1
|
Xu Y, Ruijne F, Diez MG, Stada JJ, Kuipers OP. Design and Production of Geranylated Cyclic Peptides by the RiPP Enzymes SyncM and PirF. Biomacromolecules 2025; 26:3186-3199. [PMID: 40189806 PMCID: PMC12076493 DOI: 10.1021/acs.biomac.5c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 05/13/2025]
Abstract
The growing threat of antibiotic resistance highlights the urgent need for new antimicrobial agents. Nonribosomal peptides (NRPs) are potent antibiotics with complex structures, but generating novel NRP analogues is costly and inefficient. An emerging alternative is using ribosomally synthesized and post-translationally modified peptides (RiPPs), which are gene-encoded, allowing for easier mutagenesis and modification. This study aimed to produce peptides with two key structural elements of many NRP antibiotics: a macrocycle and an N-terminal lipid moiety. The RiPP enzymes SyncM and PirF were employed-SyncM introduced lanthionine or methyllanthionine macrocycles, while PirF incorporated isoprenyl chains to emulate the lipid moieties in NRPs. Both enzymes successfully modified the templates, and their combined use generated lipidated macrocyclic peptides, resembling lipopeptide antibiotics. These findings demonstrate the potential of SyncM and PirF as versatile tools for designing novel gene-encoded NRP mimics, enabling high-throughput screening for new bioactive peptides.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Molecular Genetics,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Fleur Ruijne
- Department of Molecular Genetics,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Manel Garcia Diez
- Department of Molecular Genetics,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jorrit Jilles Stada
- Department of Molecular Genetics,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
2
|
Smith AB, Ejindu RC, Chekan JR. Engineering RiPP pathways: strategies for generating complex bioactive peptides. Trends Biochem Sci 2025:S0968-0004(25)00080-5. [PMID: 40335383 DOI: 10.1016/j.tibs.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025]
Abstract
Historically, natural products have been essential sources of therapeutic agents, many of which are currently used to manage various diseases. In recent years, ribosomally synthesized and post-translationally modified peptides (RiPPs) have garnered considerable interest in drug discovery and development due to their biosynthetic plasticity and their ability to generate diverse bioactive structural scaffolds. Unfortunately, many RiPPs have suboptimal bioavailability and proteolytic stability, significantly limiting their clinical potential. Moreover, the complexity of RiPP structures makes total synthesis extremely difficult. These drawbacks necessitate pathway engineering to create derivatives with potentially optimized physicochemical properties. Herein, we review recent efforts to surmount pathway engineering challenges and to rationally modify components of RiPP pathways for new functions to derive new bioactive analogs.
Collapse
Affiliation(s)
- Ayoola B Smith
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Renee C Ejindu
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
3
|
Chen XW, Liu Z, Dai S, Zou Y. Discovery, Characterization and Engineering of the Free l-Histidine C4-Prenyltransferase. J Am Chem Soc 2024; 146:23686-23691. [PMID: 39140691 DOI: 10.1021/jacs.4c08388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Prenylation of amino acids is a critical step for synthesizing building blocks of prenylated alkaloid family natural products, where the corresponding prenyltransferase that catalyzes prenylation on free l-histidine (l-His) has not yet been identified. Here, we first discovered and characterized a prenyltransferase FunA from the antifungal agent fungerin pathway that efficiently performs C4-dimethylallylation on l-His. Crystal structure-guided engineering of the prenyl-binding pocket of FunA, a single M181A mutation, successfully converted it into a C4-geranyltransferase. Furthermore, FunA and its variant FunA-M181A show broad substrate promiscuity toward substrates that vary in substituents of the imidazole ring. Our work furthers our knowledge of free amino acid prenyltransferase and expands the arsenal of alkylation biocatalysts for imidazole-containing small molecules.
