1
|
Zhen Y, Jiang W, Xu Y, Hui X, Shi X, Zou H, Chen Q, Chen J, Wei H, Xie W. Asymmetric Synthesis of 10-Demethoxyvincorine Enabled by Dual Ni/Ti-Catalyzed Reductive Cyclization. Org Lett 2025; 27:4305-4309. [PMID: 40207894 DOI: 10.1021/acs.orglett.5c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Herein, we report the asymmetric synthesis of 10-demethoxyvincorine in 12 steps. The synthesis is highlighted by several key transformations: (1) a Pd-catalyzed Catellani-type reaction for the preparation of C2-alkylated tryptamine, (2) a chiral phosphoric acid (CPA)-catalyzed asymmetric bromocyclization to construct enantioenriched 3a-bromo-hexahydropyrroloindoline, (3) a dual Ni/Ti-catalyzed reductive cyclization to establish the bridged ring system, and (4) a SmI2-promoted reductive cyclization to forge the strained E-ring.
Collapse
Affiliation(s)
- Yanxia Zhen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wei Jiang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yuanzhen Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Xiangyu Hui
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Xiaoran Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Huanhuan Zou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Qianhu Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Junhan Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Bowman C, Denis M, Canesi S. Recent strategy for the synthesis of indole and indoline skeletons in natural products. Chem Commun (Camb) 2025; 61:5563-5576. [PMID: 40129272 DOI: 10.1039/d5cc00655d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Indole alkaloids are one of the most important classes of natural products found in nature, particularly in a wide variety of plants. These compounds have compact polycyclic systems with at least one nitrogen atom. Several of these alkaloids are bioactive and have raised hopes for the development of new drugs. Their biosynthesis involves tryptophan as an amino acid precursor, since the indole or indoline moiety is the main heterocycle of these natural products. However, in their quest to synthesize such complex architectures, chemists have developed several different strategies to produce this key heterocycle quickly and in an unnatural way. This review focuses on the recent total synthesis methods used to prepare the indole and indoline core of these important alkaloids. Novel and older methods that allow the rapid formation of this heterocycle are described as key steps in the total synthesis of these fascinating structures designed by Mother Nature.
Collapse
Affiliation(s)
- Carl Bowman
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada.
| | - Maxime Denis
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada.
| | - Sylvain Canesi
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada.
| |
Collapse
|
3
|
Hashimoto N, Taguchi J, Kasagi T, Arichi N, Inuki S, Ohno H. Construction of the Akuammiline Alkaloid Core Structure via Stereoselective E-Ring Formation. J Org Chem 2024; 89:10388-10392. [PMID: 38952036 DOI: 10.1021/acs.joc.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Construction of the core structure of akuammiline alkaloids with three-dimensional cage-like structures for their diversity-oriented synthesis was investigated. Extensive exploration centered around the introduction of nitrogen functional groups and construction of the E-ring in an intramolecular or intermolecular manner revealed that a Claisen rearrangement approach involving intramolecular amination provided a common precursor, potentially facilitating divergent access to various types of akuammiline alkaloids.
Collapse
Affiliation(s)
- Naoki Hashimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junichi Taguchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Kasagi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Lin B, Liu T, Luo T. Gold-catalyzed cyclization and cycloaddition in natural product synthesis. Nat Prod Rep 2024; 41:1091-1112. [PMID: 38456472 DOI: 10.1039/d3np00056g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Covering: 2016 to mid 2023Transition metal catalysis, known for its remarkable capacity to expedite the assembly of molecular complexity from readily available starting materials in a single operation, occupies a central position in contemporary chemical synthesis. Within this landscape, gold-catalyzed reactions present a novel and versatile paradigm, offering robust frameworks for accessing diverse structural motifs. In this review, we highlighted a curated selection of publications in the past 8 years, focusing on the deployment of homogeneous gold catalysis in the ring-forming step for the total synthesis of natural products. These investigations are categorized based on the specific ring formations they engender, accentuating the prevailing gold-catalyzed methodologies applied to surmount intricate challenges in natural products synthesis.
