1
|
Wu L, Zhang J, Cornwell‐Arquitt R, Hendrix DA, Radakovic A, Szostak JW. Selective Nonenzymatic Formation of Biologically Common RNA Hairpins. Angew Chem Int Ed Engl 2025; 64:e202417370. [PMID: 39568250 PMCID: PMC11773311 DOI: 10.1002/anie.202417370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
The prebiotic formation of RNA building blocks is well-supported experimentally, yet the emergence of sequence- and structure-specific RNA oligomers is generally attributed to biological selection via Darwinian evolution rather than prebiotic chemical selectivity. In this study, we used deep sequencing to investigate the partitioning of randomized RNA overhangs into ligated products by either splinted ligation or loop-closing ligation. Comprehensive sequence-reactivity profiles revealed that loop-closing ligation preferentially yields hairpin structures with loop sequences UNNG, CNNG, and GNNA (where N represents A, C, G, or U) under competing conditions. In contrast, splinted ligation products tended to be GC rich. Notably, the overhang sequences that preferentially partition to loop-closing ligation significantly overlap with the most common biological tetraloops, whereas the overhangs favoring splinted ligation exhibit an inverse correlation with biological tetraloops. Applying these sequence rules enables the high-efficiency assembly of functional ribozymes from short RNAs without template inhibition. Our findings suggest that the RNA tetraloop structures that are common in biology may have been predisposed and prevalent in the prebiotic pool of RNAs, prior to the advent of Darwinian evolution. We suggest that the one-step prebiotic chemical process of loop-closing ligation could have favored the emergence of the first RNA functions.
Collapse
Affiliation(s)
- Long‐Fei Wu
- Howard Hughes Medical InstituteThe University of ChicagoChicagoIL 60637USA
- Current address: Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | | | | | - David A. Hendrix
- Department of Biochemistry and BiophysicsOregon State UniversityUSA
- School of Electrical Engineering and Computer ScienceOregon State UniversityUSA
| | | | - Jack W. Szostak
- Howard Hughes Medical InstituteThe University of ChicagoChicagoIL 60637USA
| |
Collapse
|
2
|
Duzdevich D, Carr CE, Colville BWF, Aitken HRM, Szostak JW. Overcoming nucleotide bias in the nonenzymatic copying of RNA templates. Nucleic Acids Res 2024; 52:13515-13529. [PMID: 39530216 DOI: 10.1093/nar/gkae982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The RNA World hypothesis posits that RNA was the molecule of both heredity and function during the emergence of life. This hypothesis implies that RNA templates can be copied, and ultimately replicated, without the catalytic aid of evolved enzymes. A major problem with nonenzymatic template-directed polymerization has been the very poor copying of sequences containing rA and rU. Here, we overcome that problem by using a prebiotically plausible mixture of RNA mononucleotides and random-sequence oligonucleotides, all activated by methyl isocyanide chemistry, that direct the uniform copying of arbitrary-sequence templates, including those harboring rA and rU. We further show that the use of this mixture in copying reactions suppresses copying errors while also generating a more uniform distribution of mismatches than observed for simpler systems. We find that oligonucleotide competition for template binding sites, oligonucleotide ligation and the template binding properties of reactant intermediates work together to reduce product sequence bias and errors. Finally, we show that iterative cycling of templated polymerization and activation chemistry improves the yields of random-sequence products. These results for random-sequence template copying are a significant advance in the pursuit of nonenzymatic RNA replication.
Collapse
Affiliation(s)
- Daniel Duzdevich
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
- Freiburg Institute for Advanced Studies, Albertstraße 19, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Christopher E Carr
- Daniel Guggenheim School of Aerospace Engineering, School of Earth and Atmospheric Sciences, 275 Ferst Drive NW, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ben W F Colville
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
| | - Harry R M Aitken
- Department of Molecular Biology, Center for Computational and Integrative Biology, 185 Cambridge Street, Massachusetts General Hospital, Boston, MA 02114, USA
- Howard Hughes Medical Institute, 185 Cambridge Street, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jack W Szostak
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Whitaker D, Powner MW. On the aqueous origins of the condensation polymers of life. Nat Rev Chem 2024; 8:817-832. [PMID: 39333736 DOI: 10.1038/s41570-024-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/30/2024]
Abstract
Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins.
Collapse
Affiliation(s)
- Daniel Whitaker
- Department of Chemistry, University College London, London, UK.
| | | |
Collapse
|
4
|
DasGupta S, Weiss Z, Nisler C, Szostak JW. Evolution of the substrate specificity of an RNA ligase ribozyme from phosphorimidazole to triphosphate activation. Proc Natl Acad Sci U S A 2024; 121:e2407325121. [PMID: 39269776 PMCID: PMC11420214 DOI: 10.1073/pnas.2407325121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
The acquisition of new RNA functions through evolutionary processes was essential for the diversification of RNA-based primordial biology and its subsequent transition to modern biology. However, the mechanisms by which RNAs access new functions remain unclear. Do RNA enzymes need completely new folds to support new but related functions, or is reoptimization of the active site sufficient? What are the roles of neutral and adaptive mutations in evolutionary innovation? Here, we address these questions experimentally by focusing on the evolution of substrate specificity in RNA-catalyzed RNA assembly. We use directed in vitro evolution to show that a ligase ribozyme that uses prebiotically relevant 5'-phosphorimidazole-activated substrates can be evolved to catalyze ligation with substrates that are 5'-activated with the biologically relevant triphosphate group. Interestingly, despite catalyzing a related reaction, the new ribozyme folds into a completely new structure and exhibits promiscuity by catalyzing RNA ligation with both triphosphate and phosphorimidazole-activated substrates. Although distinct in sequence and structure, the parent phosphorimidazolide ligase and the evolved triphosphate ligase ribozymes can be connected by a series of point mutations where the intermediate sequences retain at least some ligase activity. The existence of a quasi-neutral pathway between these distinct ligase ribozymes suggests that neutral drift is sufficient to enable the acquisition of new substrate specificity, thereby providing opportunities for subsequent adaptive optimization. The transition from RNA-catalyzed RNA assembly using phosphorimidazole-activated substrates to triphosphate-activated substrates may have foreshadowed the later evolution of the protein enzymes that use monomeric triphosphates (nucleoside triphosphates, NTPs) for RNA synthesis.
Collapse
Affiliation(s)
- Saurja DasGupta
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- HHMI, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Zoe Weiss
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- HHMI, Massachusetts General Hospital, Boston, MA02114
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Collin Nisler
- HHMI, The University of Chicago, Chicago, IL60637
- Department of Chemistry, The University of Chicago, Chicago, IL60637
| | - Jack W. Szostak
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- HHMI, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
5
|
Bechtel M, Kurrle NJ, Trapp O. A Prebiotic Pathway to Nicotinamide Adenine Dinucleotide. Chemistry 2024; 30:e202402055. [PMID: 38884181 DOI: 10.1002/chem.202402055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/18/2024]
Abstract
Enzymes play a fundamental role in cellular metabolism. A wide range of enzymes require the presence of complementary coenzymes and cofactors to function properly. While coenzymes are believed to have been part of the last universal ancestor (LUCA) or have been present even earlier, the syntheses of crucial coenzymes like the redox-active coenzymes flavin adenine dinucleotide (FAD) or nicotinamide adenine dinucleotide (NAD+) remain challenging. Here, we present a pathway to NAD+ under prebiotic conditions starting with ammonia, cyanoacetaldehyde, prop-2-ynal and sugar-forming precursors, yielding in situ the nicotinamide riboside. Regioselective phosphorylation and water stable light activated adenosine monophosphate derivatives allow for topographically and irradiation-controlled formation of NAD+. Our findings indicate that NAD+, a coenzyme vital to life, can be formed non-enzymatically from simple organic feedstock molecules via photocatalytic activation under prebiotically plausible early Earth conditions in a continuous process under aqueous conditions.
Collapse
Affiliation(s)
- Maximilian Bechtel
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Nathalie J Kurrle
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Oliver Trapp
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
- Max-Planck-Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
| |
Collapse
|
6
|
Zozulia O, Kriebisch CME, Kriebisch BAK, Soria-Carrera H, Ryadi KR, Steck J, Boekhoven J. Acyl Phosphates as Chemically Fueled Building Blocks for Self-Sustaining Protocells. Angew Chem Int Ed Engl 2024; 63:e202406094. [PMID: 38743852 DOI: 10.1002/anie.202406094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Lipids spontaneously assemble into vesicle-forming membranes. Such vesicles serve as compartments for even the simplest living systems. Vesicles have been extensively studied for constructing synthetic cells or as models for protocells-the cells hypothesized to have existed before life. These compartments exist almost always close to equilibrium. Life, however, exists out of equilibrium. In this work, we studied vesicle-based compartments regulated by a non-equilibrium chemical reaction network that converts activating agents. In this way, the compartments require a constant or periodic supply of activating agents to sustain themselves. Specifically, we use activating agents to condense carboxylates and phosphate esters into acyl phosphate-based lipids that form vesicles. These vesicles can only be sustained when condensing agents are present; without them, they decay. We demonstrate that the chemical reaction network can operate on prebiotic activating agents, opening the door to prebiotically plausible, self-sustainable protocells that compete for resources. In future work, such protocells should be endowed with a genotype, e.g., self-replicating RNA structures, to alter the protocell's behavior. Such protocells could enable Darwinian evolution in a prebiotically plausible chemical system.