Collapse
Affiliation(s)
- Xi-Wei Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Zhiyong Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shaobo Dai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
4
|
XUE J, LIU Z, WANG F. [Applications of native mass spectrometry and ultraviolet photodissociation in protein structure and interaction analysis]. Se Pu 2024; 42:681-692. [PMID: 38966976 PMCID: PMC11224945 DOI: 10.3724/sp.j.1123.2024.01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 07/06/2024] Open
Abstract
Dynamic changes in the structures and interactions of proteins are closely correlated with their biological functions. However, the precise detection and analysis of these molecules are challenging. Native mass spectrometry (nMS) introduces proteins or protein complexes into the gas phase by electrospray ionization, and then performs MS analysis under near-physiological conditions that preserve the folded state of proteins and their complexes in solution. nMS can provide information on stoichiometry, assembly, and dissociation constants by directly determining the relative molecular masses of protein complexes through high-resolution MS. It can also integrate various MS dissociation technologies, such as collision-induced dissociation (CID), surface-induced dissociation (SID), and ultraviolet photodissociation (UVPD), to analyze the conformational changes, binding interfaces, and active sites of protein complexes, thereby revealing the relationship between their interactions and biological functions. UVPD, especially 193 nm excimer laser UVPD, is a rapidly evolving MS dissociation method that can directly dissociate the covalent bonds of protein backbones with a single pulse. It can generate different types of fragment ions, while preserving noncovalent interactions such as hydrogen bonds within these ions, thereby enabling the MS analysis of protein structures with single-amino-acid-site resolution. This review outlines the applications and recent progress of nMS and UVPD in protein dynamic structure and interaction analyses. It covers the nMS techniques used to analyze protein-small-molecule ligand interactions, the structures of membrane proteins and their complexes, and protein-protein interactions. The discussion on UVPD includes the analysis of gas-phase protein structures and interactions, as well as alterations in protein dynamic structures, and interactions resulting from mutations and ligand binding. Finally, this review describes the future development prospects for protein analysis by nMS and new-generation advanced extreme UV light sources with higher brightness and shorter pulses.
Collapse
|
5
|
Han SW, Won HS. Advancements in the Application of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs). Biomolecules 2024; 14:479. [PMID: 38672495 PMCID: PMC11048544 DOI: 10.3390/biom14040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a significant potential for novel therapeutic applications because of their bioactive properties, stability, and specificity. RiPPs are synthesized on ribosomes, followed by intricate post-translational modifications (PTMs), crucial for their diverse structures and functions. PTMs, such as cyclization, methylation, and proteolysis, play crucial roles in enhancing RiPP stability and bioactivity. Advances in synthetic biology and bioinformatics have significantly advanced the field, introducing new methods for RiPP production and engineering. These methods encompass strategies for heterologous expression, genetic refactoring, and exploiting the substrate tolerance of tailoring enzymes to create novel RiPP analogs with improved or entirely new functions. Furthermore, the introduction and implementation of cutting-edge screening methods, including mRNA display, surface display, and two-hybrid systems, have expedited the identification of RiPPs with significant pharmaceutical potential. This comprehensive review not only discusses the current advancements in RiPP research but also the promising opportunities that leveraging these bioactive peptides for therapeutic applications presents, illustrating the synergy between traditional biochemistry and contemporary synthetic biology and genetic engineering approaches.
