1
|
Wu W, Feng B, Tian Y, He Z, Yang D, Wu G, Yang X. Insights into Ultrafast Relaxation Dynamics of Electronically Excited Furfural and 5-Methylfurfural. J Phys Chem A 2024; 128:8906-8913. [PMID: 39364917 PMCID: PMC11497838 DOI: 10.1021/acs.jpca.4c04503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
The ultrafast relaxation dynamics of furfural and 5-methylfurfural following excitation in the ultraviolet range is investigated using the femtosecond time-resolved photoelectron spectroscopy method. Specifically, the pump wavelength-dependent decay dynamics of electronically excited furfural and 5-methylfurfural is discussed on the basis of a detailed analysis of our measured time-resolved photoelectron spectroscopy spectra. Irradiation at all pump wavelengths prepares both furfural and 5-methylfurfural molecules with different vibrational levels in the first optically bright S2 (1ππ*) state, the lifetime of which is measured to be at least hundreds of femtoseconds. Besides the prominent deactivation channels of ring-opening and ring-puckering pathways for the S2(1ππ*) state, we propose that there is a minor decay channel of internal conversion from the initially prepared S2(1ππ*) state to the S1(1nπ*) state. The wavepacket decays out of the Franck-Condon region on the S2(1ππ*) state potential energy surface and bifurcates into different parts somewhere. A small fraction of the wavepacket funnels down to the S1(1nπ*) state via internal conversion. The subsequently populated S1(1nπ*) state contains large vibrational excess energy and decays over a lifetime of 2.5-2.8 ps. One of the deactivation channels of the S1(1nπ*) state is intersystem crossing to the 3ππ* triplet state. In addition, methyl substitution effects on the excited-state dynamics of furfural are also discussed. This experimental study provides new insights into the excitation energy-dependent decay dynamics of photoexcited furfural and 5-methylfurfural.
Collapse
Affiliation(s)
- Wenping Wu
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Baihui Feng
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhuan Tian
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang He
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Dongyuan Yang
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Guorong Wu
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Xueming Yang
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- Department
of Chemistry, College of Science, Southern
University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Leone SR. Reinvented: An Attosecond Chemist. Annu Rev Phys Chem 2024; 75:1-19. [PMID: 38012050 DOI: 10.1146/annurev-physchem-083122-011610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Attosecond science requires a substantial rethinking of how to make measurements on very short timescales; how to acquire the necessary equipment, technology, and personnel; and how to build a set of laboratories for such experiments. This entails a rejuvenation of the author in many respects, in the laboratory itself, with regard to students and postdocs, and in generating funding for research. It also brings up questions of what it means to do attosecond science, and the discovery of the power of X-ray spectroscopy itself, which complements the short timescales addressed. The lessons learned, expressed in the meanderings of this autobiographical article, may be of benefit to others who try to reinvent themselves.
Collapse
Affiliation(s)
- Stephen R Leone
- Departments of Chemistry and Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley, California, USA;
| |
Collapse
|
3
|
Garner SM, Haugen EA, Leone SR, Neuscamman E. Spin Coupling Effect on Geometry-Dependent X-Ray Absorption of Diradicals. J Am Chem Soc 2024; 146:2387-2397. [PMID: 38235992 DOI: 10.1021/jacs.3c08002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
We theoretically investigate the influence of diradical electron spin coupling on the time-resolved X-ray absorption spectra of the photochemical ring opening of furanone. We predict geometry-dependent carbon K-edge signals involving transitions from core orbitals to both singly and unoccupied molecular orbitals. The most obvious features of the ring opening come from the carbon atom directly involved in the bond breaking through its transition to both the newly formed singly occupied and the available lowest unoccupied molecular orbitals (SOMO and LUMO, respectively). In addition to this primary feature, the singlet spin coupling of four unpaired electrons that arises in the core-to-LUMO states creates additional geometry dependence in some spectral features with both oscillator strengths and relative excitation energies varying observably as a function of the ring opening. We attribute this behavior to a spin-occupancy-induced selection rule, which occurs when singlet spin coupling is enforced in the diradical state. Notably, one of these geometry-sensitive core-to-LUMO transitions excites core electrons from a backbone carbon not involved in the bond breaking, providing a novel nonlocal X-ray probe of chemical dynamics arising from electron spin coupling.
Collapse
Affiliation(s)
- Scott M Garner
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eric A Haugen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Hait D, Martínez TJ. Predicting the X-ray Absorption Spectrum of Ozone with Single Configuration State Functions. J Chem Theory Comput 2024; 20:873-881. [PMID: 38175153 DOI: 10.1021/acs.jctc.3c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
X-ray absorption spectra (XAS) of biradicaloid species are often thought to represent a challenge to theoretical methods. This has led to the testing of recently developed multireference techniques on the XAS of ozone, but reproduction of the experimental spectral profile has proven difficult. We utilize a minimal model consisting of a single configuration state function (CSF) per excited state to model core-level excitations of ozone, with the orbitals of each CSF optimized using the restricted open-shell Kohn-Sham (ROKS) method. This protocol leads to semiquantitative agreement with experimental XAS. In fact, we find that low-lying core-hole excited states in biradicaloids can be approximated with individual CSFs, despite the presence of multireference character in the ground state. We also report that the 1s → π* and 1s → σ* transitions have quite distinct widths for O3. This reveals the importance of sampling over a representative range of geometries from the vibrational ground state for properly assessing the accuracy of electronic structure methods against experiments instead of the popular procedure of uniformly broadening stick spectra at the equilibrium geometry.