Collapse
Affiliation(s)
- Oleksii Zozulia
- Department of Bioscience School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Christine M E Kriebisch
- Department of Bioscience School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Brigitte A K Kriebisch
- Department of Bioscience School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Héctor Soria-Carrera
- Department of Bioscience School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Kingu Rici Ryadi
- Department of Bioscience School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Juliana Steck
- Department of Bioscience School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- Department of Bioscience School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
7
|
Xu J, Janicki MJ, Szabla R, Sutherland JD. Prebiotic synthesis of dihydrouridine by photoreduction of uridine in formamide. Chem Commun (Camb) 2024; 60:7081-7084. [PMID: 38896044 PMCID: PMC11223185 DOI: 10.1039/d4cc01823k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
In this report, we show that a very common modification (especially in tRNA), dihydrouridine, was efficiently produced by photoreduction of the canonical pyrimidine ribonucleoside, uridine in formamide. Formamide not only acts as a solvent in this reaction, but also as the reductant. The other three components of the canonical alphabet (C, A, G) remained intact under the same conditions, suggesting that dihydrouridine might have coexisted with all four canonical RNA nucleosides (C, U, A, G) at the dawn of life.
Collapse
Affiliation(s)
- Jianfeng Xu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| | - Mikołaj J Janicki
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Rafał Szabla
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
8
|
Sebastianelli L, Kaur H, Chen Z, Krishnamurthy R, Mansy SS. A Magnesium Binding Site And The Anomeric Effect Regulate The Abiotic Redox Chemistry Of Nicotinamide Nucleotides. Chemistry 2024; 30:e202400411. [PMID: 38640109 DOI: 10.1002/chem.202400411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a redox active molecule that is universally found in biology. Despite the importance and simplicity of this molecule, few reports exist that investigate which molecular features are important for the activity of this ribodinucleotide. By exploiting the nonenzymatic reduction and oxidation of NAD+ by pyruvate and methylene blue, respectively, we were able to identify key molecular features necessary for the intrinsic activity of NAD+ through kinetic analysis. Such features may explain how NAD+ could have been selected early during the emergence of life. Simpler molecules, such as nicotinamide, that lack an anomeric carbon are incapable of accepting electrons from pyruvate. The phosphate moiety inhibits activity in the absence of metal ions but facilitates activity at physiological pH and model prebiotic conditions by recruiting catalytic Mg2+. Reduction proceeds through consecutive single electron transfer events. Of the derivatives tested, including nicotinamide mononucleotide, nicotinamide riboside, 3-(aminocarbonyl)-1-(2,3-dihydroxypropyl)pyridinium, 1-methylnicotinamide, and nicotinamide, only NAD+ and nicotinamide mononucleotide would be capable of efficiently accepting and donating electrons within a nonenzymatic electron transport chain. The data are consistent with early metabolic chemistry exploiting NAD+ or nicotinamide mononucleotide and not simpler molecules.
Collapse
Affiliation(s)
- Lorenzo Sebastianelli
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, T6G 2G2, Alberta, Canada
| | - Harpreet Kaur
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, T6G 2G2, Alberta, Canada
| | - Ziniu Chen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, T6G 2G2, Alberta, Canada
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sheref S Mansy
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, T6G 2G2, Alberta, Canada
| |
Collapse
|
9
|
Liu Z, Jiang CZ, Bond AD, Tosca NJ, Sutherland JD. Manganese(II) promotes prebiotically plausible non-enzymatic RNA ligation reactions. Chem Commun (Camb) 2024; 60:6528-6531. [PMID: 38836405 PMCID: PMC11189027 DOI: 10.1039/d4cc01086h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Using different prebiotically plausible activating reagents, the RNA ligation yield was significantly increased in the presence of Mn(II). The mechanism of the activation reaction has been investigated using 5'-AMP as an analogue.
Collapse
Affiliation(s)
- Ziwei Liu
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Department of Earth Sciences, University of Cambridge, Downing Street, CB2 3EQ, UK.
| | - Clancy Zhijian Jiang
- Department of Earth Sciences, University of Cambridge, Downing Street, CB2 3EQ, UK.
| | - Andrew D Bond
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK
| | - Nicholas J Tosca
- Department of Earth Sciences, University of Cambridge, Downing Street, CB2 3EQ, UK.
| | - John D Sutherland
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
10
|
Mittal S, Nisler C, Szostak JW. Simulations predict preferred Mg 2+ coordination in a nonenzymatic primer-extension reaction center. Biophys J 2024; 123:1579-1591. [PMID: 38702884 PMCID: PMC11214020 DOI: 10.1016/j.bpj.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
The mechanism by which genetic information was copied prior to the evolution of ribozymes is of great interest because of its importance to the origin of life. The most effective known process for the nonenzymatic copying of an RNA template is primer extension by a two-step pathway in which 2-aminoimidazole-activated nucleotides first react with each other to form an imidazolium-bridged intermediate that subsequently reacts with the primer. Reaction kinetics, structure-activity relationships, and X-ray crystallography have provided insight into the overall reaction mechanism, but many puzzles remain. In particular, high concentrations of Mg2+ are required for efficient primer extension, but the mechanism by which Mg2+ accelerates primer extension remains unknown. By analogy with the mechanism of DNA and RNA polymerases, a role for Mg2+ in facilitating the deprotonation of the primer 3'-hydroxyl is often assumed, but no catalytic metal ion is seen in crystal structures of the primer-extension complex. To explore the potential effects of Mg2+ binding in the reaction center, we performed atomistic molecular dynamics simulations of a series of modeled complexes in which a Mg2+ ion was placed in the reaction center with inner-sphere coordination with different sets of functional groups. Our simulations suggest that coordination of a Mg2+ ion with both O3' of the terminal primer nucleotide and the pro-Sp nonbridging oxygen of the reactive phosphate of an imidazolium-bridged dinucleotide would help to pre-organize the structure of the primer/template substrate complex to favor the primer-extension reaction. Our results suggest that the catalytic metal ion may play an important role in overcoming electrostatic repulsion between a deprotonated O3' and the reactive phosphate of the bridged dinucleotide and lead to testable predictions of the mode of Mg2+ binding that is most relevant to catalysis of primer extension.
Collapse
Affiliation(s)
- Shriyaa Mittal
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts; Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Collin Nisler
- Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts; Department of Genetics, Harvard Medical School, Boston, Massachusetts; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts; Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Rimmer PB, Shorttle O. A Surface Hydrothermal Source of Nitriles and Isonitriles. Life (Basel) 2024; 14:498. [PMID: 38672768 PMCID: PMC11051382 DOI: 10.3390/life14040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Giant impacts can generate transient hydrogen-rich atmospheres, reducing atmospheric carbon. The reduced carbon will form hazes that rain out onto the surface and can become incorporated into the crust. Once heated, a large fraction of the carbon is converted into graphite. The result is that local regions of the Hadean crust were plausibly saturated with graphite. We explore the consequences of such a crust for a prebiotic surface hydrothermal vent scenario. We model a surface vent fed by nitrogen-rich volcanic gas from high-temperature magmas passing through graphite-saturated crust. We consider this occurring at pressures of 1-1000bar and temperatures of 1500-1700 ∘C. The equilibrium with graphite purifies the leftover gas, resulting in substantial quantities of nitriles (0.1% HCN and 1ppm HC3N) and isonitriles (0.01% HNC) relevant for prebiotic chemistry. We use these results to predict gas-phase concentrations of methyl isocyanide of ∼1 ppm. Methyl isocyanide can participate in the non-enzymatic activation and ligation of the monomeric building blocks of life, and surface or shallow hydrothermal environments provide its only known equilibrium geochemical source.
Collapse
Affiliation(s)
- Paul B. Rimmer
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK
| | - Oliver Shorttle
- Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| |
Collapse
|
12
|
Kanaparthi D, Lampe M, Krohn JH, Zhu B, Hildebrand F, Boesen T, Klingl A, Phapale P, Lueders T. The reproduction process of Gram-positive protocells. Sci Rep 2024; 14:7075. [PMID: 38528088 DOI: 10.1038/s41598-024-57369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/18/2024] [Indexed: 03/27/2024] Open
Abstract
Protocells are believed to have existed on early Earth prior to the emergence of prokaryotes. Due to their rudimentary nature, it is widely accepted that these protocells lacked intracellular mechanisms to regulate their reproduction, thereby relying heavily on environmental conditions. To understand protocell reproduction, we adopted a top-down approach of transforming a Gram-positive bacterium into a lipid-vesicle-like state. In this state, cells lacked intrinsic mechanisms to regulate their morphology or reproduction, resembling theoretical propositions on protocells. Subsequently, we grew these proxy-protocells under the environmental conditions of early Earth to understand their impact on protocell reproduction. Despite the lack of molecular biological coordination, cells in our study underwent reproduction in an organized manner. The method and the efficiency of their reproduction can be explained by an interplay between the physicochemical properties of cell constituents and environmental conditions. While the overall reproductive efficiency in these top-down modified cells was lower than their counterparts with a cell wall, the process always resulted in viable daughter cells. Given the simplicity and suitability of this reproduction method to early Earth environmental conditions, we propose that primitive protocells likely reproduced by a process like the one we described below.
Collapse
Affiliation(s)
- Dheeraj Kanaparthi
- Department of Cellular and Molecular Biophysics, Max-Planck Institute for Biochemistry, Munich, Germany.
- Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany.
- Excellenzcluster Origins, Garching, Germany.