Collapse
Affiliation(s)
- Boxu Lin
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tianran Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
5
|
Wang L, Yilmaz F, Yildirim O, Schölermann B, Bag S, Greiner L, Pahl A, Sievers S, Scheel R, Strohmann C, Squire C, Foley DJ, Ziegler S, Grigalunas M, Waldmann H. Discovery of a Novel Pseudo-Natural Product Aurora Kinase Inhibitor Chemotype through Morphological Profiling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309202. [PMID: 38569218 PMCID: PMC11151026 DOI: 10.1002/advs.202309202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/20/2024] [Indexed: 04/05/2024]
Abstract
The pseudo-natural product (pseudo-NP) concept aims to combine NP fragments in arrangements that are not accessible through known biosynthetic pathways. The resulting compounds retain the biological relevance of NPs but are not yet linked to bioactivities and may therefore be best evaluated by unbiased screening methods resulting in the identification of unexpected or unprecedented bioactivities. Herein, various NP fragments are combined with a tricyclic core connectivity via interrupted Fischer indole and indole dearomatization reactions to provide a collection of highly three-dimensional pseudo-NPs. Target hypothesis generation by morphological profiling via the cell painting assay guides the identification of an unprecedented chemotype for Aurora kinase inhibition with both its relatively highly 3D structure and its physicochemical properties being very different from known inhibitors. Biochemical and cell biological characterization indicate that the phenotype identified by the cell painting assay corresponds to the inhibition of Aurora kinase B.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Furkan Yilmaz
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTU Dortmund University44227DortmundGermany
| | - Okan Yildirim
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Beate Schölermann
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Sukdev Bag
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Luca Greiner
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Axel Pahl
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
- Compound Management and Screening Center (COMAS)44227DortmundGermany
| | - Sonja Sievers
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
- Compound Management and Screening Center (COMAS)44227DortmundGermany
| | - Rebecca Scheel
- Faculty of Chemistry and Inorganic ChemistryTU Dortmund University44227DortmundGermany
| | - Carsten Strohmann
- Faculty of Chemistry and Inorganic ChemistryTU Dortmund University44227DortmundGermany
| | - Christopher Squire
- School of Biological SciencesUniversity of Auckland1142AucklandNew Zealand
| | - Daniel J. Foley
- School of Physical and Chemical SciencesUniversity of Canterbury8041ChristchurchNew Zealand
| | - Slava Ziegler
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Michael Grigalunas
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Herbert Waldmann
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTU Dortmund University44227DortmundGermany
| |
Collapse
|
6
|
Spieß P, Brześkiewicz J, Meyrelles R, Just D, Maulide N. Deprotective Functionalization: A Direct Conversion of Nms-Amides to Carboxamides Using Carboxylic Acids. Angew Chem Int Ed Engl 2024; 63:e202318304. [PMID: 38501885 PMCID: PMC11497274 DOI: 10.1002/anie.202318304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 03/20/2024]
Abstract
The nature of protecting group chemistry necessitates a deprotection step to restore the initially blocked functionality prior to further transformation. As this aspect of protecting group manipulation inevitably adds to the step count of any synthetic sequence, the development of methods enabling simultaneous deprotection and functionalization ("deprotective functionalization"-distinct from "deprotection followed by functionalization") is appealing, as it has the potential to improve efficiency and streamline synthetic routes. Herein, we report a deprotective functionalization of the newly introduced Nms-amides guided by density functional theory (DFT) analysis, which exploits the inherent Nms reactivity. Mechanistic studies further substantiate and help rationalize the exquisite reactivity of Nms-amides, as other commonly used protecting groups are shown not to exhibit the same reactivity patterns. The practicality of this approach was ultimately demonstrated in selected case studies.
Collapse
Affiliation(s)
- Philipp Spieß
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| | - Jakub Brześkiewicz
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| | - Ricardo Meyrelles
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| | - David Just
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| | - Nuno Maulide
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| |
Collapse
|
7
|
Hashimoto N, Taguchi J, Arichi N, Inuki S, Ohno H. Gold(I)-Catalyzed Cascade Cyclization of Alkynyl Indoles for the Stereoselective Construction of the Quaternary Carbon Center of Akuammiline Alkaloids. J Org Chem 2023. [PMID: 38051730 DOI: 10.1021/acs.joc.3c02142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A gold-catalyzed cyclization reaction of alkynyl-indoles has been developed for the stereoselective construction of the quaternary carbon center of fused indolines. This reaction efficiently produces fused indolines via diastereoselective 6-endo-dig cyclization controlled by a bulky TIPS group, followed by nucleophilic attack of the carboxy group on the resulting imine. The lactone moiety of the fused indoline can be reductively cleaved to produce a tricyclic indoline, which could be useful for the synthesis of akuammiline alkaloids.
Collapse
Affiliation(s)
- Naoki Hashimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junichi Taguchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Xu Z, Li X, Rose JA, Herzon SB. Finding activity through rigidity: syntheses of natural products containing tricyclic bridgehead carbon centers. Nat Prod Rep 2023; 40:1393-1431. [PMID: 37140079 PMCID: PMC10472132 DOI: 10.1039/d3np00008g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Covering: up to 2022Tricyclic bridgehead carbon centers (TBCCs) are a synthetically challenging substructure found in many complex natural products. Here we review the syntheses of ten representative families of TBCC-containing isolates, with the goal of outlining the strategies and tactics used to install these centers, including a discussion of the evolution of the successful synthetic design. We provide a summary of common strategies to inform future synthetic endeavors.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Xin Li
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - John A Rose
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
- Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| |
Collapse
|
9
|
Abstract
Covering: 2011 to 2022The natural world is a prolific source of some of the most interesting, rare, and complex molecules known, harnessing sophisticated biosynthetic machinery evolved over billions of years for their production. Many of these natural products represent high-value targets of total synthesis, either for their desirable biological activities or for their beautiful structures outright; yet, the high sp3-character often present in nature's molecules imparts significant topological complexity that pushes the limits of contemporary synthetic technology. Dearomatization is a foundational strategy for generating such intricacy from simple materials that has undergone considerable maturation in recent years. This review highlights the recent achievements in the field of dearomative methodology, with a focus on natural product total synthesis and retrosynthetic analysis. Disconnection guidelines and a three-phase dearomative logic are described, and a spotlight is given to nature's use of dearomatization in the biosynthesis of various classes of natural products. Synthetic studies from 2011 to 2021 are reviewed, and 425 references are cited.