Collapse
Affiliation(s)
- Sang-Woo Han
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea;
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea;
- BK21 Project Team, Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea
| |
Collapse
|
6
|
Zhang Y, Hamada K, Satake M, Sengoku T, Goto Y, Suga H. Switching Prenyl Donor Specificities of Cyanobactin Prenyltransferases. J Am Chem Soc 2023; 145:23893-23898. [PMID: 37877712 DOI: 10.1021/jacs.3c07373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Prenyltransferases in cyanobactin biosynthesis are of growing interest as peptide alkylation biocatalysts, but their prenylation modes characterized so far have been limited to dimethylallylation (C5) or geranylation (C10). Here we engaged in structure-guided engineering of the prenyl-binding pocket of a His-C2-geranyltransferase LimF to modulate its prenylation mode. Contraction of the pocket by a single mutation led to a His-C2-dimethylallyltransferase. More importantly, pocket expansion by a double mutation successfully repurposed LimF for farnesylation (C15), which is an unprecedented mode in this family. Furthermore, the obtained knowledge of the essential residues to construct the farnesyl-binding pocket has allowed for rational design of a Tyr-O-farnesyltransferase by a triple mutation of a Tyr-O-dimethylallyltransferase PagF. These results provide an approach to manipulate the prenyl specificity of cyanobactin prenyltransferases, broadening the chemical space covered by this class of enzymes and expanding the toolbox of peptide alkylation biocatalysts.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masayuki Satake
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Toru Sengoku
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
8
|
Colombano A, Dalponte L, Dall'Angelo S, Clemente C, Idress M, Ghazal A, Houssen WE. Chemoenzymatic Late-Stage Modifications Enable Downstream Click-Mediated Fluorescent Tagging of Peptides. Angew Chem Int Ed Engl 2023; 62:e202215979. [PMID: 36815722 PMCID: PMC10946513 DOI: 10.1002/anie.202215979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Aromatic prenyltransferases from cyanobactin biosynthetic pathways catalyse the chemoselective and regioselective intramolecular transfer of prenyl/geranyl groups from isoprene donors to an electron-rich position in these macrocyclic and linear peptides. These enzymes often demonstrate relaxed substrate specificity and are considered useful biocatalysts for structural diversification of peptides. Herein, we assess the isoprene donor specificity of the N1-tryptophan prenyltransferase AcyF from the anacyclamide A8P pathway using a library of 22 synthetic alkyl pyrophosphate analogues, of which many display reactive groups that are amenable to additional functionalization. We further used AcyF to introduce a reactive moiety into a tryptophan-containing cyclic peptide and subsequently used click chemistry to fluorescently label the enzymatically modified peptide. This chemoenzymatic strategy allows late-stage modification of peptides and is useful for many applications.
Collapse
Affiliation(s)
- Alessandro Colombano
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Luca Dalponte
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Sergio Dall'Angelo
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Claudia Clemente
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Mohannad Idress
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
- Abzena, Babraham Research CampusCambridgeUK
| | - Ahmad Ghazal
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Wael E. Houssen
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| |
Collapse
|
9
|
Zhang Y, Goto Y, Suga H. Discovery, biochemical characterization, and bioengineering of cyanobactin prenyltransferases. Trends Biochem Sci 2023; 48:360-374. [PMID: 36564250 DOI: 10.1016/j.tibs.2022.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Prenylation is a post-translational modification (PTM) widely found in primary and secondary metabolism. This modification can enhance the lipophilicity of molecules, enabling them to interact with lipid membranes more effectively. The prenylation of peptides is often carried out by cyanobactin prenyltransferases (PTases) from cyanobacteria. These enzymes are of interest due to their ability to add prenyl groups to unmodified peptides, thus making them more effective therapeutics through the subsequent acquisition of increased membrane permeability and bioavailability. Herein we review the current knowledge of cyanobactin PTases, focusing on their discovery, biochemistry, and bioengineering, and highlight the potential application of them as peptide alkylation biocatalysts to generate peptide therapeutics.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
10
|
Mordhorst S, Ruijne F, Vagstad AL, Kuipers OP, Piel J. Emulating nonribosomal peptides with ribosomal biosynthetic strategies. RSC Chem Biol 2023; 4:7-36. [PMID: 36685251 PMCID: PMC9811515 DOI: 10.1039/d2cb00169a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide natural products are important lead structures for human drugs and many nonribosomal peptides possess antibiotic activity. This makes them interesting targets for engineering approaches to generate peptide analogues with, for example, increased bioactivities. Nonribosomal peptides are produced by huge mega-enzyme complexes in an assembly-line like manner, and hence, these biosynthetic pathways are challenging to engineer. In the past decade, more and more structural features thought to be unique to nonribosomal peptides were found in ribosomally synthesised and posttranslationally modified peptides as well. These streamlined ribosomal pathways with modifying enzymes that are often promiscuous and with gene-encoded precursor proteins that can be modified easily, offer several advantages to produce designer peptides. This review aims to provide an overview of recent progress in this emerging research area by comparing structural features common to both nonribosomal and ribosomally synthesised and posttranslationally modified peptides in the first part and highlighting synthetic biology strategies for emulating nonribosomal peptides by ribosomal pathway engineering in the second part.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Fleur Ruijne
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| |
Collapse
|
11
|
Abstract
A key goal of synthetic biology is to enable designed modification of peptides and proteins, both in vivo and in vitro. N- and C-Terminal modification enzymes are crucial in this regard, but there are a few enzymatic options to protect peptide termini. AgeMTPT protects the N-terminus of short peptides with isoprene and the C-terminus as a methyl ester, but its substrate scope is unknown, limiting its application. Here, we investigate the substrate selectivity of the prenyltransferase domain, revealing a requirement for N-terminal aromatic amino acids, but with tolerance for diverse uncharged amino acids in the remaining positions. To demonstrate the potential of the enzyme, substrate selectivity data were used in the enzymatic modification of leu-enkephalin at the critical N-terminal residue. AgeMTPT active site mutagenesis led to an enzyme with expanded substrate scope, including the reverse geranylation of the N-termini of peptides. These data reveal potential applications of enzymatic peptide protection in synthetic biology.
