1
|
Rice AJ, Sword TT, Chengan K, Mitchell DA, Mouncey NJ, Moore SJ, Bailey CB. Cell-free synthetic biology for natural product biosynthesis and discovery. Chem Soc Rev 2025; 54:4314-4352. [PMID: 40104998 PMCID: PMC11920963 DOI: 10.1039/d4cs01198h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 03/20/2025]
Abstract
Natural products have applications as biopharmaceuticals, agrochemicals, and other high-value chemicals. However, there are challenges in isolating natural products from their native producers (e.g. bacteria, fungi, plants). In many cases, synthetic chemistry or heterologous expression must be used to access these important molecules. The biosynthetic machinery to generate these compounds is found within biosynthetic gene clusters, primarily consisting of the enzymes that biosynthesise a range of natural product classes (including, but not limited to ribosomal and nonribosomal peptides, polyketides, and terpenoids). Cell-free synthetic biology has emerged in recent years as a bottom-up technology applied towards both prototyping pathways and producing molecules. Recently, it has been applied to natural products, both to characterise biosynthetic pathways and produce new metabolites. This review discusses the core biochemistry of cell-free synthetic biology applied to metabolite production and critiques its advantages and disadvantages compared to whole cell and/or chemical production routes. Specifically, we review the advances in cell-free biosynthesis of ribosomal peptides, analyse the rapid prototyping of natural product biosynthetic enzymes and pathways, highlight advances in novel antimicrobial discovery, and discuss the rising use of cell-free technologies in industrial biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Andrew J Rice
- Department of Biochemistry, School of Medicine - Basic Sciences, Vanderbilt University Medical Research Building-IV, Nashville, Tennessee, 37232, USA
| | - Tien T Sword
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Douglas A Mitchell
- Department of Biochemistry, School of Medicine - Basic Sciences, Vanderbilt University Medical Research Building-IV, Nashville, Tennessee, 37232, USA
- Department of Chemistry, Vanderbilt University, Medical Research Building-IV, Nashville, Tennessee, 37232, USA
| | - Nigel J Mouncey
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Simon J Moore
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Constance B Bailey
- School of Chemistry, University of Sydney, Camperdown, NSW, 2001, Australia.
| |
Collapse
|
2
|
Sung DB, Lee JS. Natural-product-based fluorescent probes: recent advances and applications. RSC Med Chem 2023; 14:412-432. [PMID: 36970151 PMCID: PMC10034199 DOI: 10.1039/d2md00376g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Fluorescent probes are attractive tools for biology, drug discovery, disease diagnosis, and environmental analysis. In bioimaging, these easy-to-operate and inexpensive probes can be used to detect biological substances, obtain detailed cell images, track in vivo biochemical reactions, and monitor disease biomarkers without damaging biological samples. Over the last few decades, natural products have attracted extensive research interest owing to their great potential as recognition units for state-of-the-art fluorescent probes. This review describes representative natural-product-based fluorescent probes and recent discoveries, with a particular focus on fluorescent bioimaging and biochemical studies.
Collapse
Affiliation(s)
- Dan-Bi Sung
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology Busan Republic of Korea
| | - Jong Seok Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology Busan Republic of Korea
- Department of Marine Biotechnology, Korea University of Science and Technology Daejeon Republic of Korea
| |
Collapse
|
3
|
Xue YW, Miura K, Itoh H, Inoue M. C-Terminal modification of polytheonamide B uncouples its dual functions in MCF-7 cancer cells. Chem Commun (Camb) 2023; 59:3914-3917. [PMID: 36919651 DOI: 10.1039/d2cc05915k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Polytheonamide B (1) is an exceptionally large peptide that forms a transmembrane ion channel. The potent cytotoxicity of 1 against MCF-7 cancer cells originates from its two ion transport functions. Compound 1 depolarizes the plasma membrane and neutralizes acidic lysosomes. Here, we describe how we uncoupled these functions by designing and synthesizing new analogues of 1.