Collapse
Affiliation(s)
| | - Yaroslav D Boyko
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.
| | - David Sarlah
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
10
|
Soni A, Upadhyay Y, Srivastava AK, Sharma C, Joshi RK. A facile synthesisof ferrocene functionalized vinyl ethersand theirapplication as optical sensors for Cu2+ ions detection. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Yao JJ, Ding R, Chen X, Zhai H. Asymmetric Total Synthesis of (+)-Alstonlarsine A. J Am Chem Soc 2022; 144:14396-14402. [PMID: 35894835 DOI: 10.1021/jacs.2c06518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The first asymmetric total synthesis of (+)-alstonlarsine A has been realized. The prominent features of the current synthesis include the following: (i) a Pd/self-adaptable ligand complex-catalyzed asymmetric allylic alkylation of 2-methyl-2-cyclopentenyl carbonate with 2-indolylsubstituted dimethyl malonate to establish the key stereocenter of C15, (ii) an intramolecular nitrile oxide-alkene [3 + 2] cycloaddition (INOC [3 + 2]) to construct the cyclohepta[b]indole backbone with the installment of the requisite stereochemistry of the all-carbon quaternary center of C20, and (iii) a late-stage interrupted Pictet-Spengler reaction (IPSR) to rapidly assemble the core structure of (+)-alstonlarsine A.
Collapse
Affiliation(s)
- Jun-Jun Yao
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Rui Ding
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xiaoming Chen
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China.,Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
12
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Abstract
The synthetic utility of rearrangement reactions in total synthesis for the rapid construction of core skeletons, the precise control of stereochemistry, and the identification of suitable synthons has been discussed.
Collapse
Affiliation(s)
- Lu Chen
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Guang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Liansuo Zu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Heravi MM, Amiri Z, Kafshdarzadeh K, Zadsirjan V. Synthesis of indole derivatives as prevalent moieties present in selected alkaloids. RSC Adv 2021; 11:33540-33612. [PMID: 35497516 PMCID: PMC9042329 DOI: 10.1039/d1ra05972f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 02/02/2023] Open
Abstract
Indoles are a significant heterocyclic system in natural products and drugs. They are important types of molecules and natural products and play a main role in cell biology. The application of indole derivatives as biologically active compounds for the treatment of cancer cells, microbes, and different types of disorders in the human body has attracted increasing attention in recent years. Indoles, both natural and synthetic, show various biologically vital properties. Owing to the importance of this significant ring system, the investigation of novel methods of synthesis have attracted the attention of the chemical community. In this review, we aim to highlight the construction of indoles as a moiety in selected alkaloids.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Zahra Amiri
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Kosar Kafshdarzadeh
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
15
|
Zou P, Yang H, Wei J, Wang T, Zhai H. Total Synthesis of (-)-Picrinine, (-)-Scholarisine C, and (+)-5-β-Methoxyaspidophylline. Org Lett 2021; 23:6836-6840. [PMID: 34410141 DOI: 10.1021/acs.orglett.1c02393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first asymmetric total synthesis of three picrinine-type akuammiline alkaloids, (-)-picrinine, (-)-scholarisine C, and (+)-5-β-methoxyaspidophylline, has been accomplished. The synthesis features an efficient acid-promoted oxo-bridge ring-opening and further carbonyl O-cyclization to assemble the furoindoline scaffold, an unusual Dauben-Michno oxidation to construct the requisite α,β-unsaturated aldehyde functionality, and a nickel-mediated reductive Heck reaction to forge the [3.3.1]-azabicyclic core.
Collapse
Affiliation(s)
- Peng Zou
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Hongjian Yang
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Jian Wei
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Taimin Wang
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
16
|
Gao B, Yao F, Zhang Z, Ding H. Total Synthesis of (+)-Alsmaphorazine C and Formal Synthesis of (+)-Strictamine: A Photo-Fries Approach. Angew Chem Int Ed Engl 2021; 60:10603-10607. [PMID: 33660898 DOI: 10.1002/anie.202101752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 01/04/2023]
Abstract
A bioinspired photo-Fries/imine capture cascade reaction was developed in continuous-flow mode, which facilitated the rapid construction of a series of diversely functionalized 2,7-heterocycle-fused tetrahydrocarbazoles, the ubiquitous core structures embedded in strychnos and akuammiline-type monoterpene indole alkaloids. The synthetic utility of this novel method has been preliminarily explored by the first total synthesis of (+)-alsmaphorazine C and formal synthesis of (+)-strictamine in a concise and efficient manner.