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan-Hagen Krohn
- Department of Cellular and Molecular Biophysics, Max-Planck Institute for Biochemistry, Munich, Germany
- Excellenzcluster Origins, Garching, Germany
| | - Baoli Zhu
- Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions, CAS, Changsha, China
| | | | - Thomas Boesen
- Department of Biosciences, Center for Electromicrobiology, Aarhus, Denmark
| | - Andreas Klingl
- Department of Biology, LMU, Planegg-Martinsried, Germany
| | - Prasad Phapale
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tillmann Lueders
- Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
13
|
Chatziorfanou E, Romero AR, Chouchane L, Dömling A. Crystal Clear: Decoding Isocyanide Intermolecular Interactions through Crystallography. J Org Chem 2024; 89:957-974. [PMID: 38175810 PMCID: PMC10804414 DOI: 10.1021/acs.joc.3c02038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
The isocyanide group is the chameleon among the functional groups in organic chemistry. Unlike other multiatom functional groups, where the electrophilic and nucleophilic moieties are typically separated, isocyanides combine both functionalities in the terminal carbon. This unique feature can be rationalized using the frontier orbital concept and has significant implications for its intermolecular interactions and the reactivity of the functional group. In this study, we perform a Cambridge Crystallographic Database-supported analysis of isocyanide intramolecular interactions to investigate the intramolecular interactions of isocyanides in the solid state, excluding isocyanide-metal complexes. We discuss examples of different interaction classes, including the isocyanide as a hydrogen bond acceptor (RNC···HX), halogen bonding (RNC···X), and interactions involving the isocyanide and carbon atoms (RNC···C). The latter interaction serves as an intriguing illustration of a Bürgi-Dunitz trajectory and represents a crucial experimental detail in the well-known multicomponent reactions such as the Ugi- and Passerini-type mechanisms. Understanding the spectrum of intramolecular interactions that isocyanides can undergo holds significant implications in fields such as medicinal chemistry, materials science, and asymmetric catalysis.
Collapse
Affiliation(s)
- Eleftheria Chatziorfanou
- Innovative
Chemistry Group, Institute of Molecular and Translational Medicine,
Faculty of Medicine and Dentistry and Czech Advanced Technology and
Research Institute, Palacky University in
Olomouc, Olomouc 779 00, Czech Republic
| | - Atilio Reyes Romero
- Genetic
Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, P.O.
Box 24144, Doha, Qatar
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York 10021, United States
- Department
of Genetic Medicine, Weill Cornell Medicine, New York 10021, United States
| | - Lotfi Chouchane
- Genetic
Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, P.O.
Box 24144, Doha, Qatar
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York 10021, United States
- Department
of Genetic Medicine, Weill Cornell Medicine, New York 10021, United States
| | - Alexander Dömling
- Innovative
Chemistry Group, Institute of Molecular and Translational Medicine,
Faculty of Medicine and Dentistry and Czech Advanced Technology and
Research Institute, Palacky University in
Olomouc, Olomouc 779 00, Czech Republic
| |
Collapse
|
14
|
Toparlak Ö, Sebastianelli L, Egas Ortuno V, Karki M, Xing Y, Szostak JW, Krishnamurthy R, Mansy SS. Cyclophospholipids Enable a Protocellular Life Cycle. ACS NANO 2023; 17:23772-23783. [PMID: 38038709 PMCID: PMC10722605 DOI: 10.1021/acsnano.3c07706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
There is currently no plausible path for the emergence of a self-replicating protocell, because prevalent formulations of model protocells are built with fatty acid vesicles that cannot withstand the concentrations of Mg2+ needed for the function and replication of nucleic acids. Although prebiotic chelates increase the survivability of fatty acid vesicles, the resulting model protocells are incapable of growth and division. Here, we show that protocells made of mixtures of cyclophospholipids and fatty acids can grow and divide in the presence of Mg2+-citrate. Importantly, these protocells retain encapsulated nucleic acids during growth and division, can acquire nucleotides from their surroundings, and are compatible with the nonenzymatic extension of an RNA oligonucleotide, chemistry needed for the replication of a primitive genome. Our work shows that prebiotically plausible mixtures of lipids form protocells that are active under the conditions necessary for the emergence of Darwinian evolution.
Collapse
Affiliation(s)
- Ö.
Duhan Toparlak
- Department
of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo, Trentino, Italy
| | - Lorenzo Sebastianelli
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton Alberta T6G 2G2, Canada
| | - Veronica Egas Ortuno
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Megha Karki
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yanfeng Xing
- Department
of Biochemistry and Molecular Biology, University
of Chicago, Chicago, Illinois 60637, United States
| | - Jack W. Szostak
- Howard
Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ramanarayanan Krishnamurthy
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sheref S. Mansy
- Department
of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo, Trentino, Italy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton Alberta T6G 2G2, Canada
| |
Collapse
|
15
|
Aleksandrova M, Rahmatova F, Russell DA, Bonfio C. Ring Opening of Glycerol Cyclic Phosphates Leads to a Diverse Array of Potentially Prebiotic Phospholipids. J Am Chem Soc 2023; 145:25614-25620. [PMID: 37971368 PMCID: PMC10690765 DOI: 10.1021/jacs.3c07319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Phospholipids are the primary constituents of cell membranes across all domains of life, but how and when phospholipids appeared on early Earth remains unknown. Pressingly, most prebiotic syntheses of complex phospholipids rely upon substrates not yet shown to have been available on early Earth. Here, we describe potentially prebiotic syntheses of a diverse array of complex phospholipids and their building blocks. First, we show that choline could have been produced on early Earth by stepwise N-methylation of ethanolamine. Second, taking a systems chemistry approach, we demonstrate that the intrinsically activated glycerol-2,3-cyclic phosphate undergoes ring opening with combinations of prebiotic amino alcohols to yield complex phospholipid headgroups. Importantly, this pathway selects for the formation of 2-amino alcohol-bearing phospholipid headgroups and enables the accumulation of their natural regioisomers. Finally, we show that the dry-state ring opening of cyclic lysophosphatidic acids leads to a range of self-assembling lysophospholipids. Our results provide new prebiotic routes to key intermediates on the way toward modern phospholipids and illuminate the potential origin and evolution of cell membranes.
Collapse
Affiliation(s)
- Maiia Aleksandrova
- Institut de Science et d’Ingénierie
Supramoléculaires (ISIS), CNRS UMR 7006, University of Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Fidan Rahmatova
- Institut de Science et d’Ingénierie
Supramoléculaires (ISIS), CNRS UMR 7006, University of Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - David A. Russell
- Institut de Science et d’Ingénierie
Supramoléculaires (ISIS), CNRS UMR 7006, University of Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Claudia Bonfio
- Institut de Science et d’Ingénierie
Supramoléculaires (ISIS), CNRS UMR 7006, University of Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
16
|
Bartolucci G, Calaça Serrão A, Schwintek P, Kühnlein A, Rana Y, Janto P, Hofer D, Mast CB, Braun D, Weber CA. Sequence self-selection by cyclic phase separation. Proc Natl Acad Sci U S A 2023; 120:e2218876120. [PMID: 37847736 PMCID: PMC10614837 DOI: 10.1073/pnas.2218876120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
The emergence of functional oligonucleotides on early Earth required a molecular selection mechanism to screen for specific sequences with prebiotic functions. Cyclic processes such as daily temperature oscillations were ubiquitous in this environment and could trigger oligonucleotide phase separation. Here, we propose sequence selection based on phase separation cycles realized through sedimentation in a system subjected to the feeding of oligonucleotides. Using theory and experiments with DNA, we show sequence-specific enrichment in the sedimented dense phase, in particular of short 22-mer DNA sequences. The underlying mechanism selects for complementarity, as it enriches sequences that tightly interact in the dense phase through base-pairing. Our mechanism also enables initially weakly biased pools to enhance their sequence bias or to replace the previously most abundant sequences as the cycles progress. Our findings provide an example of a selection mechanism that may have eased screening for auto-catalytic self-replicating oligonucleotides.
Collapse
Affiliation(s)
- Giacomo Bartolucci
- Division Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden01187, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Adriana Calaça Serrão
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Philipp Schwintek
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Alexandra Kühnlein
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Yash Rana
- Division Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden01187, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Philipp Janto
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Dorothea Hofer
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Christof B. Mast
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Dieter Braun
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Christoph A. Weber
- Faculty of Mathematics, Natural Sciences, and Materials Engineering: Institute of Physics, University of Augsburg, Augsburg86159, Germany
| |
Collapse
|
17
|
Bechtel M, Ebeling M, Huber L, Trapp O. (Photoredox) Organocatalysis in the Emergence of Life: Discovery, Applications, and Molecular Evolution. Acc Chem Res 2023; 56:2801-2813. [PMID: 37752618 DOI: 10.1021/acs.accounts.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
ConspectusLife as we know it is built on complex and perfectly interlocking processes that have evolved over millions of years through evolutionary optimization processes. The emergence of life from nonliving matter and the evolution of such highly efficient systems therefore constitute an enormous synthetic and systems chemistry challenge. Advances in supramolecular and systems chemistry are opening new perspectives that provide insights into living and self-sustaining reaction networks as precursors for life. However, the ab initio synthesis of such a system requires the possibility of autonomous optimization of catalytic properties and, consequently, of an evolutionary system at the molecular level. In this Account, we present our discovery of the formation of substituted imidazolidine-4-thiones (photoredox) organocatalysts from simple prebiotic building blocks such as aldehydes and ketones under Strecker reaction conditions with ammonia and cyanides in the presence of hydrogen sulfide. The necessary aldehydes are formed from CO2 and hydrogen under prebiotically plausible meteoritic or volcanic iron-particle catalysis in the atmosphere of the early Earth. Remarkably, the investigated imidazolidine-4-thiones undergo spontaneous resolution by conglomerate crystallization, opening a pathway for symmetry breaking, chiral amplification, and enantioselective organocatalysis. These imidazolidine-4-thiones enable α-alkylations of aldehydes and ketones by photoredox organocatalysis. Therefore, these photoredox organocatalysts are able to modify their aldehyde building blocks, which leads in an evolutionary process to mutated second-generation and third-generation catalysts. In our experimental studies, we found that this mutation can occur not only by new formation of the imidazolidine core structure of the catalyst from modified aldehyde building blocks or by continuous supply from a pool of available building blocks but also by a dynamic exchange of the carbonyl moiety in ring position 2 of the imidazolidine moiety. Remarkably, it can be shown that by incorporating aldehyde building blocks from their environment, the imidazolidine-4-thiones are able to change and adapt to altering environmental conditions without undergoing the entire formation process. The selection of the mutated catalysts is then based on the different catalytic activities in the modification of the aldehyde building blocks and on the catalysis of subsequent processes that can lead to the formation of molecular reaction networks as progenitors for cellular processes. We were able to show that these imidazolidine-4-thiones not only enable α-alkylations but also facilitate other important transformations, such as the selective phosphorylation of nucleosides to nucleotides as a key step leading to the oligomerization to RNA and DNA. It can therefore be expected that evolutionary processes have already taken place on a small molecular level and have thus developed chemical tools that change over time, representing a hidden layer on the path to enzymatically catalyzed biochemical processes.
