaternary and C3 tertiary stereocenters in high yields and excellent enantio- and diastereoselectivities. This study is an important advance in the field of asymmetric carbonylation and enantioselective dearomatization reactions.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yunchu Zhang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuye Zeng
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yujing Fan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
29
|
Ge Z, Zhou B, Zimbres FM, Cassera MB, Zhao J, Yue J. Cephalotane‐Type
Norditerpenoids from
Cephalotaxus fortunei
var.
alpina. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhan‐Peng Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republib of China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republib of China
| | - Flavia M. Zimbres
- Department of Biochemistry and Molecular Biology Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens Geiorgia 30602 United States
| | - Maria B. Cassera
- Department of Biochemistry and Molecular Biology Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens Geiorgia 30602 United States
| | - Jin‐Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republib of China
| | - Jian‐Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republib of China
| |
Collapse
|
30
|
Chen C, Ren Z, Sun Z, Sun Z, Shu X, Wang Y, Hu X. Construction of Tetracyclic Core Skeleton of
Cephalotaxus
Diterpenoids through Diastereoselective Pauson‐Khand Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chong‐Chong Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry&Materials Science Northwest University Xi'an 710127 China
| | - Zhiqiang Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry&Materials Science Northwest University Xi'an 710127 China
| | - Zhongliu Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry&Materials Science Northwest University Xi'an 710127 China
| | - Zezhong Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry&Materials Science Northwest University Xi'an 710127 China
| | - Xin Shu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry&Materials Science Northwest University Xi'an 710127 China
| | - Yunxia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry&Materials Science Northwest University Xi'an 710127 China
| | - Xiangdong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry&Materials Science Northwest University Xi'an 710127 China
| |
Collapse
|
31
|
Zhang F, Ren BT, Liu Y, Feng X. A nickel( ii)-catalyzed enantioselective all-carbon-based inverse-electron-demand Diels–Alder reaction of 2-pyrones with indenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00493c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric IEDDA reaction of 2-pyrones with indenes catalyzed by a chiral N,N′-dioxide/Ni(OTf)2 complex has been disclosed to construct highly functionalized hexahydrofluorenyl bridged-lactone scaffolds in high yields and ee.
Collapse
Affiliation(s)
- Fangqing Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Bing-Tao Ren
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yangbin Liu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xiaoming Feng
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
32
|
Ge ZP, Zhou B, Zimbres FM, Haney RS, Liu QF, Wu Y, Cassera MB, Zhao JX, Yue JM. Cephalotane-type C 20 diterpenoids from Cephalotaxus fortunei var. alpina. Org Biomol Chem 2022; 20:9000-9009. [DOI: 10.1039/d2ob01748b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Seventeen new cephalotane-type diterpenoids were isolated from Cephalotaxus fortunei var. alpina. Compounds 14 and 15 contain an unusual 7-oxabicyclo[4.1.1]octane moiety.
Collapse
Affiliation(s)
- Zhan-Peng Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| | - Flavia M. Zimbres
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, USA
| | - Reagan S. Haney
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, USA
| | - Qun-Fang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, China
| | - Yan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, China
| | - Maria B. Cassera
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, USA
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| |
Collapse
|
33
|
Chang YP, Ma X, Shao H, Zhao YM. Total Syntheses of Galanthamine and Lycoramine via a Palladium-Catalyzed Cascade Cyclization and Late-Stage Reorganization of the Cyclized Skeleton. Org Lett 2021; 23:9659-9663. [PMID: 34874174 DOI: 10.1021/acs.orglett.1c03943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, we report the highly efficient total syntheses of galanthamine and lycoramine from a common tetracyclic intermediate. This concise synthetic route features a two-phase strategy, which includes the early-stage rapid construction of a tetracyclic skeleton followed by the late-stage selective reorganization of the tetracyclic skeleton. Key to the success of this strategy are a palladium-catalyzed carbonylative cascade annulation, a DDQ-mediated intramolecular regioselective oxidative lactamization, as well as a BF3·Et2O-promoted reorganization of the bridged tetracyclic skeleton.
Collapse
Affiliation(s)
- Ya-Ping Chang
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Xia Ma
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Hui Shao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Yu-Ming Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China.,CAS Key Lab of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| |
Collapse
|
34
|
Lu Y, Xu M, Zhang Z, Zhang J, Cai Q. Catalytic Asymmetric Inverse‐Electron‐Demand Diels–Alder Reactions of 2‐Pyrones with Indenes: Total Syntheses of Cephanolides A and B. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yang Lu
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Meng‐Meng Xu
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Zhi‐Mao Zhang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Junliang Zhang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Quan Cai
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis Fudan University 220 Handan Rd. Shanghai 200433 China
| |
Collapse
|
35
|
Abstract
A concise and stereoselective total synthesis of (±)-cephanolide B was achieved in 15 steps. The key steps in the synthesis were as follows: (i) an intermolecular Diels-Alder reaction followed by lactonization to form the oxabicyclo[2.2.2]octane DE ring; (ii) a tandem reaction, featuring an intramolecular Pauson-Khand reaction, a 6π-electrocyclization, and an oxidative aromatization by O2, to construct the ABC-tricyclic rings (6-5-6); and (iii) a phthaloyl peroxide-mediated arene oxygenation to install the C-13 phenol group.