Collapse
Affiliation(s)
- Diptarka Hait
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
5
|
Nam Y, Song H, Freixas VM, Keefer D, Fernandez-Alberti S, Lee JY, Garavelli M, Tretiak S, Mukamel S. Monitoring vibronic coherences and molecular aromaticity in photoexcited cyclooctatetraene with an X-ray probe: a simulation study. Chem Sci 2023; 14:2971-2982. [PMID: 36937575 PMCID: PMC10016608 DOI: 10.1039/d2sc04335a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding conical intersection (CI) dynamics and subsequent conformational changes is key for exploring and controlling photo-reactions in aromatic molecules. Monitoring of their time-resolved dynamics remains a formidable experimental challenge. In this study, we simulate the photoinduced S3 to S1 non-adiabatic dynamics of cyclooctatetraene (COT), involving multiple CIs with relaxation times in good agreement with experiment. We further investigate the possibility to directly probe the CI passages in COT by off-resonant X-ray Raman spectroscopy (TRUECARS) and time-resolved X-ray diffraction (TRXD). We find that these signals sensitively monitor key chemical features during the ultrafast dynamics. First, we distinguish two CIs by using TRUECARS signals with their appearances at different Raman shifts. Second, we demonstrate that TRXD, where X-ray photons scatter off electron densities, can resolve ultrafast changes in the aromaticity of COT. It can further distinguish between planar and non-planar geometries explored during the dynamics, as e.g. two different tetraradical-type CIs. The knowledge gained from these measurements can give unique insight into fundamental chemical properties that dynamically change during non-adiabatic passages.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Daniel Keefer
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | | | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Korea
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari,", Universita' degli Studi di Bologna I-40136 Bologna Italy
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Shaul Mukamel
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| |
Collapse
|
6
|
Epshtein M, Tenorio BNC, Vidal ML, Scutelnic V, Yang Z, Xue T, Krylov AI, Coriani S, Leone SR. Signatures of the Bromine Atom and Open-Shell Spin Coupling in the X-ray Spectrum of the Bromobenzene Cation. J Am Chem Soc 2023; 145:3554-3560. [PMID: 36735829 DOI: 10.1021/jacs.2c12334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tabletop X-ray spectroscopy measurements at the carbon K-edge complemented by ab initio calculations are used to investigate the influence of the bromine atom on the carbon core-valence transitions in the bromobenzene cation (BrBz+). The electronic ground state of the cation is prepared by resonance-enhanced two-photon ionization of neutral bromobenzene (BrBz) and probed by X-rays produced by high-harmonic generation (HHG). Replacing one of the hydrogen atoms in benzene with a bromine atom shifts the transition from the 1sC* orbital of the carbon atom (C*) bonded to bromine by ∼1 eV to higher energy in the X-ray spectrum compared to the other carbon atoms (C). Moreover, in BrBz+, the X-ray spectrum is dominated by two relatively intense transitions, 1sC→π* and 1sC*→σ*(C*-Br), where the second transition is enhanced relative to the neutral BrBz. In addition, a doublet peak shape for these two transitions is observed in the experiment. The 1sC→π* doublet peak shape arises due to the spin coupling of the unpaired electron in the partially vacant π orbital (from ionization) with the two other unpaired electrons resulting from the transition from the 1sC core orbital to the fully vacant π* orbitals. The 1sC*→σ* doublet peak shape results from several transitions involving σ* and vibrational C*-Br mode activations following the UV ionization, which demonstrates the impact of the C*-Br bond length on the core-valence transition as well as on the relaxation geometry of BrBz+.