Collapse
Affiliation(s)
- Maximilian Bechtel
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Marian Ebeling
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Laura Huber
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Oliver Trapp
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| |
Collapse
|
18
|
Welsch F, Kervio E, Tremmel P, Richert C. Prolinyl Nucleotides Drive Enzyme-Free Genetic Copying of RNA. Angew Chem Int Ed Engl 2023; 62:e202307591. [PMID: 37382466 DOI: 10.1002/anie.202307591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Proline is one of the proteinogenic amino acids. It is found in all kingdoms of life. It also has remarkable activity as an organocatalyst and is of structural importance in many folded polypeptides. Here, we show that prolinyl nucleotides with a phosphoramidate linkage are active building blocks in enzyme- and ribozyme-free copying of RNA in the presence of monosubstituted imidazoles as organocatalysts. Both dinucleotides and mononucleotides are incorporated at the terminus of RNA primers in aqueous buffer, as instructed by the template sequence, in up to eight consecutive extension steps. Our results show that condensation products of amino acids and ribonucleotides can act like nucleoside triphosphates in media devoid of enzymes or ribozymes. Prolinyl nucleotides are metastable building blocks, readily activated by catalysts, helping to explain why the combination of α-amino acids and nucleic acids was selected in molecular evolution.
Collapse
Affiliation(s)
- Franziska Welsch
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Eric Kervio
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Peter Tremmel
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
19
|
Ritson DJ, Sutherland JD. Thiophosphate photochemistry enables prebiotic access to sugars and terpenoid precursors. Nat Chem 2023; 15:1470-1477. [PMID: 37443293 PMCID: PMC10533393 DOI: 10.1038/s41557-023-01251-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/22/2023] [Indexed: 07/15/2023]
Abstract
Over the past few years, evidence has accrued that demonstrates that terrestrial photochemical reactions could have provided numerous (proto)biomolecules with implications for the origin of life. This chemistry simply relies on UV light, inorganic sulfur species and hydrogen cyanide. Recently, we reported that, under the same conditions, reduced phosphorus species, such as those delivered by meteorites, can be oxidized to orthophosphate, generating thiophosphate in the process. Here we describe an investigation of the properties of thiophosphate as well as additional possible means for its formation on primitive Earth. We show that several reported prebiotic reactions, including the photoreduction of thioamides, carbonyl groups and cyanohydrins, can be markedly improved, and that tetroses and pentoses can be accessed from hydrogen cyanide through a Kiliani-Fischer-type process without progressing to higher sugars. We also demonstrate that thiophosphate allows photochemical reductive aminations, and that thiophosphate chemistry allows a plausible prebiotic synthesis of the C5 moieties used in extant terpene and terpenoid biosynthesis, namely dimethylallyl alcohol and isopentenyl alcohol.
Collapse
Affiliation(s)
- Dougal J Ritson
- MRC - Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - John D Sutherland
- MRC - Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
20
|
Ding D, Zhang SJ, Szostak JW. Enhanced nonenzymatic RNA copying with in-situ activation of short oligonucleotides. Nucleic Acids Res 2023:7184164. [PMID: 37247941 PMCID: PMC10359593 DOI: 10.1093/nar/gkad439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
The nonenzymatic copying of RNA is thought to have been necessary for the transition between prebiotic chemistry and ribozyme-catalyzed RNA replication in the RNA World. We have previously shown that a potentially prebiotic nucleotide activation pathway based on phospho-Passerini chemistry can lead to the efficient synthesis of 2-aminoimidazole activated mononucleotides when carried out under freeze-thaw cycling conditions. Such activated nucleotides react with each other to form 5'-5' 2-aminoimidazolium bridged dinucleotides, enabling template-directed primer extension to occur within the same reaction mixture. However, mononucleotides linked to oligonucleotides by a 5'-5' 2-aminoimidazolium bridge are superior substrates for nonenzymatic primer extension; their higher intrinsic reactivity and their higher template affinity enable faster template copying at lower substrate concentrations. Here we show that eutectic phase phospho-Passerini chemistry efficiently activates short oligonucleotides and promotes the formation of monomer-bridged-oligonucleotide species during freeze-thaw cycles. We then demonstrate that in-situ generated monomer-bridged-oligonucleotides lead to efficient nonenzymatic template copying in the same reaction mixture. Our demonstration that multiple steps in the pathway from activation chemistry to RNA copying can occur together in a single complex environment simplifies this aspect of the origin of life.
Collapse
Affiliation(s)
- Dian Ding
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA02114, USA
| | - Stephanie J Zhang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA02114, USA
| | - Jack W Szostak
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA02114, USA
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA02115, USA
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL60637, USA
| |
Collapse
|
21
|
Wu LF, Liu Z, Roberts SJ, Su M, Szostak JW, Sutherland JD. Template-Free Assembly of Functional RNAs by Loop-Closing Ligation. J Am Chem Soc 2022; 144:13920-13927. [PMID: 35880790 PMCID: PMC9354263 DOI: 10.1021/jacs.2c05601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first ribozymes are thought to have emerged at a time when RNA replication proceeded via nonenzymatic template copying processes. However, functional RNAs have stable folded structures, and such structures are much more difficult to copy than short unstructured RNAs. How can these conflicting requirements be reconciled? Also, how can the inhibition of ribozyme function by complementary template strands be avoided or minimized? Here, we show that short RNA duplexes with single-stranded overhangs can be converted into RNA stem loops by nonenzymatic cross-strand ligation. We then show that loop-closing ligation reactions enable the assembly of full-length functional ribozymes without any external template. Thus, one can envisage a potential pathway whereby structurally complex functional RNAs could have formed at an early stage of evolution when protocell genomes might have consisted only of collections of short replicating oligonucleotides.
Collapse
Affiliation(s)
- Long-Fei Wu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom.,Department of Molecular Biology and Center for Computational and Integrative Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Samuel J Roberts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Meng Su
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Jack W Szostak
- Department of Molecular Biology and Center for Computational and Integrative Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
22
|
Freeze-thaw cycles enable a prebiotically plausible and continuous pathway from nucleotide activation to nonenzymatic RNA copying. Proc Natl Acad Sci U S A 2022; 119:e2116429119. [PMID: 35446612 PMCID: PMC9169909 DOI: 10.1073/pnas.2116429119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The replication of RNA without the aid of evolved enzymes may have enabled the inheritance of useful molecular functions during the origin of life. Template-directed RNA copying is a posited step in RNA replication. Key steps on the path to copying of RNA templates have been studied in isolation, including chemical nucleotide activation, generation of a key reactive intermediate, and template-directed polymerization. Here we report a prebiotically plausible scenario under which these reactions can happen together under mutually compatible conditions. Thus, this pathway could potentially have operated in nature without the complicating requirement for exchange of materials between distinct environments. Nonenzymatic template-directed RNA copying using chemically activated nucleotides is thought to have played a key role in the emergence of genetic information on the early Earth. A longstanding question concerns the number and nature of different environments that might have been necessary to enable all of the steps from nucleotide synthesis to RNA copying. Here we explore three sequential steps from this overall pathway: nucleotide activation, synthesis of imidazolium-bridged dinucleotides, and template-directed RNA copying. We find that all three steps can take place in one reaction mixture undergoing multiple freeze-thaw cycles. Recent experiments have demonstrated a potentially prebiotic methyl isocyanide-based nucleotide activation chemistry. However, the original version of this approach is incompatible with nonenzymatic RNA copying because the high required concentration of the imidazole activating group prevents the accumulation of the essential imidazolium-bridged dinucleotide. Here we report that ice eutectic phase conditions facilitate not only the methyl isocyanide-based activation of ribonucleotide 5′-monophosphates with stoichiometric 2-aminoimidazole, but also the subsequent conversion of these activated mononucleotides into imidazolium-bridged dinucleotides. Furthermore, this one-pot approach is compatible with template-directed RNA copying in the same reaction mixture. Our results suggest that the simple and common environmental fluctuation of freeze-thaw cycles could have played an important role in prebiotic nucleotide activation and nonenzymatic RNA copying.
Collapse
|
23
|
Ranjan S, Kufner CL, Lozano GG, Todd ZR, Haseki A, Sasselov DD. UV Transmission in Natural Waters on Prebiotic Earth. ASTROBIOLOGY 2022; 22:242-262. [PMID: 34939825 PMCID: PMC8968845 DOI: 10.1089/ast.2020.2422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/28/2021] [Indexed: 05/10/2023]
Abstract
Ultraviolet (UV) light plays a key role in surficial theories of the origin of life, and numerous studies have focused on constraining the atmospheric transmission of UV radiation on early Earth. However, the UV transmission of the natural waters in which origins-of-life chemistry (prebiotic chemistry) is postulated to have occurred is poorly constrained. In this work, we combine laboratory and literature-derived absorption spectra of potential aqueous-phase prebiotic UV absorbers with literature estimates of their concentrations on early Earth to constrain the prebiotic UV environment in marine and terrestrial natural waters, and we consider the implications for prebiotic chemistry. We find that prebiotic freshwaters were largely transparent in the UV, contrary to assumptions in some models of prebiotic chemistry. Some waters, such as high-salinity waters like carbonate lakes, may be deficient in shortwave (≤220 nm) UV flux. More dramatically, ferrous waters can be strongly UV-shielded, particularly if the Fe2+ forms highly UV-absorbent species such as F e C N 6 4 - . Such waters may be compelling venues for UV-averse origin-of-life scenarios but are unfavorable for some UV-dependent prebiotic chemistries. UV light can trigger photochemistry even if attenuated through photochemical transformations of the absorber (e.g., e a q - production from halide irradiation), which may have both constructive and destructive effects for prebiotic syntheses. Prebiotic chemistries that invoke waters that contain such absorbers must self-consistently account for the chemical effects of these transformations. The speciation and abundance of Fe2+ in natural waters on early Earth is a major uncertainty and should be prioritized for further investigation, as it played a major role in UV transmission in prebiotic natural waters.