Collapse
Affiliation(s)
- Anding Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ziru He
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bingyan Liu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zichun Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
36
|
Jiang C, Xue J, Yuan Y, Li Y, Zhao C, Jing Q, Zhang X, Yang M, Han T, Bai J, Li Z, Li D, Hua H. Progress in structure, synthesis and biological activity of natural cephalotane diterpenoids. PHYTOCHEMISTRY 2021; 192:112939. [PMID: 34536803 DOI: 10.1016/j.phytochem.2021.112939] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The Cephalotaxus genus is well-known owing to the numerous complex, biologically relevant natural products that can be obtained from its constituent species. The successful identification of various Cephalotaxus alkaloids and natural, structurally diverse cephalotane diterpenoids that exhibit antitumor activities and excellent pharmacological properties has encouraged the discovery of previously undescribed compounds from this genus. The present review summarizes the different strategies for the total synthesis of cephalotane diterpenoids as well as their diverse chemical structures, antitumor activities, structure-activity relationships (SARs), and biosynthetic pathways.
Collapse
Affiliation(s)
- Chunyu Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Jingjing Xue
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yizhen Yuan
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yanzhi Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Chunxue Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Qinxue Jing
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xin Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Mengyue Yang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Tong Han
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, PR China
| | - Jiao Bai
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
37
|
Flores O, Locquet P, Suffert J. An Alternative Route to Complex Allenes or Cyclooctatrienes via a Suzuki Cyclocarbopalladation Cascade. Chemistry 2021; 28:e202103502. [PMID: 34735041 DOI: 10.1002/chem.202103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/09/2022]
Abstract
The 4-exo-dig cyclocarbopalladation of vinyl bromides substituted with a triple or double bond resulted in impressive cascade reactions leading to different compounds under Suzuki cross-coupling conditions upon a slight modification of the starting material. When the starting compound carries a triple bond, a single cascade occurs providing a structure containing an allene, a tetrasubstituted cyclopropane, and a cyclobutene with complete stereoselectivity. When the related starting material possessing a double bond is reacted under the same conditions in the presence of various vinyl boronic esters or acids, an efficient 8π-electrocyclization provides tricyclic systems comprised of a cyclobutene unit, as well as a cyclooctatriene. Five carbons of the latter can be selectively decorated with different substituents depending on the choice of the starting material and the boronic coupling partner.
Collapse
Affiliation(s)
- Océane Flores
- Faculty of Pharmacy, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch Graffenstaden, France
| | - Pierre Locquet
- Faculty of Pharmacy, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch Graffenstaden, France
| | - Jean Suffert
- Faculty of Pharmacy, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch Graffenstaden, France
| |
Collapse
|
38
|
Lu Y, Xu MM, Zhang ZM, Zhang J, Cai Q. Catalytic Asymmetric Inverse-Electron-Demand Diels-Alder Reactions of 2-Pyrones with Indenes: Total Syntheses of Cephanolides A and B. Angew Chem Int Ed Engl 2021; 60:26610-26615. [PMID: 34668619 DOI: 10.1002/anie.202112223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Indexed: 12/15/2022]
Abstract
An inverse-electron-demand Diels-Alder (IEDDA) reaction could complement the conventional normal-electron-demand Diels-Alder reaction in the synthesis of six-membered carbocycles. However, catalytic asymmetric all-carbon-based IEDDA reactions are underdeveloped. Herein, we disclosed a copper-catalyzed asymmetric IEDDA reaction using electron-deficient 3-carboalkoxyl-2-pyrones and electronically unbiased indenes as reactants. This method enables the rapid and enantioselective construction of a wide range of hexahydrofluorenyl bridged-lactone scaffolds. Using this method, asymmetric total syntheses of cephanolides A and B were accomplished.