Collapse
Affiliation(s)
- Beiling Gao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Fengjie Yao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhaodong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
17
|
Gao B, Yao F, Zhang Z, Ding H. Total Synthesis of (+)‐Alsmaphorazine C and Formal Synthesis of (+)‐Strictamine: A Photo‐Fries Approach. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Beiling Gao
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Fengjie Yao
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhaodong Zhang
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Hanfeng Ding
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
18
|
Ohno H, Inuki S. Nonbiomimetic total synthesis of indole alkaloids using alkyne-based strategies. Org Biomol Chem 2021; 19:3551-3568. [PMID: 33908430 DOI: 10.1039/d0ob02577a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomimetic natural product synthesis is generally straightforward and efficient because of its established feasibility in nature and utility in comprehensive synthesis, and the cost-effectiveness of naturally derived starting materials. On the other hand, nonbiomimetic strategies can be an important option in natural product synthesis since (1) nonbiomimetic synthesis offers more flexibility and can demonstrate the originality of chemists, and (2) the structures of derivatives accessible by nonbiomimetic synthesis can be considerably different from those that are synthesised in nature. This review summarises nonbiomimetic total syntheses of indole alkaloids using alkyne chemistry for constructing core structures, including ergot alkaloids, monoterpene indole alkaloids (mainly corynanthe, aspidosperma, strychnos, and akuammiline), and pyrroloindole and related alkaloids. To clarify the differences between alkyne-based strategies and biosynthesis, the alkynes in nature and the biosyntheses of indole alkaloids are also outlined.
Collapse
Affiliation(s)
- Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
19
|
Cohen Y, Augustin AU, Levy L, Jones PG, Werz DB, Marek I. Regio- and Diastereoselective Copper-Catalyzed Carbomagnesiation for the Synthesis of Penta- and Hexa-Substituted Cyclopropanes. Angew Chem Int Ed Engl 2021; 60:11804-11808. [PMID: 33742749 DOI: 10.1002/anie.202102509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 11/07/2022]
Abstract
Despite the highly strained nature of cyclopropanes possessing three vicinal quaternary carbon stereocenters, the regio- and diastereoselective copper-catalyzed carbomagnesiation reaction of cyclopropenes provides an easy and efficient access to these novel persubstituted cyclopropyl cores with a complete regio- and diastereoselectivity.
Collapse
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - André U Augustin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - Laura Levy
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - Peter G Jones
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| |
Collapse
|
20
|
Cohen Y, Augustin AU, Levy L, Jones PG, Werz DB, Marek I. Regio‐ and Diastereoselective Copper‐Catalyzed Carbomagnesiation for the Synthesis of Penta‐ and Hexa‐Substituted Cyclopropanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - André U. Augustin
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Laura Levy
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Ilan Marek
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| |
Collapse
|
21
|
Jarret M, Abou-Hamdan H, Kouklovsky C, Poupon E, Evanno L, Vincent G. Bioinspired Early Divergent Oxidative Cyclizations toward Pleiocarpamine, Talbotine, and Strictamine. Org Lett 2021; 23:1355-1360. [DOI: 10.1021/acs.orglett.1c00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maxime Jarret
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Hussein Abou-Hamdan
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Erwan Poupon
- Biomolécules: Conception, Isolement et Synthèse (BioCIS), Université Paris-Saclay, CNRS, 92296 Châtenay-Malabry, France
| | - Laurent Evanno
- Biomolécules: Conception, Isolement et Synthèse (BioCIS), Université Paris-Saclay, CNRS, 92296 Châtenay-Malabry, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| |
Collapse
|
22
|
Chen Y, Song X, Gao L, Song Z. Intramolecular Sakurai Allylation of Geminal Bis(silyl) Enamide with Indolenine. A Diastereoselective Cyclization To Form Functionalized Hexahydropyrido[3,4- b]Indole. Org Lett 2021; 23:124-128. [PMID: 33346667 DOI: 10.1021/acs.orglett.0c03806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A fluoride-promoted intramolecular Sakurai allylation of geminal bis(silyl) enamide with indolenine has been developed. The reaction facilitates an efficient cyclization to give hexahydropyrido[3,4-b]indoles in good yields with high diastereoselectivity. The resulted cis, trans-stereochemistry further enables the ring-closing metathesis (RCM) reaction of two alkene moieties, giving a tetracyclic N-hetereocycle widely found as the core structure in akuammiline alkaloids.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xuanyi Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
23
|
Ura T, Shimbo D, Yudasaka M, Tada N, Itoh A. Synthesis of Phenol-Derived cis-Vinyl Ethers Using Ethynyl Benziodoxolone. Chem Asian J 2020; 15:4000-4004. [PMID: 33058543 DOI: 10.1002/asia.202001102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Indexed: 12/19/2022]
Abstract
The stereoselective synthesis of cis-β-phenoxyvinyl benziodoxolones (cis-β-phenol-VBXs) from an ethynyl benziodoxolone-acetonitrile complex (EBX-MeCN) and various phenols is reported herein. The reaction tolerates different phenol derivatives, including complex natural products, and can be conducted under mild conditions. The synthesis was performed in an aqueous solvent in the absence and presence of a catalytic amount of a base. Selectively mono- and di-deuterated cis-β-phenol-VBXs were also prepared. cis-β-Phenol-VBXs were stereospecifically derivatized to cis-alkynylvinyl ethers and cis-iodovinyl ethers without loss of stereoselectivity or reduction in the deuterium/hydrogen ratio.