Collapse
Affiliation(s)
- Yun-Wei Xue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Kensuke Miura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
5
|
Yan H, Chen F. Recent Progress in Solid‐Phase Total Synthesis of Naturally Occurring Small Peptides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hong Yan
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 People's Republic of China
| | - Fen‐Er Chen
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 People's Republic of China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
| |
Collapse
|
6
|
Structure and mechanism for iterative amide N-methylation in the biosynthesis of channel-forming peptide cytotoxins. Proc Natl Acad Sci U S A 2022; 119:e2116578119. [PMID: 35316135 PMCID: PMC9060474 DOI: 10.1073/pnas.2116578119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The channel-forming proteusins are bacterial helical peptides that allow permeation of positively charged ions to influence membrane potential and cellular physiology. We biochemically characterize the effect of two critical posttranslational modifications on the secondary structure of the peptide substrate. We determine how a methyl group can be added to the side chains of D-Asn residues in a peptide substrate and show how flanking residues influence selectivity. These studies should foster the development of small-molecule peptide ion channels as therapeutics. The polytheonamides are highly modified and potent, cytotoxic peptides with a unique β-helical structure (helical diameter ∼4 Å) that affords selective membrane permeation of monovalent cations. Toxicity has been linked to promiscuous ion-channel behavior in studies of the prototypical polytheonamide B. Specific structural features of the β-helical toxins include, among other modifications, Cα-epimerizations and Nγ-methylations, which have been highlighted as the early-stage modifications most critical for β-helix formation. Here, we interrogate Cα-epimerization and Nγ-methylation to understand the importance of these modifications for secondary structure. We characterize the mechanism of Nγ-methylations on the amide side chains of D-Asn, an enzymatic modification with little biochemical precedent. Crystal structures of the AerE methyltransferase in complex with its epimerized peptide substrate and S-adenosyl-homocysteine reveal features of substrate recognition and an unexpected metal-ion that may mediate methyl transfer to the poorly nucleophilic amide. These studies provide a framework for the engineering of novel β-helical peptides with ion and membrane selectivity.
Collapse
|
7
|
Xue YW, Itoh H, Dan S, Inoue M. Gramicidin A accumulates in mitochondria, reduces ATP levels, induces mitophagy, and inhibits cancer cell growth. Chem Sci 2022; 13:7482-7491. [PMID: 35872830 PMCID: PMC9241976 DOI: 10.1039/d2sc02024f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Here we revealed the spatiotemporal behavior of gramicidin A in cancer cells. Gramicidin A depolarizes both the plasma and mitochondrial membranes, inhibits ATP synthesis, and induces mitophagy, thereby causing potent inhibition of cell growth.
Collapse
Affiliation(s)
- Yun-Wei Xue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Itoh H, Inoue M. Development of a High-Throughput Strategy for Functional Enhancement and Alteration of Antibacterial Natural Products. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
9
|
Cao L, Do T, Link AJ. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J Ind Microbiol Biotechnol 2021; 48:6121428. [PMID: 33928382 PMCID: PMC8183687 DOI: 10.1093/jimb/kuab005] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Natural products remain a critical source of medicines and drug leads. One of the most rapidly growing superclasses of natural products is RiPPs: ribosomally synthesized and posttranslationally modified peptides. RiPPs have rich and diverse bioactivities. This review highlights examples of the molecular mechanisms of action that underly those bioactivities. Particular emphasis is placed on RiPP/target interactions for which there is structural information. This detailed mechanism of action work is critical toward the development of RiPPs as therapeutics and can also be used to prioritize hits in RiPP genome mining studies.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.,Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Seto S, Takeda T, Hoshino N, Akutagawa T. Effective Na +-Binding Ability and Molecular Assembly of an Alkylamide-Substituted Penta(ethylene)glycol Derivative. J Phys Chem B 2021; 125:6349-6358. [PMID: 34086464 DOI: 10.1021/acs.jpcb.1c03188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new amphiphilic penta(ethylene glycol) derivative (1) bearing two hydrogen-bonding -CONHC14H29 chains was prepared. Compound 1 exhibited ion-recognition abilities for Na+ and K+, and its properties were compared with those of the macrocyclic [18]crown-6. Although both compound 1 and [18]crown-6 have six ether oxygen atoms (-OC2H2-), the Na+-binding ability of the former was much higher than that of the latter. K+-binding ability of cyclic [18]crown-6 was much higher than its Na+-binding ability, while the reverse was true for acyclic compound 1. Single-crystal X-ray structural analysis of Na+·1·B(Ph)4-·(hexane)2 at 100 K revealed the existence of a wrapped Na+-coordination by six ether and one carbonyl oxygen atoms of 1, which was further stabilized by intramolecular N-H···O═ hydrogen-bonding interactions. The complex phase transition during glass (G) formation and recrystallization was confirmed in the thermal cycle of Na+·1·B(Ph)4-, whose molten state showed two kinds of liquid phases, Na+-complexed (Na+·1) + B(Ph)4- and completely dissociated Na+ + 1 + B(Ph)4-. The Na+ conductivity of the molten state was 2 orders of magnitude higher than that of the G phase.