Collapse
Affiliation(s)
- Sukrit Ranjan
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics and Astronomy, Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, Illinois, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Corinna L. Kufner
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | | | - Zoe R. Todd
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Azra Haseki
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard College, Cambridge, Massachusetts, USA
| | | |
Collapse
|
24
|
Nonenzymatic assembly of active chimeric ribozymes from aminoacylated RNA oligonucleotides. Proc Natl Acad Sci U S A 2022; 119:2116840119. [PMID: 35140183 PMCID: PMC8851484 DOI: 10.1073/pnas.2116840119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
The emergence of a primordial ribosome from the RNA world would have required access to aminoacylated RNA substrates. The spontaneous generation of such substrates without enzymes is inefficient, and it remains unclear how they could be selected for in a prebiotic milieu. In our study, we identify a possible role for aminoacylated RNA in ribozyme assembly, a longstanding problem in the origin-of-life research. We show that aminoacylation of short RNAs greatly accelerates their assembly into functional ribozymes by forming amino acid bridges in the phosphodiester backbone. Our work therefore addresses two key challenges within the origin-of-life field: we demonstrate assembly of functional ribozymes, and we identify a potential evolutionary benefit for RNA aminoacylation that is independent of coded peptide translation. Aminoacylated transfer RNAs, which harbor a covalent linkage between amino acids and RNA, are a universally conserved feature of life. Because they are essential substrates for ribosomal translation, aminoacylated oligonucleotides must have been present in the RNA world prior to the evolution of the ribosome. One possibility we are exploring is that the aminoacyl ester linkage served another function before being recruited for ribosomal protein synthesis. The nonenzymatic assembly of ribozymes from short RNA oligomers under realistic conditions remains a key challenge in demonstrating a plausible pathway from prebiotic chemistry to the RNA world. Here, we show that aminoacylated RNAs can undergo template-directed assembly into chimeric amino acid–RNA polymers that are active ribozymes. We demonstrate that such chimeric polymers can retain the enzymatic function of their all-RNA counterparts by generating chimeric hammerhead, RNA ligase, and aminoacyl transferase ribozymes. Amino acids with diverse side chains form linkages that are well tolerated within the RNA backbone and, in the case of an aminoacyl transferase, even in its catalytic center, potentially bringing novel functionalities to ribozyme catalysis. Our work suggests that aminoacylation chemistry may have played a role in primordial ribozyme assembly. Increasing the efficiency of this process provides an evolutionary rationale for the emergence of sequence and amino acid–specific aminoacyl-RNA synthetase ribozymes, which could then have generated the substrates for ribosomal protein synthesis.
Collapse
|
25
|
Wunnava S, Dirscherl CF, Výravský J, Kovařík A, Matyášek R, Šponer J, Braun D, Šponer JE. Acid-Catalyzed RNA-Oligomerization from 3',5'-cGMP. Chemistry 2021; 27:17581-17585. [PMID: 34726799 PMCID: PMC9299008 DOI: 10.1002/chem.202103672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 11/28/2022]
Abstract
The assembly of ancient informational polymers from nucleotide precursors is the central challenge of life's origin on our planet. Among the possible solutions, dry polymerization of 3',5'-cyclic guanosine monophosphate (3',5'-cGMP) has been proposed as a candidate to create oligonucleotides of 15-20 units in length. However, the reported sensitivity of the reaction to the presence of cations raised questions of whether this chemistry could be relevant in a geological context. The experiments in this study show that the presence of cations is not restrictive as long as the reaction is conducted in an acidic environment, in contrast to previous reports that suggested optimal conditions at pH 9.
Collapse
Affiliation(s)
- Sreekar Wunnava
- Department of PhysicsNanoSystems Initiative Munich and Center for NanoscienceLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MunichGermany
| | - Christina F. Dirscherl
- Department of PhysicsNanoSystems Initiative Munich and Center for NanoscienceLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MunichGermany
| | - Jakub Výravský
- Tescan Brno s.r.o.Libušina třída 162300BrnoCzech Republic
- Department of Geological SciencesFaculty of ScienceMasaryk UniversityKotlářská 261137BrnoCzech Republic
| | - Aleš Kovařík
- Institute of Biophysics Academy of Sciences of the Czech RepublicKrálovopolská 13561265BrnoCzech Republic
| | - Roman Matyášek
- Institute of Biophysics Academy of Sciences of the Czech RepublicKrálovopolská 13561265BrnoCzech Republic
| | - Jiří Šponer
- Institute of Biophysics Academy of Sciences of the Czech RepublicKrálovopolská 13561265BrnoCzech Republic
| | - Dieter Braun
- Department of PhysicsNanoSystems Initiative Munich and Center for NanoscienceLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MunichGermany
| | - Judit E. Šponer
- Institute of Biophysics Academy of Sciences of the Czech RepublicKrálovopolská 13561265BrnoCzech Republic
| |
Collapse
|
26
|
Chance and Necessity in the Evolution of Matter to Life: A Comprehensive Hypothesis. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Specialists in several branches of life sciences are trying to solve, piece by piece, the immensely complex puzzle of the origin of life. Some parts of the puzzle seem to appear with a rather high degree of clarity, while others remain totally obscure. We cannot be sure that life emerged only on our Earth, but we believe that the presence of large amounts of water in its liquid state is absolutely essential for the emergence and evolution of living matter. We can also assume that the latter exploits everywhere the same light elements, mainly C, H, O, N, S, and P, and somehow manipulates the same simple monomeric and polymeric organic compounds, such as alpha-amino acids, carbohydrates, nucleic bases, and surface-active carboxylic acids. The author contributes to the field by stating that all fundamental particles of our matter are “homochiral” and predominantly produce in an absolute asymmetric synthesis amino acids of L-configuration and carbohydrates of D-series. Another important point is that free atmospheric oxygen mainly stems from the photolysis of water molecules by cosmic irradiation and is not necessarily bound to living organisms on the planet.
Collapse
|
27
|
Massarotti A, Brunelli F, Aprile S, Giustiniano M, Tron GC. Medicinal Chemistry of Isocyanides. Chem Rev 2021; 121:10742-10788. [PMID: 34197077 DOI: 10.1021/acs.chemrev.1c00143] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eons of evolution, isocyanides carved out a niche in the ecological systems probably thanks to their metal coordinating properties. In 1859 the first isocyanide was synthesized by humans and in 1950 the first natural isocyanide was discovered. Now, at the beginning of XXI century, hundreds of isocyanides have been isolated both in prokaryotes and eukaryotes and thousands have been synthesized in the laboratory. For some of them their ecological role is known, and their potent biological activity as antibacterial, antifungal, antimalarial, antifouling, and antitumoral compounds has been described. Notwithstanding, the isocyanides have not gained a good reputation among medicinal chemists who have erroneously considered them either too reactive or metabolically unstable, and this has restricted their main use to technical applications as ligands in coordination chemistry. The aim of this review is therefore to show the richness in biological activity of the isocyanide-containing molecules, to support the idea of using the isocyanide functional group as an unconventional pharmacophore especially useful as a metal coordinating warhead. The unhidden hope is to convince the skeptical medicinal chemists of the isocyanide potential in many areas of drug discovery and considering them in the design of future drugs.
Collapse
Affiliation(s)
- Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Silvio Aprile
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Mariateresa Giustiniano
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
28
|
Rimmer PB, Thompson SJ, Xu J, Russell DA, Green NJ, Ritson DJ, Sutherland JD, Queloz DP. Timescales for Prebiotic Photochemistry Under Realistic Surface Ultraviolet Conditions. ASTROBIOLOGY 2021; 21:1099-1120. [PMID: 34152196 PMCID: PMC8570677 DOI: 10.1089/ast.2020.2335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultraviolet (UV) light has long been invoked as a source of energy for prebiotic chemical synthesis, but experimental support does not involve sources of UV light that look like the young Sun. Here we experimentally investigate whether the UV flux available on the surface of early Earth, given a favorable atmosphere, can facilitate a variety of prebiotic chemical syntheses. We construct a solar simulator for the UV light of the faint young Sun on the surface of early Earth, called StarLab. We then attempt a series of reactions testing different aspects of a prebiotic chemical scenario involving hydrogen cyanide (HCN), sulfites, and sulfides under the UV light of StarLab, including hypophosphite oxidation by UV light and hydrogen sulfide, photoreduction of HCN with bisulfite, the photoanomerization of α-thiocytidine, the production of a chemical precursor of a potentially prebiotic activating agent (nitroprusside), the photoreduction of thioanhydrouridine and thioanhydroadenosine, and the oxidation of ethanol (EtOH) by photochemically generated hydroxyl radicals. We compare the output of StarLab to the light of the faint young Sun to constrain the timescales over which these reactions would occur on the surface of early Earth. We predict that hypophosphite oxidation, HCN reduction, and photoproduction of nitroprusside would all operate on the surface of early Earth in a matter of days to weeks. The photoanomerization of α-thiocytidine would take months to complete, and the production of oxidation products from hydroxyl radicals would take years. The photoreduction of thioanhydrouridine with hydrogen sulfide did not succeed even after a long period of irradiation, providing a lower limit on the timescale of several years. The photoreduction of thioanhydroadenosine with bisulfite produced 2'-deoxyriboadenosine (dA) on the timescale of days. This suggests the plausibility of the photoproduction of purine deoxyribonucleotides, such as the photoproduction of simple sugars, proceeds more efficiently in the presence of bisulfite.