Collapse
Affiliation(s)
- Tomoki Ura
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Daisuke Shimbo
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masaharu Yudasaka
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Norihiro Tada
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| |
Collapse
|
24
|
Chang TY, Dotson JJ, Garcia-Garibay MA. Scalable Synthesis of Vicinal Quaternary Stereocenters via the Solid-State Photodecarbonylation of a Crystalline Hexasubstituted Ketone. Org Lett 2020; 22:8855-8859. [PMID: 33119318 DOI: 10.1021/acs.orglett.0c03226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the synthesis and stereospecific solid-state photodecarbonylation of a hexasubstituted ketone featuring six distinct α-substituents. The photoproduct of the solid-state transformation features vicinal all-carbon quaternary stereocenters. While reactions carried out in bulk powders and aqueous crystalline suspensions were complicated by secondary photochemistry of the primary photoproduct, optimal conditions provided good yields and recyclable starting material. Subsequent transformations of the α-substituents having orthogonal chemical reactivity illustrate the potential of this transformation toward constructing complex architectures.
Collapse
Affiliation(s)
- Trevor Y Chang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Jordan J Dotson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Miguel A Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
25
|
|
26
|
Andres R, Wang Q, Zhu J. Asymmetric Total Synthesis of (−)-Arborisidine and (−)-19-epi-Arborisidine Enabled by a Catalytic Enantioselective Pictet–Spengler Reaction. J Am Chem Soc 2020; 142:14276-14285. [DOI: 10.1021/jacs.0c05804] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rémi Andres
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Martin G, Angyal P, Egyed O, Varga S, Soós T. Total Syntheses of Dihydroindole Aspidosperma Alkaloids: Reductive Interrupted Fischer Indolization Followed by Redox Diversification. Org Lett 2020; 22:4675-4679. [PMID: 32497431 PMCID: PMC7467818 DOI: 10.1021/acs.orglett.0c01472] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 01/22/2023]
Abstract
We report a novel reductive interrupted Fischer indolization process for the concise assembly of the 20-oxoaspidospermidine framework. This rapid complexity generating route paves the way toward various dihydroindole Aspidosperma alkaloids with different C-5 side chain redox patterns. The end-game redox modulations were accomplished by modified Wolff-Kishner reaction and photo-Wolff rearrangement, enabling the total synthesis of (-)-aspidospermidine, (-)-limaspermidine, and (+)-17-demethoxy-N-acetylcylindrocarine and the formal total synthesis of (-)-1-acetylaspidoalbidine.