Collapse
Affiliation(s)
- Shinya Seto
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.,Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Norihisa Hoshino
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.,Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.,Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
11
|
Takada Y, Itoh H, Paudel A, Panthee S, Hamamoto H, Sekimizu K, Inoue M. Discovery of gramicidin A analogues with altered activities by multidimensional screening of a one-bead-one-compound library. Nat Commun 2020; 11:4935. [PMID: 33004797 PMCID: PMC7531004 DOI: 10.1038/s41467-020-18711-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
Gramicidin A (1) is a peptide antibiotic that disrupts the transmembrane ion concentration gradient by forming an ion channel in a lipid bilayer. Although long used clinically, it is limited to topical application because of its strong hemolytic activity and mammalian cytotoxicity, likely arising from the common ion transport mechanism. Here we report an integrated high-throughput strategy for discovering analogues of 1 with altered biological activity profiles. The 4096 analogue structures are designed to maintain the charge-neutral, hydrophobic, and channel forming properties of 1. Synthesis of the analogues, tandem mass spectrometry sequencing, and 3 microscale screenings enable us to identify 10 representative analogues. Re-synthesis and detailed functional evaluations find that all 10 analogues share a similar ion channel function, but have different cytotoxic, hemolytic, and antibacterial activities. Our large-scale structure-activity relationship studies reveal the feasibility of developing analogues of 1 that selectively induce toxicity toward target organisms. The strong hemolytic activity and mammalian cytotoxicity of gramicidin A, a peptide antibiotic, has hindered its non-topical clinical application. Here, the authors report a high-throughput strategy for the discovery of gramicidin A analogues with altered biological activity profiles.
Collapse
Affiliation(s)
- Yuri Takada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atmika Paudel
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Suresh Panthee
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Hiroshi Hamamoto
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Kazuhisa Sekimizu
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
12
|
Muraoka T, Noguchi D, Kasai RS, Sato K, Sasaki R, Tabata KV, Ekimoto T, Ikeguchi M, Kamagata K, Hoshino N, Noji H, Akutagawa T, Ichimura K, Kinbara K. A synthetic ion channel with anisotropic ligand response. Nat Commun 2020; 11:2924. [PMID: 32522996 PMCID: PMC7287108 DOI: 10.1038/s41467-020-16770-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/26/2020] [Indexed: 12/04/2022] Open
Abstract
Biological membranes play pivotal roles in the cellular activities. Transmembrane proteins are the central molecules that conduct membrane-mediated biochemical functions such as signal transduction and substance transportation. Not only the molecular functions but also the supramolecular properties of the transmembrane proteins such as self-assembly, delocalization, orientation and signal response are essential for controlling cellular activities. Here we report anisotropic ligand responses of a synthetic multipass transmembrane ion channel. An unsymmetrical molecular structure allows for oriented insertion of the synthetic amphiphile to a bilayer by addition to a pre-formed membrane. Complexation with a ligand prompts ion transportation by forming a supramolecular channel, and removal of the ligand deactivates the transportation function. Biomimetic regulation of the synthetic channel by agonistic and antagonistic ligands is also demonstrated not only in an artificial membrane but also in a biological membrane of a living cell. Transmembrane proteins are important for cellular functions and synthetic analogues are of interest. Here the authors report on the design and testing of a synthetic multipass transmembrane channel which shows anisotropic responses to agonistic and antagonistic ligands.