Collapse
Affiliation(s)
- Ying Cong
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Paul D. Scesa
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
12
|
LimF is a versatile prenyltransferase for histidine-C-geranylation on diverse non-natural substrates. Nat Catal 2022. [DOI: 10.1038/s41929-022-00822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Abstract
Biologically active peptides are a major growing class of drugs, but their therapeutic potential is constrained by several limitations including bioavailability and poor pharmacokinetics. The attachment of functional groups like lipids has proven to be a robust and effective strategy for improving their therapeutic potential. Biochemical and bioactivity-guided screening efforts have identified the cyanobactins as a large class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that are modified with lipids. These lipids are attached by the F superfamily of peptide prenyltransferase enzymes that utilize 5-carbon (prenylation) or 10-carbon (geranylation) donors. The chemical structures of various cyanobactins initially showed isoprenoid attachments on Ser, Thr, or Tyr. Biochemical characterization of the F prenyltransferases from the corresponding clusters shows that the different enzymes have different acceptor residue specificities but are otherwise remarkably sequence tolerant. Hence, these enzymes are well suited for biotechnological applications. The crystal structure of the Tyr O-prenyltransferase PagF reveals that the F enzyme shares a domain architecture reminiscent of a canonical ABBA prenyltransferase fold but lacks secondary structural elements necessary to form an enclosed active site. Binding of either cyclic or linear peptides is sufficient to close the active site to allow for productive catalysis, explaining why these enzymes cannot use isolated amino acids as substrates.Almost all characterized isoprenylated cyanobactins are modified with 5-carbon isoprenoids. However, chemical characterization demonstrates that the piricyclamides are modified with a 10-carbon geranyl moiety, and in vitro reconstitution of the corresponding PirF shows that the enzyme is a geranyltransferase. Structural analysis of PirF shows an active site nearly identical with that of the PagF prenyltransferase but with a single amino acid substitution. Of note, mutation at this residue in PagF or PirF can completely switch the isoprenoid donor specificity of these enzymes. Recent efforts have resulted in significant expansion of the F family with enzymes identified that can carry out C-prenylations of Trp, N-prenylations of Trp, and bis-N-prenylations of Arg. Additional genome-guided efforts based on the sequence of F enzymes identify linear cyanobactins that are α-N-prenylated and α-C-methylated by a bifunctional prenyltransferase/methyltransferase fusion and a bis-α-N- and α-C-prenylated linear peptide. The discovery of these different classes of prenyltransferases with diverse acceptor residue specificities expands the biosynthetic toolkit for enzymatic prenylation of peptide substrates.In this Account, we review the current knowledge scope of the F family of peptide prenyltransferases, focusing on the biochemical, structure-function, and chemical characterization studies that have been carried out in our laboratories. These enzymes are easily amenable for diversity-oriented synthetic efforts as they can accommodate substrate peptides of diverse sequences and are thus attractive catalysts for use in synthetic biology approaches to generate high-value peptidic therapeutics.