Collapse
Affiliation(s)
- Gábor Martin
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, 2 Magyar tudósok krt., Budapest, H-1117, Hungary
| | - Péter Angyal
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, 2 Magyar tudósok krt., Budapest, H-1117, Hungary
| | - Orsolya Egyed
- Instrumentation
Center, Research Centre for Natural Sciences, 2 Magyar tudósok krt., Budapest, H-1117, Hungary
| | - Szilárd Varga
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, 2 Magyar tudósok krt., Budapest, H-1117, Hungary
| | - Tibor Soós
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, 2 Magyar tudósok krt., Budapest, H-1117, Hungary
| |
Collapse
|
28
|
Kim DH, Kim JH, Jeon TH, Cho CG. New Synthetic Routes to (+)-Uleine and (-)-Tubifolidine: General Approach to 2-Azabicyclo[3.3.1]nonane Indole Alkaloids. Org Lett 2020; 22:3464-3468. [PMID: 32282214 DOI: 10.1021/acs.orglett.0c00912] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Novel asymmetric synthetic routes to (+)-uleine and (-)-tubifolidine are reported herein. The regioselective formation of enol triflates from 2-azabicyclo[3.3.1]nonane ketones followed by indolizations of the resultant ene-hydrazides allowed the efficient construction of key indole intermediates, facilitating the total synthesis of the target natural alkaloids.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Jeong-Hwa Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Tae-Hong Jeon
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Cheon-Gyu Cho
- Center for New Directions in Organic Synthesis, Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
29
|
Liu Z, Wang P, Yan Z, Chen S, Yu D, Zhao X, Mu T. Rhodium-catalyzed reductive carbonylation of aryl iodides to arylaldehydes with syngas. Beilstein J Org Chem 2020; 16:645-656. [PMID: 32318121 PMCID: PMC7155901 DOI: 10.3762/bjoc.16.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/28/2020] [Indexed: 12/29/2022] Open
Abstract
The reductive carbonylation of aryl iodides to aryl aldehydes possesses broad application prospects. We present an efficient and facile Rh-based catalytic system composed of the commercially available Rh salt RhCl3·3H2O, PPh3 as phosphine ligand, and Et3N as the base, for the synthesis of arylaldehydes via the reductive carbonylation of aryl iodides with CO and H2 under relatively mild conditions with a broad substrate range affording the products in good to excellent yields. Systematic investigations were carried out to study the experimental parameters. We explored the optimal ratio of Rh salt and PPh3 ligand, substrate scope, carbonyl source and hydrogen source, and the reaction mechanism. Particularly, a scaled-up experiment indicated that the catalytic method could find valuable applications in industrial productions. The low gas pressure, cheap ligand and low metal dosage could significantly improve the practicability in both chemical researches and industrial applications.
Collapse
Affiliation(s)
- Zhenghui Liu
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zhenzhong Yan
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Suqing Chen
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Dongkun Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xinhui Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
30
|
Zhang B, Wang X, Li C. Enantioselective Total Synthesis of (+)-Corymine and (-)-Deformylcorymine. J Am Chem Soc 2020; 142:3269-3274. [PMID: 31992040 DOI: 10.1021/jacs.0c00302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report herein the first enantioselective total synthesis of akuammiline alkaloids (+)-corymine and (-)-deformylcorymine. Starting from commercially available N-nosyltryptamine, the target molecules are both achieved in 11 steps. Key elements of the design include (a) a copper-catalyzed enantioselective addition of dimethyl malonate to a 3-bromooxindole to secure the C7 all-carbon quaternary stereocenter, (b) a one-step construction of cyclohexyl and pyrrolidinyl rings via intramolecular nucleophilic C- and N-addition, and (c) a nickel-promoted 7-endo cyclization of alkenyl bromide to furnish the azepanyl ring. The strategy is further extended to the synthesis of another three members of the akuammiline family, namely, (-)-10-demethoxyvincorine, (-)-2(S)-cathafoline, and (-)-3-epi-dihydrocorymine 17-acetate.
Collapse
Affiliation(s)
- Benxiang Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P.R. China
| | - Xiaoqing Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P.R. China
| | - Chaozhong Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P.R. China.,School of Materials and Chemical Engineering , Ningbo University of Technology , No. 201 Fenghua Road , Ningbo 315211 , P.R. China
| |
Collapse
|
31
|
Rossi-Ashton JA, Clarke AK, Taylor RJK, Unsworth WP. Modular Synthesis of Polycyclic Alkaloid Scaffolds via an Enantioselective Dearomative Cascade. Org Lett 2020; 22:1175-1181. [PMID: 31940208 PMCID: PMC7145359 DOI: 10.1021/acs.orglett.0c00053] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The polycyclic core of the akuammiline
alkaloids can be synthesized
from simple tryptamine and tryptophol derivatives via a Ag(I)-catalyzed
enantioselective dearomative cyclization cascade sequence. The complex
tetracyclic scaffolds are prepared via a rapid, versatile, three-step
modular synthesis from simple commercially available indole derivatives
in high yields and enantiomeric excess (up to 99% yield and >99% ee).
Collapse
Affiliation(s)
| | - Aimee K Clarke
- Department of Chemistry , University of York , York , YO10 5DD , U.K
| | | | | |
Collapse
|
32
|
Zhou YG, Wong HNC, Peng XS. Total Syntheses of (-)-Deoxoapodine, (-)-Kopsifoline D, and (-)-Beninine. J Org Chem 2019; 85:967-976. [PMID: 31830791 DOI: 10.1021/acs.joc.9b02918] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The total syntheses of Aspidosperma and Kopsia alkaloids (-)-deoxoapodine, (-)-kopsifoline D, and (-)-beninine are described through a domino deprotection-Michael addition-nucleophilic substitution protocol to assemble the core framework in efficient steps. Corey-Bakshi-Shibata reduction was employed to afford the enantioenriched intermediate for the total syntheses of the aforementioned alkaloids. The chirality was shown to completely transfer to the backbone using Johnson-Claisen rearrangement. The enantioselective total syntheses of (-)-kopsifoline D and (-)-beninine were accomplished for the first time. Our strategy opens up practical avenues for the total synthesis of structurally similar alkaloids.