Collapse
Affiliation(s)
- Paul B. Rimmer
- Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Address correspondence to: Paul B. Rimmer, Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | | | - Jianfeng Xu
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | | | | - Didier P. Queloz
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
Abstract
A major goal of synthetic biology is to understand the transition between non-living matter and life. The bottom-up development of an artificial cell would provide a minimal system with which to study the border between chemistry and biology. So far, a fully synthetic cell has remained elusive, but chemists are progressing towards this goal by reconstructing cellular subsystems. Cell boundaries, likely in the form of lipid membranes, were necessary for the emergence of life. In addition to providing a protective barrier between cellular cargo and the external environment, lipid compartments maintain homeostasis with other subsystems to regulate cellular processes. In this Review, we examine different chemical approaches to making cell-mimetic compartments. Synthetic strategies to drive membrane formation and function, including bioorthogonal ligations, dissipative self-assembly and reconstitution of biochemical pathways, are discussed. Chemical strategies aim to recreate the interactions between lipid membranes, the external environment and internal biomolecules, and will clarify our understanding of life at the interface of chemistry and biology.
Collapse
|
30
|
Green NJ, Xu J, Sutherland JD. Illuminating Life's Origins: UV Photochemistry in Abiotic Synthesis of Biomolecules. J Am Chem Soc 2021; 143:7219-7236. [PMID: 33880920 PMCID: PMC8240947 DOI: 10.1021/jacs.1c01839] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 01/15/2023]
Abstract
Solar radiation is the principal source of energy available to Earth and has unmatched potential for the synthesis of organic material from primordial molecular building blocks. As well as providing the energy for photochemical synthesis of (proto)biomolecules of interest in origins of life-related research, light has also been found to often provide remarkable selectivity in these processes, for molecules that function in extant biology and against those that do not. As such, light is heavily implicated as an environmental input on the nascent Earth that was important for the emergence of complex yet selective chemical systems underpinning life. Reactivity and selectivity in photochemical prebiotic synthesis are discussed, as are their implications for origins of life scenarios and their plausibility, and the future directions of this research.
Collapse
Affiliation(s)
- Nicholas J. Green
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| | - Jianfeng Xu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| | - John D. Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| |
Collapse
|
31
|
Duzdevich D, Carr CE, Ding D, Zhang SJ, Walton TS, Szostak JW. Competition between bridged dinucleotides and activated mononucleotides determines the error frequency of nonenzymatic RNA primer extension. Nucleic Acids Res 2021; 49:3681-3691. [PMID: 33744957 PMCID: PMC8053118 DOI: 10.1093/nar/gkab173] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/12/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Nonenzymatic copying of RNA templates with activated nucleotides is a useful model for studying the emergence of heredity at the origin of life. Previous experiments with defined-sequence templates have pointed to the poor fidelity of primer extension as a major problem. Here we examine the origin of mismatches during primer extension on random templates in the simultaneous presence of all four 2-aminoimidazole-activated nucleotides. Using a deep sequencing approach that reports on millions of individual template-product pairs, we are able to examine correct and incorrect polymerization as a function of sequence context. We have previously shown that the predominant pathway for primer extension involves reaction with imidazolium-bridged dinucleotides, which form spontaneously by the reaction of two mononucleotides with each other. We now show that the sequences of correctly paired products reveal patterns that are expected from the bridged dinucleotide mechanism, whereas those associated with mismatches are consistent with direct reaction of the primer with activated mononucleotides. Increasing the ratio of bridged dinucleotides to activated mononucleotides, either by using purified components or by using isocyanide-based activation chemistry, reduces the error frequency. Our results point to testable strategies for the accurate nonenzymatic copying of arbitrary RNA sequences.
Collapse
Affiliation(s)
- Daniel Duzdevich
- To whom correspondence should be addressed. Tel: +1 617 726 5102; Fax: +1 617 643 332;
| | - Christopher E Carr
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dian Ding
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stephanie J Zhang
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Travis S Walton
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jack W Szostak
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
32
|
Kim SC, O'Flaherty DK, Giurgiu C, Zhou L, Szostak JW. The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis. J Am Chem Soc 2021; 143:3267-3279. [PMID: 33636080 DOI: 10.1021/jacs.0c12955] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in prebiotic chemistry are beginning to outline plausible pathways for the synthesis of the canonical ribonucleotides and their assembly into oligoribonucleotides. However, these reaction pathways suggest that many noncanonical nucleotides are likely to have been generated alongside the standard ribonucleotides. Thus, the oligomerization of prebiotically synthesized nucleotides is likely to have led to a highly heterogeneous collection of oligonucleotides comprised of a wide range of types of nucleotides connected by a variety of backbone linkages. How then did relatively homogeneous RNA emerge from this primordial heterogeneity? Here we focus on nonenzymatic template-directed primer extension as a process that would have strongly enriched for homogeneous RNA over the course of multiple cycles of replication. We review the effects on copying the kinetics of nucleotides with altered nucleobase and sugar moieties, when they are present as activated monomers and when they are incorporated into primer and template oligonucleotides. We also discuss three variations in backbone connectivity, all of which are nonheritable and regenerate native RNA upon being copied. The kinetic superiority of RNA synthesis suggests that nonenzymatic copying served as a chemical selection mechanism that allowed relatively homogeneous RNA to emerge from a complex mixture of prebiotically synthesized nucleotides and oligonucleotides.
Collapse
Affiliation(s)
- Seohyun Chris Kim
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Constantin Giurgiu
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
33
|
Wu LF, Liu Z, Sutherland JD. pH-Dependent peptide bond formation by the selective coupling of α-amino acids in water. Chem Commun (Camb) 2021; 57:73-76. [PMID: 33242043 PMCID: PMC7808311 DOI: 10.1039/d0cc06042a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
A novel mechanism enabling selective peptide elongation by coupling α-amino acids over other potentially competing prebiotic amines under acidic aqueous condition is suggested. It proceeds via the generation of a carboxylic acid anhydride intermediate with subsequent intramolecular formation of the amide bond.
Collapse
Affiliation(s)
- Long-Fei Wu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
34
|
Zhou L, Ding D, Szostak JW. The virtual circular genome model for primordial RNA replication. RNA (NEW YORK, N.Y.) 2021; 27:1-11. [PMID: 33028653 PMCID: PMC7749632 DOI: 10.1261/rna.077693.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/02/2020] [Indexed: 05/13/2023]
Abstract
We propose a model for the replication of primordial protocell genomes that builds upon recent advances in the nonenzymatic copying of RNA. We suggest that the original genomes consisted of collections of oligonucleotides beginning and ending at all possible positions on both strands of one or more virtual circular sequences. Replication is driven by feeding with activated monomers and by the activation of monomers and oligonucleotides in situ. A fraction of the annealed configurations of the protocellular oligonucleotides would allow for template-directed oligonucleotide growth by primer extension or ligation. Rearrangements of these annealed configurations, driven either by environmental fluctuations or occurring spontaneously, would allow for continued oligonucleotide elongation. Assuming that shorter oligonucleotides were more abundant than longer ones, replication of the entire genome could occur by the growth of all oligonucleotides by as little as one nucleotide on average. We consider possible scenarios that could have given rise to such protocell genomes, as well as potential routes to the emergence of catalytically active ribozymes and thus the more complex cells of the RNA World.
Collapse
Affiliation(s)
- Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dian Ding
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
35
|
|
36
|
Liu Z, Wu LF, Xu J, Bonfio C, Russell DA, Sutherland JD. Harnessing chemical energy for the activation and joining of prebiotic building blocks. Nat Chem 2020; 12:1023-1028. [PMID: 33093680 DOI: 10.1038/s41557-020-00564-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/21/2020] [Indexed: 11/09/2022]
Abstract
Life is an out-of-equilibrium system sustained by a continuous supply of energy. In extant biology, the generation of the primary energy currency, adenosine 5'-triphosphate and its use in the synthesis of biomolecules require enzymes. Before their emergence, alternative energy sources, perhaps assisted by simple catalysts, must have mediated the activation of carboxylates and phosphates for condensation reactions. Here, we show that the chemical energy inherent to isonitriles can be harnessed to activate nucleoside phosphates and carboxylic acids through catalysis by acid and 4,5-dicyanoimidazole under mild aqueous conditions. Simultaneous activation of carboxylates and phosphates provides multiple pathways for the generation of reactive intermediates, including mixed carboxylic acid-phosphoric acid anhydrides, for the synthesis of peptidyl-RNAs, peptides, RNA oligomers and primordial phospholipids. Our results indicate that unified prebiotic activation chemistry could have enabled the joining of building blocks in aqueous solution from a common pool and enabled the progression of a system towards higher complexity, foreshadowing today's encapsulated peptide-nucleic acid system.