Collapse
Affiliation(s)
- Yiwu Zheng
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ying Cong
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Phan CS, Matsuda K, Balloo N, Fujita K, Wakimoto T, Okino T. Argicyclamides A-C Unveil Enzymatic Basis for Guanidine Bis-prenylation. J Am Chem Soc 2021; 143:10083-10087. [PMID: 34181406 DOI: 10.1021/jacs.1c05732] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Guanidine prenylation is an outstanding modification in alkaloid and peptide biosynthesis, but its enzymatic basis has remained elusive. We report the isolation of argicyclamides, a new class of cyanobactins with unique mono- and bis-prenylations on guanidine moieties, from Microcystis aeruginosa NIES-88. The genetic basis of argicyclamide biosynthesis was established by the heterologous expression and in vitro characterization of biosynthetic enzymes including AgcF, a new guanidine prenyltransferase. This study provides important insight into the biosynthesis of prenylated guanidines and offers a new toolkit for peptide modification.
Collapse
Affiliation(s)
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | | | - Kei Fujita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | | |
Collapse
|
15
|
Purushothaman M, Sarkar S, Morita M, Gugger M, Schmidt EW, Morinaka BI. Genome-Mining-Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O-Prenyltransferase. Angew Chem Int Ed Engl 2021; 60:8460-8465. [PMID: 33586286 PMCID: PMC8011950 DOI: 10.1002/anie.202015975] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Indexed: 11/09/2022]
Abstract
Cyanobactins comprise a widespread group of peptide metabolites produced by cyanobacteria that are often diversified by post-translational prenylation. Several enzymes have been identified in cyanobactin biosynthetic pathways that carry out chemically diverse prenylation reactions, representing a resource for the discovery of post-translational alkylating agents. Here, genome mining was used to identify orphan cyanobactin prenyltransferases, leading to the isolation of tolypamide from the freshwater cyanobacterium Tolypothrix sp. The structure of tolypamide was confirmed by spectroscopic methods, degradation, and enzymatic total synthesis. Tolypamide is forward-prenylated on a threonine residue, representing an unprecedented post-translational modification. Biochemical characterization of the cognate enzyme TolF revealed a prenyltransferase with strict selectivity for forward O-prenylation of serine or threonine but with relaxed substrate selectivity for flanking peptide sequences. Since cyanobactin pathways often exhibit exceptionally broad substrate tolerance, these enzymes represent robust tools for synthetic biology.
Collapse
Affiliation(s)
- Mugilarasi Purushothaman
- Department of Pharmacy, National University of Singapore, 18 Science Dr 4, Singapore 117543 (Singapore)
| | - Snigdha Sarkar
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 (USA)
| | - Maho Morita
- Laboratory of Chemical Biology of Natural Products, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601 (Japan)
| | - Muriel Gugger
- Institut Pasteur, Collection des Cyanobactéries, Département de Microbiologie, Paris 75015 (France)
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 (USA)
| | - Brandon I. Morinaka
- Department of Pharmacy, National University of Singapore, 18 Science Dr 4, Singapore 117543 (Singapore)
| |
Collapse
|
16
|
Purushothaman M, Sarkar S, Morita M, Gugger M, Schmidt EW, Morinaka BI. Genome‐Mining‐Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward
O
‐Prenyltransferase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mugilarasi Purushothaman
- Department of Pharmacy National University of Singapore 18 Science Dr 4 Singapore 117543 Singapore
| | - Snigdha Sarkar
- Department of Medicinal Chemistry University of Utah Salt Lake City UT 84112 USA
| | - Maho Morita
- Laboratory of Chemical Biology of Natural Products Graduate School of Bioagricultural Sciences Nagoya University, Furo-cho, Chikusa Nagoya 464-8601 Japan
| | - Muriel Gugger
- Institut Pasteur Collection des Cyanobactéries Département de Microbiologie 75015 Paris France
| | - Eric W. Schmidt
- Department of Medicinal Chemistry University of Utah Salt Lake City UT 84112 USA
| | - Brandon I. Morinaka
- Department of Pharmacy National University of Singapore 18 Science Dr 4 Singapore 117543 Singapore
| |
Collapse
|
17
|
Chen HP, Abe I. Microbial soluble aromatic prenyltransferases for engineered biosynthesis. Synth Syst Biotechnol 2021; 6:51-62. [PMID: 33778178 PMCID: PMC7973389 DOI: 10.1016/j.synbio.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
Prenyltransferase (PTase) enzymes play crucial roles in natural product biosynthesis by transferring isoprene unit(s) to target substrates, thereby generating prenylated compounds. The prenylation step leads to a diverse group of natural products with improved membrane affinity and enhanced bioactivity, as compared to the non-prenylated forms. The last two decades have witnessed increasing studies on the identification, characterization, enzyme engineering, and synthetic biology of microbial PTase family enzymes. We herein summarize several examples of microbial soluble aromatic PTases for chemoenzymatic syntheses of unnatural novel prenylated compounds.