Collapse
Affiliation(s)
- Yi-Guo Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin 100051 , New Territories , Hong Kong SAR, China
| | - Henry N C Wong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin 100051 , New Territories , Hong Kong SAR, China.,School of Science and Engineering , The Chinese University of Hong Kong (Shenzhen) , Shenzhen 518172 , China.,Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute , The Chinese University of Hong Kong , Shenzhen 518507 , China
| | - Xiao-Shui Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin 100051 , New Territories , Hong Kong SAR, China.,School of Science and Engineering , The Chinese University of Hong Kong (Shenzhen) , Shenzhen 518172 , China.,Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute , The Chinese University of Hong Kong , Shenzhen 518507 , China
| |
Collapse
|
33
|
Liu XY, Qin Y. Indole Alkaloid Synthesis Facilitated by Photoredox Catalytic Radical Cascade Reactions. Acc Chem Res 2019; 52:1877-1891. [PMID: 31264824 DOI: 10.1021/acs.accounts.9b00246] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The monoterpene indole alkaloids, containing over 3000 known members and more than 40 structural types, represent one of the largest natural product families that have proven to be an important drug source. Their complex chemical structures and significant biological activities have rendered these alkaloids attractive targets in the synthetic community for decades. While chemists have developed many synthetic methodologies and tactics toward this end, general strategies allowing divergent access to a large variety of structural types and members of monoterpene indole alkaloids are still limited and highly desirable. Photoredox catalysis has emerged in recent years as a powerful tool to realize chemical transformations via single electron transfer (SET) processes that would otherwise be inaccessible. In particular, when the radical species generated by the visible light photoinduced approach is involved in well-designed cascade reactions, the formation of multiple chemical bonds and the assembly of structurally complex molecules would be secured in a green and economic manner. This protocol might serve to remodel the way of thinking for the preparation of useful pharmaceuticals and complex natural products. Due to a long-standing interest in the synthesis of diverse indole alkaloids, our group previously developed a cyclopropanation strategy ( Qin , Y. Acc. Chem. Res. 2011 , 44 , 447 ) that was versatile to access several intriguing indole alkaloid molecules. With an idea of developing more general synthetic approaches to as many members of various indole alkaloids as possible, we recently disclosed new radical cascade reactions enabled by photoredox catalysis, leading to the collective asymmetric total synthesis of 42 monoterpene indole alkaloids belonging to 7 structural types. Several important discoveries deserve to be highlighted. First, the use of photocatalytic technology allowed us to achieve an unusual reaction pathway that reversed the conventional reactivity between two nucleophilic amine and enamine groups. Second, a crucial nitrogen-centered radical, directly generated from a sulfonamide N-H bond, triggered three types of cascade reactions to deliver indole alkaloid cores with manifold functionalities and controllable diastereoselectivities. Moreover, expansion of this catalytic, scalable, and general methodology permitted the total synthesis of a large collection of indole alkaloids. In this Account, we wish to provide a complete picture of our studies concerning the original synthetic design, method development, and applications in total synthesis. It is anticipated that the visible-light-driven cascade strategy will find further utility in the realm of natural product synthesis.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
34
|
Abstract
The first total synthesis of arborisidine, a unique Kopsia indole alkaloid possessing a fully substituted cyclohexanone ring system with two quaternary carbons, has been achieved in seven steps in racemic format from tryptamine and in nine steps in asymmetric format from d-tryptophan methyl ester. Key elements of the design include a carefully orchestrated decyanation protocol to finalize the asymmetric formation of an aza-quaternary center that is challenging to access in optically active format via direct Pictet-Spengler cyclizations with tryptamine, a metal-promoted 6- endo-dig cyclization of an enyne to establish the second core quaternary center, and regiospecific functionalizations of the resultant complex diene to finalize the target structure. The distinct and efficient nature of the developed solution is highlighted by several unsuccessful approaches and unexpected rearrangements.