Collapse
Affiliation(s)
- Takahiro Muraoka
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Daiki Noguchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Rinshi S Kasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shougoin, Kyoto, 606-8507, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Ryo Sasaki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Kazuhito V Tabata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,Medical Sciences Innovation Hub Program RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Kazuaki Ichimura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| |
Collapse
|
13
|
Itoh H, Miura K, Kamiya K, Yamashita T, Inoue M. Solid‐Phase Total Synthesis of Yaku'amide B Enabled by Traceless Staudinger Ligation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hiroaki Itoh
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Kensuke Miura
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Koichi Kamiya
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Tomoya Yamashita
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
14
|
Nishimura S, Matsumori N. Chemical diversity and mode of action of natural products targeting lipids in the eukaryotic cell membrane. Nat Prod Rep 2020; 37:677-702. [PMID: 32022056 DOI: 10.1039/c9np00059c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: up to 2019Nature furnishes bioactive compounds (natural products) with complex chemical structures, yet with simple, sophisticated molecular mechanisms. When natural products exhibit their activities in cells or bodies, they first have to bind or react with a target molecule in/on the cell. The cell membrane is a major target for bioactive compounds. Recently, our understanding of the molecular mechanism of interactions between natural products and membrane lipids progressed with the aid of newly-developed analytical methods. New technology reconnects old compounds with membrane lipids, while new membrane-targeting molecules are being discovered through the screening for antimicrobial potential of natural products. This review article focuses on natural products that bind to eukaryotic membrane lipids, and includes clinically important molecules and key research tools. The chemical diversity of membrane-targeting natural products and the molecular basis of lipid recognition are described. The history of how their mechanism was unveiled, and how these natural products are used in research are also mentioned.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan.
| | | |
Collapse
|
15
|
Itoh H, Miura K, Kamiya K, Yamashita T, Inoue M. Solid-Phase Total Synthesis of Yaku'amide B Enabled by Traceless Staudinger Ligation. Angew Chem Int Ed Engl 2020; 59:4564-4571. [PMID: 31943639 DOI: 10.1002/anie.201916517] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 11/09/2022]
Abstract
We report a solid-phase strategy for total synthesis of the peptidic natural product yaku'amide B (1), which exhibits antiproliferative activity against various cancer cells. Its linear tridecapeptide sequence bears four β,β-dialkylated α,β-dehydroamino acid residues and is capped with an N-terminal acyl group (NTA) and a C-terminal amine (CTA). To realize the Fmoc-based solid-phase synthesis of this complex structure, we developed new methods for enamide formation, enamide deprotection, and C-terminal modification. First, traceless Staudinger ligation enabled enamide formation between sterically encumbered alkenyl azides and newly designed phosphinophenol esters. Second, application of Eu(OTf)3 led to chemoselective removal of the enamide Boc groups without detaching the resin linker. Finally, resin-cleavage and C-terminus modification were simultaneously achieved with an ester-amide exchange reaction using CTA and AlMe3 to deliver 1 in 9.1 % overall yield (24 steps from the resin).