Collapse
Affiliation(s)
- Ziwei Liu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Long-Fei Wu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Jianfeng Xu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Claudia Bonfio
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - David A Russell
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
37
|
Bonfio C, Russell DA, Green NJ, Mariani A, Sutherland JD. Activation chemistry drives the emergence of functionalised protocells. Chem Sci 2020; 11:10688-10697. [PMID: 34094321 PMCID: PMC8162433 DOI: 10.1039/d0sc04506c] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/27/2020] [Indexed: 11/24/2022] Open
Abstract
The complexity of the simplest conceivable cell suggests that the chemistry of prebiotic mixtures needs to be explored to understand the intricate network of prebiotic reactions that led to the emergence of life. Early cells probably relied upon compatible and interconnected chemistries to link RNA, peptides and membranes. Here we show that several types of vesicles, composed of prebiotically plausible mixtures of amphiphiles, spontaneously form and sustain the methyl isocyanide-mediated activation of amino acids, peptides and nucleotides. Activation chemistry also drives the advantageous conversion of reactive monoacylglycerol phosphates into inert cyclophospholipids, thus supporting their potential role as major constituents of protocells. Moreover, activation of prebiotic building blocks within fatty acid-based vesicles yields lipidated species capable of localising to and functionalising primitive membranes. Our findings describe a potentially prebiotic scenario in which the components of primitive cells undergo activation and provide new species that might have enabled an increase in the functionality of protocells.
Collapse
Affiliation(s)
- Claudia Bonfio
- Medical Research Council Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Avenue Cambridge CB2 0QH UK
| | - David A Russell
- Medical Research Council Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Avenue Cambridge CB2 0QH UK
| | - Nicholas J Green
- Medical Research Council Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Avenue Cambridge CB2 0QH UK
| | - Angelica Mariani
- Medical Research Council Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Avenue Cambridge CB2 0QH UK
| | - John D Sutherland
- Medical Research Council Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Avenue Cambridge CB2 0QH UK
| |
Collapse
|
38
|
Wołos A, Roszak R, Żądło-Dobrowolska A, Beker W, Mikulak-Klucznik B, Spólnik G, Dygas M, Szymkuć S, Grzybowski BA. Synthetic connectivity, emergence, and
self-regeneration in the network of prebiotic
chemistry. Science 2020; 369:369/6511/eaaw1955. [DOI: 10.1126/science.aaw1955] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/28/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022]
Abstract
The challenge of prebiotic chemistry is to
trace the syntheses of life’s key building blocks
from a handful of primordial substrates. Here we
report a forward-synthesis algorithm that
generates a full network of prebiotic chemical
reactions accessible from these substrates under
generally accepted conditions. This network
contains both reported and previously unidentified
routes to biotic targets, as well as plausible
syntheses of abiotic molecules. It also exhibits
three forms of nontrivial chemical emergence, as
the molecules within the network can act as
catalysts of downstream reaction types; form
functional chemical systems, including
self-regenerating cycles; and produce surfactants
relevant to primitive forms of biological
compartmentalization. To support these claims,
computer-predicted, prebiotic syntheses of several
biotic molecules as well as a multistep,
self-regenerative cycle of iminodiacetic acid were
validated by experiment.
Collapse
Affiliation(s)
- Agnieszka Wołos
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
- Allchemy, Inc., Highland, IN,
USA
| | - Rafał Roszak
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
- Allchemy, Inc., Highland, IN,
USA
| | | | - Wiktor Beker
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
- Allchemy, Inc., Highland, IN,
USA
| | - Barbara Mikulak-Klucznik
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
- Allchemy, Inc., Highland, IN,
USA
| | - Grzegorz Spólnik
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
| | - Mirosław Dygas
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
| | - Sara Szymkuć
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
- Allchemy, Inc., Highland, IN,
USA
| | - Bartosz A. Grzybowski
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
- Allchemy, Inc., Highland, IN,
USA
- Center for Soft and Living Matter of
Korea’s Institute for Basic Science (IBS), Ulsan,
South Korea
- Department of Chemistry, Ulsan
National Institute of Science and Technology,
Ulsan, South Korea
| |
Collapse
|
39
|
Kovalenko SP. Physicochemical Processes That Probably Originated Life. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Zhou L, O'Flaherty DK, Szostak JW. Template-Directed Copying of RNA by Non-enzymatic Ligation. Angew Chem Int Ed Engl 2020; 59:15682-15687. [PMID: 32558121 PMCID: PMC7496532 DOI: 10.1002/anie.202004934] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/04/2020] [Indexed: 12/12/2022]
Abstract
The non-enzymatic replication of the primordial genetic material is thought to have enabled the evolution of early forms of RNA-based life. However, the replication of oligonucleotides long enough to encode catalytic functions is problematic due to the low efficiency of template copying with mononucleotides. We show that template-directed ligation can assemble long RNAs from shorter oligonucleotides, which would be easier to replicate. The rate of ligation can be greatly enhanced by employing a 3'-amino group at the 3'-end of each oligonucleotide, in combination with an N-alkyl imidazole organocatalyst. These modifications enable the copying of RNA templates by the multistep ligation of tetranucleotide building blocks, as well as the assembly of long oligonucleotides using short splint oligonucleotides. We also demonstrate the formation of long oligonucleotides inside model prebiotic vesicles, which suggests a potential route to the assembly of artificial cells capable of evolution.
Collapse
Affiliation(s)
- Lijun Zhou
- Howard Hughes Medical InstituteDepartment of Molecular BiologyCenter for Computational and Integrative BiologyMassachusetts General HospitalBostonMA02114 (USA), E
| | - Derek K. O'Flaherty
- Howard Hughes Medical InstituteDepartment of Molecular BiologyCenter for Computational and Integrative BiologyMassachusetts General HospitalBostonMA02114 (USA), E
- Present address: Alnylam PharmaceuticalsCambridgeMA02142USA
| | - Jack W. Szostak
- Howard Hughes Medical InstituteDepartment of Molecular BiologyCenter for Computational and Integrative BiologyMassachusetts General HospitalBostonMA02114 (USA), E
| |
Collapse
|
41
|
Zhang SJ, Duzdevich D, Szostak JW. Potentially Prebiotic Activation Chemistry Compatible with Nonenzymatic RNA Copying. J Am Chem Soc 2020; 142:14810-14813. [PMID: 32794700 PMCID: PMC9594304 DOI: 10.1021/jacs.0c05300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The nonenzymatic replication of ribonucleic
acid (RNA) may have
enabled the propagation of genetic information during the origin of
life. RNA copying can be initiated in the laboratory with chemically
activated nucleotides, but continued copying requires a source of
chemical energy for in situ nucleotide activation.
Recent work has illuminated a potentially prebiotic cyanosulfidic
chemistry that activates nucleotides, but its application to nonenzymatic
RNA copying had not been demonstrated. Here, we report a novel pathway
that activates RNA nucleotides in a manner compatible with template-directed
nonenzymatic copying. We show that this pathway, which we refer to
as bridge-forming activation, selectively yields the reactive imidazolium-bridged
dinucleotide intermediate required for copying. Our results will enable
more realistic simulations of RNA propagation based on continuous in situ nucleotide activation.
Collapse
Affiliation(s)
- Stephanie J Zhang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel Duzdevich
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jack W Szostak
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States.,Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
42
|
Zhou L, O'Flaherty DK, Szostak JW. Template‐Directed Copying of RNA by Non‐enzymatic Ligation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lijun Zhou
- Howard Hughes Medical Institute Department of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 (USA), E
| | - Derek K. O'Flaherty
- Howard Hughes Medical Institute Department of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 (USA), E
- Present address: Alnylam Pharmaceuticals Cambridge MA 02142 USA
| | - Jack W. Szostak
- Howard Hughes Medical Institute Department of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 (USA), E
| |
Collapse
|
43
|
Duzdevich D, Carr CE, Szostak JW. Deep sequencing of non-enzymatic RNA primer extension. Nucleic Acids Res 2020; 48:e70. [PMID: 32427335 PMCID: PMC7337528 DOI: 10.1093/nar/gkaa400] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/02/2020] [Accepted: 05/05/2020] [Indexed: 12/02/2022] Open
Abstract
Life emerging in an RNA world is expected to propagate RNA as hereditary information, requiring some form of primitive replication without enzymes. Non-enzymatic template-directed RNA primer extension is a model of the copying step in this posited form of replication. The sequence space accessed by primer extension dictates potential pathways to self-replication and, eventually, ribozymes. Which sequences can be accessed? What is the fidelity of the reaction? Does the recently illuminated mechanism of primer extension affect the distribution of sequences that can be copied? How do sequence features respond to experimental conditions and prebiotically relevant contexts? To help answer these and related questions, we here introduce a deep-sequencing methodology for studying RNA primer extension. We have designed and vetted special RNA constructs for this purpose, honed a protocol for sample preparation and developed custom software that analyzes sequencing data. We apply this new methodology to proof-of-concept controls, and demonstrate that it works as expected and reports on key features of the sequences accessed by primer extension.
Collapse
Affiliation(s)
- Daniel Duzdevich
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher E Carr
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jack W Szostak
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
44
|
Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature 2020; 582:60-66. [PMID: 32494078 DOI: 10.1038/s41586-020-2330-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/16/2020] [Indexed: 11/08/2022]
Abstract
The nature of the first genetic polymer is the subject of major debate1. Although the 'RNA world' theory suggests that RNA was the first replicable information carrier of the prebiotic era-that is, prior to the dawn of life2,3-other evidence implies that life may have started with a heterogeneous nucleic acid genetic system that included both RNA and DNA4. Such a theory streamlines the eventual 'genetic takeover' of homogeneous DNA from RNA as the principal information-storage molecule, but requires a selective abiotic synthesis of both RNA and DNA building blocks in the same local primordial geochemical scenario. Here we demonstrate a high-yielding, completely stereo-, regio- and furanosyl-selective prebiotic synthesis of the purine deoxyribonucleosides: deoxyadenosine and deoxyinosine. Our synthesis uses key intermediates in the prebiotic synthesis of the canonical pyrimidine ribonucleosides (cytidine and uridine), and we show that, once generated, the pyrimidines persist throughout the synthesis of the purine deoxyribonucleosides, leading to a mixture of deoxyadenosine, deoxyinosine, cytidine and uridine. These results support the notion that purine deoxyribonucleosides and pyrimidine ribonucleosides may have coexisted before the emergence of life5.