Collapse
Affiliation(s)
- Zhiyao Zhou
- Department of Chemistry , University of Chicago , 5735 South Ellis Avenue , Chicago , Illinois 60637 , United States
| | - Alison X Gao
- Department of Chemistry , University of Chicago , 5735 South Ellis Avenue , Chicago , Illinois 60637 , United States
| | - Scott A Snyder
- Department of Chemistry , University of Chicago , 5735 South Ellis Avenue , Chicago , Illinois 60637 , United States
| |
Collapse
|
35
|
Li W, Chen Z, Yu D, Peng X, Wen G, Wang S, Xue F, Liu X, Qin Y. Asymmetric Total Syntheses of the Akuammiline Alkaloids (−)‐Strictamine and (−)‐Rhazinoline. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenfei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Zhitao Chen
- School of Pharmaceutic ScienceChongqing University Chongqing 401331 P. R. China
| | - Di Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Xin Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Guohua Wen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Siqi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Fei Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Xiao‐Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| |
Collapse
|
36
|
Li W, Chen Z, Yu D, Peng X, Wen G, Wang S, Xue F, Liu X, Qin Y. Asymmetric Total Syntheses of the Akuammiline Alkaloids (−)‐Strictamine and (−)‐Rhazinoline. Angew Chem Int Ed Engl 2019; 58:6059-6063. [DOI: 10.1002/anie.201901074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wenfei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Zhitao Chen
- School of Pharmaceutic ScienceChongqing University Chongqing 401331 P. R. China
| | - Di Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Xin Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Guohua Wen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Siqi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Fei Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Xiao‐Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| |
Collapse
|
37
|
Zhang X, Kakde BN, Guo R, Yadav S, Gu Y, Li A. Total Syntheses of Echitamine, Akuammiline, Rhazicine, and Pseudoakuammigine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Badrinath N. Kakde
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Rui Guo
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Sonyabapu Yadav
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yucheng Gu
- SyngentaJealott's Hill International Research Centre Bracknell Berkshire RG42 6EY UK
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
38
|
Deng M, Yao Y, Li X, Li N, Zhang X, Liang G. Rapid Construction of the ABCE Tetracyclic Tertiary Amine Skeleton in Daphenylline Enabled by an Amine–Borane Complexation Strategy. Org Lett 2019; 21:3290-3294. [DOI: 10.1021/acs.orglett.9b01021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meng Deng
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanmin Yao
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaohu Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Nan Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Zhang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guangxin Liang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
39
|
Sato K, Kogure N, Kitajima M, Takayama H. Total Syntheses of Pleiocarpamine, Normavacurine, and C-Mavacurine. Org Lett 2019; 21:3342-3345. [PMID: 30998375 DOI: 10.1021/acs.orglett.9b01084] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The total syntheses of C-mavacurine-type indole alkaloids, (±)-pleiocarpamine, (±)-normavacurine, and (±)- C-mavacurine, were accomplished. The key step in the syntheses was the cyclization between the metal carbenoid at C16 and the N1 position in a Corynanthe-type compound that was equipped with a diazo function. For this cyclization, the N4 modification of the substrate using an amine-borane complex was indispensable to fix the molecular conformation.
Collapse
Affiliation(s)
- Keigo Sato
- Graduate School of Pharmaceutical Sciences , Chiba University , 1-8-1 Inohana, Chuo-ku , Chiba 260-8675 , Japan
| | - Noriyuki Kogure
- Graduate School of Pharmaceutical Sciences , Chiba University , 1-8-1 Inohana, Chuo-ku , Chiba 260-8675 , Japan
| | - Mariko Kitajima
- Graduate School of Pharmaceutical Sciences , Chiba University , 1-8-1 Inohana, Chuo-ku , Chiba 260-8675 , Japan
| | - Hiromitsu Takayama
- Graduate School of Pharmaceutical Sciences , Chiba University , 1-8-1 Inohana, Chuo-ku , Chiba 260-8675 , Japan
| |
Collapse
|
40
|
Zhang Z, Xie S, Cheng B, Zhai H, Li Y. Enantioselective Total Synthesis of (+)-Arboridinine. J Am Chem Soc 2019; 141:7147-7154. [DOI: 10.1021/jacs.9b02362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Sujun Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bin Cheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hongbin Zhai
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
41
|
Zhang X, Kakde BN, Guo R, Yadav S, Gu Y, Li A. Total Syntheses of Echitamine, Akuammiline, Rhazicine, and Pseudoakuammigine. Angew Chem Int Ed Engl 2019; 58:6053-6058. [PMID: 30803132 DOI: 10.1002/anie.201901086] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Indexed: 01/30/2023]
Abstract
Echitamine (1) and akuammiline (2) are representative members of a fascinating class of monoterpenoid indole alkaloids. We report the syntheses of 2 and its congener deacetylakuammiline (3). The azabicyclo[3.3.1]nonane motif was assembled through silver-catalyzed internal alkyne cyclization, and one-pot C-O bond cleavage/C-N bond formation furnished the pentacyclic scaffold. Compound 3 then served as a common intermediate for preparing a series of structurally diverse and synthetically challenging congeners including 1. A position-selective Polonovski-Potier reaction followed by formal N-4 migration built the core of N-demethylechitamine (4) and 1. An alternative route featuring Meisenheimer rearrangement gave 4 as well. Oxidation of the alcohol within 3 gave rhazimal (5), which underwent tandem indolenine hydrolysis, hemiaminalization, and hemiketalization to form rhazicine (6). A sequence of N,O-ketalization and reductive amination secured the chemoselectivity of N-methylation, leading to pseudoakuammigine (7).
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Badrinath N Kakde
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Rui Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Sonyabapu Yadav
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|