Collapse
Key Words
- Biosynthesis
- DHN, dihydroxynaphthalene
- DMAPP, dimethylallyl diphosphate
- DMATS, dimethylallyltryptophan synthase
- DMSPP, dimethylallyl S-thiolodiphosphate
- Enzyme engineering
- FPP, farnesyl diphosphate
- GFPP, geranyl farnesyl diphosphate
- GPP, geranyl diphosphate
- GSPP, geranyl S- thiolodiphosphate
- IPP, isopentenyl pyrophosphate
- Microbial prenyltransferase
- PPP, phytyl pyrophosphate
- PTase, prenyltransferase
- Prenylation
- RiPP, ribosomally synthesized and posttranslationally modified peptide
- Synthetic biology
- THN, 1,3,6,8-tetrahydroxynaphthalene
Collapse
Affiliation(s)
- He-Ping Chen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, 430074, PR China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
18
|
Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials. Biochem Soc Trans 2021; 49:203-215. [PMID: 33439248 DOI: 10.1042/bst20200425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Natural peptide products are a valuable source of important therapeutic agents, including antibiotics, antivirals and crop protection agents. Aided by an increased understanding of structure-activity relationships of these complex molecules and the biosynthetic machineries that produce them, it has become possible to re-engineer complete machineries and biosynthetic pathways to create novel products with improved pharmacological properties or modified structures to combat antimicrobial resistance. In this review, we will address the progress that has been made using non-ribosomally produced peptides and ribosomally synthesized and post-translationally modified peptides as scaffolds for designed biosynthetic pathways or combinatorial synthesis for the creation of novel peptide antimicrobials.
Collapse
|
19
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 488] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
20
|
Xu Y, Li D, Tan G, Zhang Y, Li Z, Xu K, Li SM, Yu X. A Single Amino Acid Switch Alters the Prenyl Donor Specificity of a Fungal Aromatic Prenyltransferase toward Biflavonoids. Org Lett 2020; 23:497-502. [DOI: 10.1021/acs.orglett.0c04015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yuanyuan Xu
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People’s Republic of China
| | - Dan Li
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People’s Republic of China
| | - Guishan Tan
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People’s Republic of China
- Xiangya Hospital of Central South University, Central South University, Changsha, Hunan 410008, People’s Republic of China
| | - Yan Zhang
- Biomedical Research Institute of Zibo High-Tech Industrial Development Zone, Zibo, Shandong 255000, People’s Republic of China
| | - Zhansheng Li
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People’s Republic of China
| | - Kangping Xu
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People’s Republic of China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Xia Yu
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People’s Republic of China
| |
Collapse
|
21
|
Malico AA, Calzini MA, Gayen AK, Williams GJ. Synthetic biology, combinatorial biosynthesis, and chemo‑enzymatic synthesis of isoprenoids. J Ind Microbiol Biotechnol 2020; 47:675-702. [PMID: 32880770 PMCID: PMC7666032 DOI: 10.1007/s10295-020-02306-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Isoprenoids are a large class of natural products with myriad applications as bioactive and commercial compounds. Their diverse structures are derived from the biosynthetic assembly and tailoring of their scaffolds, ultimately constructed from two C5 hemiterpene building blocks. The modular logic of these platforms can be harnessed to improve titers of valuable isoprenoids in diverse hosts and to produce new-to-nature compounds. Often, this process is facilitated by the substrate or product promiscuity of the component enzymes, which can be leveraged to produce novel isoprenoids. To complement rational enhancements and even re-programming of isoprenoid biosynthesis, high-throughput approaches that rely on searching through large enzymatic libraries are being developed. This review summarizes recent advances and strategies related to isoprenoid synthetic biology, combinatorial biosynthesis, and chemo-enzymatic synthesis, focusing on the past 5 years. Emerging applications of cell-free biosynthesis and high-throughput tools are included that culminate in a discussion of the future outlook and perspective of isoprenoid biosynthetic engineering.