Collapse
|
45
|
Fialho DM, Roche TP, Hud NV. Prebiotic Syntheses of Noncanonical Nucleosides and Nucleotides. Chem Rev 2020; 120:4806-4830. [PMID: 32421316 DOI: 10.1021/acs.chemrev.0c00069] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The origin of nucleotides is a major question in origins-of-life research. Given the central importance of RNA in biology and the influential RNA World hypothesis, a great deal of this research has focused on finding possible prebiotic syntheses of the four canonical nucleotides of coding RNA. However, the use of nucleotides in other roles across the tree of life might be evidence that nucleotides have been used in noncoding roles for even longer than RNA has been used as a genetic polymer. Likewise, it is possible that early life utilized nucleotides other than the extant nucleotides as the monomers of informational polymers. Therefore, finding plausible prebiotic syntheses of potentially ancestral noncanonical nucleotides may be of great importance for understanding the origins and early evolution of life. Experimental investigations into abiotic noncanonical nucleotide synthesis reveal that many noncanonical nucleotides and related glycosides are formed much more easily than the canonical nucleotides. An analysis of the mechanisms by which nucleosides and nucleotides form in the solution phase or in drying-heating reactions from pre-existing sugars and heterocycles suggests that a wide variety of noncanonical nucleotides and related glycosides would have been present on the prebiotic Earth, if any such molecules were present.
Collapse
Affiliation(s)
- David M Fialho
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0440, United States
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0440, United States
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0440, United States
| |
Collapse
|
46
|
Ritson DJ, Mojzsis SJ, Sutherland JD. Supply of phosphate to early Earth by photogeochemistry after meteoritic weathering. NATURE GEOSCIENCE 2020; 13:344-348. [PMID: 32395178 PMCID: PMC7213494 DOI: 10.1038/s41561-020-0556-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/19/2020] [Indexed: 05/24/2023]
Abstract
During terrestrial differentiation, the relatively small amount of phosphorus that migrated to the lithosphere was incorporated into igneous rock, predominantly in the form of basic calcium orthophosphate (Ca10(PO4)6(OH,F,Cl)2, apatite). Yet, the highly insoluble nature of calcium apatite presents a significant problem to those contemplating the origin of life given the foundational role of phosphate (PO4 3-) in extant biology and the apparent requirement for PO4 3- as a catalyst, buffer and reagent in prebiotic chemistry. Reduced meteorites such as enstatite chondrites are highly enriched in phosphide minerals, and upon reaction with water these minerals can release phosphorus species of various oxidation states. Here, we demonstrate how reduced phosphorus species can be fully oxidized to PO4 3- simply by the action of ultraviolet light on H2S/HS-. We used low pressure Hg lamps to simulate UV output from the young Sun and 31P NMR spectroscopy to monitor the progress of reactions. Our experimental findings provide a cosmochemically and geochemically plausible means for supply of PO4 3- that was widely available to prebiotic chemistry and nascent life on early Earth, and potentially on other planets.
Collapse
Affiliation(s)
- Dougal J. Ritson
- MRC – Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, U.K
| | - Stephen J. Mojzsis
- Department of Geological Sciences, University of Colorado, UCB 399, 2200 Colorado Avenue, Boulder, CO 80309-0399, USA
- Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 45 Budaörsi Street, H-1112 Budapest, Hungary
| | - John. D. Sutherland
- MRC – Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, U.K
| |
Collapse
|
47
|
Walton T, DasGupta S, Duzdevich D, Oh SS, Szostak JW. In vitro selection of ribozyme ligases that use prebiotically plausible 2-aminoimidazole-activated substrates. Proc Natl Acad Sci U S A 2020; 117:5741-5748. [PMID: 32123094 PMCID: PMC7084097 DOI: 10.1073/pnas.1914367117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothesized central role of RNA in the origin of life suggests that RNA propagation predated the advent of complex protein enzymes. A critical step of RNA replication is the template-directed synthesis of a complementary strand. Two experimental approaches have been extensively explored in the pursuit of demonstrating protein-free RNA synthesis: template-directed nonenzymatic RNA polymerization using intrinsically reactive monomers and ribozyme-catalyzed polymerization using more stable substrates such as biological 5'-triphosphates. Despite significant progress in both approaches in recent years, the assembly and copying of functional RNA sequences under prebiotic conditions remains a challenge. Here, we explore an alternative approach to RNA-templated RNA copying that combines ribozyme catalysis with RNA substrates activated with a prebiotically plausible leaving group, 2-aminoimidazole (2AI). We applied in vitro selection to identify ligase ribozymes that catalyze phosphodiester bond formation between a template-bound primer and a phosphor-imidazolide-activated oligomer. Sequencing revealed the progressive enrichment of 10 abundant sequences from a random sequence pool. Ligase activity was detected in all 10 RNA sequences; all required activation of the ligator with 2AI and generated a 3'-5' phosphodiester bond. We propose that ribozyme catalysis of phosphodiester bond formation using intrinsically reactive RNA substrates, such as imidazolides, could have been an evolutionary step connecting purely nonenzymatic to ribozyme-catalyzed RNA template copying during the origin of life.
Collapse
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Saurja DasGupta
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Daniel Duzdevich
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Gyeongbuk, South Korea
| | - Jack W Szostak
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114;
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
48
|
Kerkeni B, Bacchus-Montabonel MC. Proton-Induced Charge Transfer on Imidazole and 2-Aminoimidazole. Role of the Substituent and Influence of Stepwise Hydration. J Phys Chem A 2020; 124:1003-1010. [PMID: 31935089 DOI: 10.1021/acs.jpca.9b10602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The behavior of potential prebiotic species in space is of main concern in the chemistry at the origin of life. Their reactivity or stability in spatial conditions, under strong UV radiations or ion bombardments, remains an open question and needs wide investigations. As protons are by far the most abundant ions in space, we focus presently on proton-induced collisions on imidazole and 2-aminoimidazole evidenced as important prebiotic RNA intermediates. Unconstrained full optimization of the structures was performed with B3LYP/cc-pVTZ model chemistry. The calculations were performed in a wide collision energy range in order to model various astrophysical environments, from eV in the interstellar medium, up to keV for solar winds or supernovae shock-wave protons. Such a study provides for the first time a theoretical insight on the influence of the amino substituent on the proton-induced charge transfer. We evaluated the role of icy grain environments through a cluster approach modeling the effect of a stepwise microhydration on the process. Comparisons with oxygenated and sulfurated analogues address further qualitative trends on the respective stability or reactivity of such heterocycles which may be of tremendous interest in prebiotic chemistry. Charge transfer appears to be quite efficient for imidazole compounds and their sulfurated analogue compared to the oxygenated heterocycle.
Collapse
Affiliation(s)
- Boutheïna Kerkeni
- Département de Physique, Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis , Université de Tunis el Manar , Campus Universitaire , 2092 Tunis , Tunisia.,Institut Supérieur des Arts Multimédia de la Manouba , Université de la Manouba , 2010 La Manouba , Tunisia.,Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière , F-69622 Villeurbanne , France
| | | |
Collapse
|
49
|
Núñez-Pertíñez S, Wilks TR. Deep Eutectic Solvents as Media for the Prebiotic DNA-Templated Synthesis of Peptides. Front Chem 2020; 8:41. [PMID: 32083058 PMCID: PMC7005209 DOI: 10.3389/fchem.2020.00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/14/2020] [Indexed: 12/25/2022] Open
Abstract
Translation of genetic information into peptide products is one of the fundamental processes of biology. How this occurred prebiotically, in the absence of enzyme catalysts, is an intriguing question. Nucleic acid-templated synthesis (NATS) promotes reactions by bringing building blocks tethered to complementary DNA strands into close proximity and has been shown to enable peptide synthesis without enzymes—it could therefore serve as a model for prebiotic translation of information stored in nucleic acid sequences into functional peptides. The decomposition of highly reactive DNA adapters has so far limited the effectiveness of NATS, but these studies have been performed exclusively in aqueous solution. Deep eutectic solvents (DESs) have been proposed as a feasible solvent for prebiotic replication of nucleic acids, and here are studied as media for prebiotic translation using NATS as a model. DESs are shown to enhance the stability of DNA-conjugated activated esters, the precursors of peptides. However, this enhanced stability was coupled with decreased amine reactivity that hampered the formation of peptide bonds in DESs. These properties are exploited to demonstrate the storage of DNA-conjugated activated esters in a DES followed by transfer into aqueous buffer to activate the NATS of peptides “on demand.” These findings, together with the reported functions of DESs in prebiotic processes, shed light on how DESs could have facilitated the non-enzymatic translation of genetic information into functional peptides on the early Earth.
Collapse
Affiliation(s)
| | - Thomas R Wilks
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
50
|
Abstract
The chemistry of abiotic nucleotide synthesis of RNA and DNA in the context of their prebiotic origins on early earth is a continuing challenge. How did (or how can) the nucleotides form and assemble from the small molecule inventories and under conditions that prevailed on early earth 3.5-4 billion years ago? This review provides a background and up-to-date progress that will allow the reader to judge where the field stands currently and what remains to be achieved. We start with a brief primer on the biological synthesis of nucleotides, followed by an extensive focus on the prebiotic formation of the components of nucleotides-either via the synthesis of ribose and the canonical nucleobases and then joining them together or by building both the conjoined sugar and nucleobase, part-by-part-toward the ultimate goal of forming RNA and DNA by polymerization. The review will emphasize that there are-and will continue to be-many more questions than answers from the synthetic, mechanistic, and analytical perspectives. We wrap up the review with a cautionary note in this context about coming to conclusions as to whether the problem of chemistry of prebiotic nucleotide synthesis has been solved.
Collapse
Affiliation(s)
- Mahipal Yadav
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Ravi Kumar
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|