Collapse
Affiliation(s)
- Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kensuke Miura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koichi Kamiya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoya Yamashita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
16
|
Xue YW, Hayata A, Itoh H, Inoue M. Biological Effects of a Simplified Synthetic Analogue of Ion-Channel-Forming Polytheonamide B on Plasma Membrane and Lysosomes. Chemistry 2019; 25:15198-15204. [PMID: 31549755 DOI: 10.1002/chem.201903974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Indexed: 11/09/2022]
Abstract
Polytheonamide B (1) is a linear 48-mer natural peptide with alternating d- and l-amino acid residues. Compound 1 forms conducting channels for monovalent ions and exhibits potent cytotoxicity against MCF-7 cells. Previously, we reported that nanomolar concentrations of 1 induce plasma membrane depolarization and lysosomal pH disruption, which triggers apoptosis. Here, we report the cellular localization and biological action of a simplified synthetic analogue of 1, polytheonamide mimic 3. Compared with 1, the toxicity of 3 against MCF-7 cells is 16 times weaker. Although its plasma membrane depolarization effect is only 3.6 times lower, more 3 (20-fold) is required to neutralize lysosomal pH. Thus, the effective concentrations for lysosomal neutralization and cytotoxicity by 3 are comparable. These results strongly suggest that the activity of 3 against the lysosomal membrane is more important for apoptotic cell death than its effects on the plasma membrane, and provide valuable information regarding the unique behavior of polytheonamide-based molecules.
Collapse
Affiliation(s)
- Yun-Wei Xue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Hayata
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
17
|
Bhushan A, Egli PJ, Peters EE, Freeman MF, Piel J. Genome mining- and synthetic biology-enabled production of hypermodified peptides. Nat Chem 2019; 11:931-939. [PMID: 31501509 PMCID: PMC6763334 DOI: 10.1038/s41557-019-0323-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
The polytheonamides are among the most complex and biosynthetically distinctive natural products known to date. These potent peptide cytotoxins are derived from a ribosomal precursor processed by 49 mostly non-canonical posttranslational modifications. As the producer is a 'microbial dark matter' bacterium only distantly related to any cultivated organism, >70-step chemical syntheses have been developed to access these unique compounds. Here, we mined prokaryotic diversity to establish a synthetic platform based on the new host Microvirgula aerodenitrificans that produces hypermodified peptides within two days. Using this system, we generated the aeronamides, new polytheonamide-type compounds with near-picomolar cytotoxicity. Aeronamides, as well as the polygeonamides produced from deep-rock biosphere DNA, contain the highest numbers of D-amino acids in known biomolecules. With increasing bacterial genomes being sequenced, similar host mining strategies might become feasible to access further elusive natural products from uncultivated life.
Collapse
Affiliation(s)
- Agneya Bhushan
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | | | - Eike E Peters
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Michael F Freeman
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota-Twin Cities, St Paul, MN, USA
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
García‐Calvo J, Torroba T, Brañas‐Fresnillo V, Perdomo G, Cózar‐Castellano I, Li Y, Legrand Y, Barboiu M. Manipulation of Transmembrane Transport by Synthetic K
+
Ionophore Depsipeptides and Its Implications in Glucose‐Stimulated Insulin Secretion in β‐Cells. Chemistry 2019; 25:9287-9294. [DOI: 10.1002/chem.201901372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Indexed: 12/19/2022]
Affiliation(s)
- José García‐Calvo
- Department of ChemistryFaculty of ScienceUniversity of Burgos 09001 Burgos Spain
| | - Tomás Torroba
- Department of ChemistryFaculty of ScienceUniversity of Burgos 09001 Burgos Spain
| | | | - Germán Perdomo
- Department of Health SciencesSchool of Health SciencesUniversity of Burgos 09001 Burgos Spain
| | - Irene Cózar‐Castellano
- Institute of Molecular Biology and Genetics-IBGMUniversity of Valladolid-CSIC 47003 Valladolid Spain
| | - Yu‐Hao Li
- Adaptive Supramolecular Nanosystems GroupInstitut Européen des Membranes Place Eugène Bataillon, CC047 34095 Montpellier Cedex 5 France
| | - Yves‐Marie Legrand
- Adaptive Supramolecular Nanosystems GroupInstitut Européen des Membranes Place Eugène Bataillon, CC047 34095 Montpellier Cedex 5 France
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems GroupInstitut Européen des Membranes Place Eugène Bataillon, CC047 34095 Montpellier Cedex 5 France
| |
Collapse
|