Collapse
Affiliation(s)
- Yang Lu
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Meng-Meng Xu
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Zhi-Mao Zhang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Junliang Zhang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Quan Cai
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| |
Collapse
|
39
|
Zhu YM, Fang Y, Li H, Xu XP, Ji SJ. Divergent Reaction of Isocyanides with o-Bromobenzaldehydes: Synthesis of Ketenimines and Lactams with Isoindolinone Cores. Org Lett 2021; 23:7342-7347. [PMID: 34523342 DOI: 10.1021/acs.orglett.1c02422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A divergent reaction of isocyanides with o-bromobenzaldehydes for the synthesis of isoindolinone-derived ketenimines and lactams was disclosed. The reaction features readily available reactants, relatively mild conditions, and high yields of products. Ketenimines could be applied in further transformations for access to other functional molecules. A mechanism study showed that the palladium-migration/imine-insertion process was the key step in this reaction.
Collapse
Affiliation(s)
- Yi-Ming Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Yizhan Fang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Haiyan Li
- Analysis and Testing Center, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.,Innovation Center for Chemical Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
40
|
Ao Q, Zhang HJ, Zheng J, Chen X, Zhai H. Asymmetric Total Synthesis of (+)-Mannolide C. Angew Chem Int Ed Engl 2021; 60:21267-21271. [PMID: 34312950 DOI: 10.1002/anie.202107954] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/14/2022]
Abstract
(+)-Mannolide C is a complex hexacyclic C20 cephalotane-type diterpenoid featuring a highly strained 7/6/6/5 tetracyclic core containing eight consecutive stereocenters and two bridging lactones. The first asymmetric total synthesis of (+)-mannolide C has been accomplished by lipase-mediated resolution, Ru-complex-catalyzed double ring-closing metathesis (RCM) reactions, NiII -catalyzed diastereoselective Michael addition, and MnIII -catalyzed allylic oxidation as the key transformations.
Collapse
Affiliation(s)
- Qiaoqiao Ao
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Hai-Jun Zhang
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Jinbin Zheng
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Xiaoming Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China.,Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen, 518055, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
41
|
Ao Q, Zhang H, Zheng J, Chen X, Zhai H. Asymmetric Total Synthesis of (+)‐Mannolide C. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qiaoqiao Ao
- The State Key Laboratory of Chemical Oncogenomics Guangdong Provincial Key Laboratory of Nano-Micro Materials Research School of Chemical Biology and Biotechnology Shenzhen Graduate School of Peking University Shenzhen 518055 China
| | - Hai‐Jun Zhang
- The State Key Laboratory of Chemical Oncogenomics Guangdong Provincial Key Laboratory of Nano-Micro Materials Research School of Chemical Biology and Biotechnology Shenzhen Graduate School of Peking University Shenzhen 518055 China
| | - Jinbin Zheng
- The State Key Laboratory of Chemical Oncogenomics Guangdong Provincial Key Laboratory of Nano-Micro Materials Research School of Chemical Biology and Biotechnology Shenzhen Graduate School of Peking University Shenzhen 518055 China
| | - Xiaoming Chen
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics Guangdong Provincial Key Laboratory of Nano-Micro Materials Research School of Chemical Biology and Biotechnology Shenzhen Graduate School of Peking University Shenzhen 518055 China
- Institute of Marine Biomedicine Shenzhen Polytechnic Shenzhen 518055 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 China
| |
Collapse
|
42
|
Ren Z, Sun Z, Li Y, Fan X, Dai M, Wang Y, Hu X. Total Synthesis of (+)-3-Deoxyfortalpinoid F, (+)-Fortalpinoid A, and (+)-Cephinoid H. Angew Chem Int Ed Engl 2021; 60:18572-18576. [PMID: 34164892 DOI: 10.1002/anie.202108034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/17/2022]
Abstract
3-Deoxyfortalpinoid F, fortalpinoid A, and cephinoid H are members of the Cephalotaxus diterpenoids class of natural products, which feature diverse chemical structures and valuable biological activities. We report herein the development of a diastereoselective Pauson-Khand reaction as an effective pathway to access the core tetracyclic skeleton, which is found widely in Cephalotaxus diterpenoids. Furthermore, we enabled the construction of the tropone moiety through a ring-closing metathesis/elimination protocol. Based on the developed strategy, asymmetric synthesis of the title compounds has been achieved for the first time.
Collapse
Affiliation(s)
- Zhiqiang Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Zhongliu Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Yifei Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Xin Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Mingda Dai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Yunxia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Xiangdong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| |
Collapse
|
43
|
Ren Z, Sun Z, Li Y, Fan X, Dai M, Wang Y, Hu X. Total Synthesis of (+)‐3‐Deoxyfortalpinoid F, (+)‐Fortalpinoid A, and (+)‐Cephinoid H. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhiqiang Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Zhongliu Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Yifei Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Xin Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Mingda Dai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Yunxia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Xiangdong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| |
Collapse
|
44
|
Dunås P, Paterson AJ, Kociok-Köhn G, Rahm M, Lewis SE, Kann N. Palladium-catalyzed stereoselective domino arylation-acylation: an entry to chiral tetrahydrofluorenone scaffolds. Chem Commun (Camb) 2021; 57:6518-6521. [PMID: 34105551 DOI: 10.1039/d1cc02160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed domino arylation-cyclization of biocatalytically derived cyclic 1,3-dienes is demonstrated. The reaction introduces a high degree of structural complexity in a single step, giving access to tricyclic tetrahydrofluorenones with full regio- and stereoselectivity. The transformation proceeds through a novel acylation-terminated Heck-type sequence, and quantum chemical calculations indicate that C-H activation is involved in the terminating acylation step.