Collapse
Affiliation(s)
| | - Miles A Calzini
- Department of Chemistry, NC State University, Raleigh, NC, 27695, USA
| | - Anuran K Gayen
- Department of Chemistry, NC State University, Raleigh, NC, 27695, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, 27695, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
22
|
Algal neurotoxin biosynthesis repurposes the terpene cyclase structural fold into an N-prenyltransferase. Proc Natl Acad Sci U S A 2020; 117:12799-12805. [PMID: 32457155 DOI: 10.1073/pnas.2001325117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prenylation is a common biological reaction in all domains of life wherein prenyl diphosphate donors transfer prenyl groups onto small molecules as well as large proteins. The enzymes that catalyze these reactions are structurally distinct from ubiquitous terpene cyclases that, instead, assemble terpenes via intramolecular rearrangements of a single substrate. Herein, we report the structure and molecular details of a new family of prenyltransferases from marine algae that repurposes the terpene cyclase structural fold for the N-prenylation of glutamic acid during the biosynthesis of the potent neurochemicals domoic acid and kainic acid. We solved the X-ray crystal structure of the prenyltransferase found in domoic acid biosynthesis, DabA, and show distinct active site binding modifications that remodel the canonical magnesium (Mg2+)-binding motif found in terpene cyclases. We then applied our structural knowledge of DabA and a homologous enzyme from the kainic acid biosynthetic pathway, KabA, to reengineer their isoprene donor specificities (geranyl diphosphate [GPP] versus dimethylallyl diphosphate [DMAPP]) with a single amino acid change. While diatom DabA and seaweed KabA enzymes share a common evolutionary lineage, they are distinct from all other terpene cyclases, suggesting a very distant ancestor to the larger terpene synthase family.
Collapse
|
23
|
Abstract
Aromatic prenyltransferases (PTases), including ABBA-type and dimethylallyl tryptophan synthase (DMATS)-type enzymes from bacteria and fungi, play important role for diversification of the natural products and improvement of the biological activities. For a decade, the characterization of enzymes and enzymatic synthesis of prenylated compounds by using ABBA-type and DMATS-type PTases have been demonstrated. Here, I introduce several examples of the studies on chemoenzymatic synthesis of unnatural prenylated compounds and the enzyme engineering of ABBA-type and DMATS-type PTases.
Collapse
|
24
|
Dalponte L, Parajuli A, Younger E, Mattila A, Jokela J, Wahlsten M, Leikoski N, Sivonen K, Jarmusch SA, Houssen WE, Fewer DP. N-Prenylation of Tryptophan by an Aromatic Prenyltransferase from the Cyanobactin Biosynthetic Pathway. Biochemistry 2018; 57:6860-6867. [DOI: 10.1021/acs.biochem.8b00879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Luca Dalponte
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, U.K
- Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, U.K
| | - Anirudra Parajuli
- Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
| | - Ellen Younger
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, U.K
- Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, U.K
| | - Antti Mattila
- Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
| | - Matti Wahlsten
- Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
| | - Niina Leikoski
- Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
| | - Scott A. Jarmusch
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, U.K
| | - Wael E. Houssen
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, U.K
- Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, U.K
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - David P. Fewer
- Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
| |
Collapse
|
25
|
Liao G, Mai P, Fan J, Zocher G, Stehle T, Li SM. Complete Decoration of the Indolyl Residue in cyclo-l-Trp-l-Trp with Geranyl Moieties by Using Engineered Dimethylallyl Transferases. Org Lett 2018; 20:7201-7205. [DOI: 10.1021/acs.orglett.8b03124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ge Liao
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Strasse 4, Marburg 35037, Germany
| | - Peter Mai
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Strasse 4, Marburg 35037, Germany
| | - Jie Fan
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Strasse 4, Marburg 35037, Germany
| | - Georg Zocher
- Interfakultäres Institut für Biochemie, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
| | - Thilo Stehle
- Interfakultäres Institut für Biochemie, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Strasse 4, Marburg 35037, Germany
| |
Collapse
|