Collapse
Affiliation(s)
- Petter Dunås
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Andrew J Paterson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Gabriele Kociok-Köhn
- Materials and Chemical Characterization Facility, Convocation Avenue, University of Bath, Bath, BA2 7AY, UK
| | - Martin Rahm
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Simon E Lewis
- Centre for Sustainable Circular Technologies, Convocation Avenue, University of Bath, Bath, BA2 7AY, UK. and Department of Chemistry, Convocation Avenue, University of Bath, Bath, BA2 7AY, UK
| | - Nina Kann
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| |
Collapse
|
45
|
Zhang Y, Sun YK, Chang YP, Shao H, Zhao YM. Palladium-catalyzed cascade carbonylative annulation between alkene-tethered aryl iodides and carbon monoxide. Chem Commun (Camb) 2021; 57:7023-7026. [PMID: 34165470 DOI: 10.1039/d1cc02217b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid construction of molecules bearing all-substituted quaternary stereocenters represents a highly significant but challenging task in organic synthesis. Herein, we report a novel palladium-catalyzed cascade between alkene-tethered aryl iodides and carbon monoxide, which has resulted in a practical and powerful method for the synthesis of complex polycyclic molecules containing aryl-substituted quaternary stereocenters. Mechanistic studies suggested that the reaction proceeded via a Heck-type carbonylative cyclization, followed by a ketene-involved Friedel-Crafts acylation.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China.
| | - Ya-Kui Sun
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China.
| | - Ya-Ping Chang
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China.
| | - Hui Shao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China.
| | - Yu-Ming Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China.
| |
Collapse
|
46
|
Feng Z, Li Q, Chen L, Yao H, Lin A. Palladium-catalyzed asymmetric carbamoyl-carbonylation of alkenes. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9992-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Mondal S, Ballav T, Biswas K, Ghosh S, Ganesh V. Exploiting the Versatility of Palladium Catalysis: A Modern Toolbox for Cascade Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sourav Mondal
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Tamal Ballav
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Krishna Biswas
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Suman Ghosh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Venkataraman Ganesh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| |
Collapse
|
48
|
Ge Z, Fan Y, Deng W, Zheng C, Li T, Yue J. Cephalodiones A–D: Compound Characterization and Semisynthesis by [6+6] Cycloaddition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zhan‐Peng Ge
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Yao‐Yue Fan
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Wen‐De Deng
- State Key Laboratory of Quality Research in Chinese Medicines Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Avenida Wai Long Taipa, Macau 999078 China
| | - Cheng‐Yu Zheng
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Avenida Wai Long Taipa, Macau 999078 China
| | - Jian‐Min Yue
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| |
Collapse
|
49
|
Paul D, Das S, Saha S, Sharma H, Goswami RK. Intramolecular Heck Reaction in Total Synthesis of Natural Products: An Update. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Debobrata Paul
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Subhendu Das
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Sanu Saha
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Himangshu Sharma
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Rajib Kumar Goswami
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| |
Collapse
|
50
|
Ge ZP, Fan YY, Deng WD, Zheng CY, Li T, Yue JM. Cephalodiones A-D: Compound Characterization and Semisynthesis by [6+6] Cycloaddition. Angew Chem Int Ed Engl 2021; 60:9374-9378. [PMID: 33527661 DOI: 10.1002/anie.202015332] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Cephalodiones A-D (1-4), the first example of C19 -norditerpenoid dimers, were isolated and fully characterized from a Cephalotaxus plant. These new skeletal natural products shared a unique tricyclo[6.4.1.12,7 ]tetradeca-3,5,9,11-tetraene-13,14-dione core that was capped in both ends with rigid multicyclic ring systems either C2 -symmetrically or asymmetrically. Compounds 1-4 were proposed to be biosynthetically produced by the [6+6]-cycloaddition of two identical C19 -norditerpenoid troponoids, which was validated by the semisyntheses of dimers 2-4. Moreover, some compounds showed significant inhibition on Th17 cell differentiation.
Collapse
Affiliation(s)
- Zhan-Peng Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yao-Yue Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Wen-De Deng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Cheng-Yu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| |
Collapse
|