Collapse
Affiliation(s)
- Michael Epshtein
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Marta L Vidal
- DTU Chemistry─Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Valeriu Scutelnic
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zheyue Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tian Xue
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sonia Coriani
- DTU Chemistry─Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Dorner-Kirchner M, Shumakova V, Coccia G, Kaksis E, Schmidt BE, Pervak V, Pugzlys A, Baltuška A, Kitzler-Zeiler M, Carpeggiani PA. HHG at the Carbon K-Edge Directly Driven by SRS Red-Shifted Pulses from an Ytterbium Amplifier. ACS PHOTONICS 2023; 10:84-91. [PMID: 36691427 PMCID: PMC9853858 DOI: 10.1021/acsphotonics.2c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 06/17/2023]
Abstract
In this work, we introduce a simplified approach to efficiently extend the high harmonic generation (HHG) cutoff in gases without the need for laser frequency conversion via parametric processes. Instead, we employ postcompression and red-shifting of a Yb:CaF2 laser via stimulated Raman scattering (SRS) in a nitrogen-filled stretched hollow core fiber. This driving scheme circumvents the low-efficiency window of parametric amplifiers in the 1100-1300 nm range. We demonstrate this approach being suitable for upscaling the power of a driver with an optimal wavelength for HHG in the highly desirable XUV range between 200 and 300 eV, up to the carbon K-edge. Due to the combination of power scalability of a low quantum defect ytterbium-based laser system with the high conversion efficiency of the SRS technique, we expect a significant increase in the generated photon flux in comparison with established platforms for HHG in the water window. We also compare HHG driven by the SRS scheme with the conventional self-phase modulation (SPM) scheme.
Collapse
Affiliation(s)
| | - Valentina Shumakova
- Photonics
Institute, Technische Universität
Wien, A-1040 Vienna, Austria
- Christian
Doppler Laboratory for Mid-IR Spectroscopy and Semiconductor Optics, University of Vienna, A-1090 Vienna, Austria
| | - Giulio Coccia
- Photonics
Institute, Technische Universität
Wien, A-1040 Vienna, Austria
- Istituto
di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche (IFN-CNR)
and Dipartimento di Fisica-Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Edgar Kaksis
- Photonics
Institute, Technische Universität
Wien, A-1040 Vienna, Austria
| | - Bruno E. Schmidt
- few-Cycle
Inc., 1650 Blvd. Lionel
Boulet, J3X 1P7, Varennes, QC Canada
| | - Vladimir Pervak
- Ludwig-Maximilians-Universität
München, Department of Physics, Am Coulombwall 1, 85748 Garching, Germany
- UltraFast
Innovations GmbH, Am
Coulombwall 1, 85748 Garching, Germany
| | - Audrius Pugzlys
- Photonics
Institute, Technische Universität
Wien, A-1040 Vienna, Austria
- Center
for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300, Vilnius, Lithuania
| | - Andrius Baltuška
- Photonics
Institute, Technische Universität
Wien, A-1040 Vienna, Austria
| | | | | |
Collapse
|
8
|
Annegarn M, Kahk JM, Lischner J. Combining Time-Dependent Density Functional Theory and the ΔSCF Approach for Accurate Core-Electron Spectra. J Chem Theory Comput 2022; 18:7620-7629. [PMID: 36383053 DOI: 10.1021/acs.jctc.2c00817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spectroscopies that probe electronic excitations from core levels into unoccupied orbitals, such as X-ray absorption spectroscopy and electron energy loss spectroscopy, are widely used to gain insight into the electronic and chemical structure of materials. To support the interpretation of experimental spectra, we assess the performance of a first-principles approach that combines linear-response time-dependent density (TDDFT) functional theory with the Δ self-consistent field (ΔSCF) approach. In particular, we first use TDDFT to calculate the core-level spectrum and then shift the spectrum such that the lowest excitation energy from TDDFT agrees with that from ΔSCF. We apply this method to several small molecules and find encouraging agreement between calculated and measured spectra.
Collapse
Affiliation(s)
- Marcus Annegarn
- Departments of Materials, Imperial College London, LondonSW7 2AZ, United Kingdom.,The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Juhan Matthias Kahk
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411Tartu, Estonia
| | - Johannes Lischner
- Departments of Materials, Imperial College London, LondonSW7 2AZ, United Kingdom.,The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Talbot JJ, Head-Gordon M, Cotton SJ. The symmetric quasi-classical model using on-the-fly time-dependent density functional theory within the Tamm–Dancoff approximation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2153761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Justin J. Talbot
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen J. Cotton
- Department of Chemistry, University of California, Berkeley, CA, USA
| |
Collapse
|
10
|
Kleine C, Winghart MO, Zhang ZY, Richter M, Ekimova M, Eckert S, Vrakking MJJ, Nibbering ETJ, Rouzée A, Grant ER. Electronic State Population Dynamics upon Ultrafast Strong Field Ionization and Fragmentation of Molecular Nitrogen. PHYSICAL REVIEW LETTERS 2022; 129:123002. [PMID: 36179157 DOI: 10.1103/physrevlett.129.123002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Air lasing from single ionized N_{2}^{+} molecules induced by laser filamentation in air has been intensively investigated and the mechanisms responsible for lasing are currently highly debated. We use ultrafast nitrogen K-edge spectroscopy to follow the strong field ionization and fragmentation dynamics of N_{2} upon interaction with an ultrashort 800 nm laser pulse. Using probe pulses generated by extreme high-order harmonic generation, we observe transitions indicative of the formation of the electronic ground X^{2}Σ_{g}^{+}, first excited A^{2}Π_{u}, and second excited B^{2}Σ_{u}^{+} states of N_{2}^{+} on femtosecond timescales, from which we can quantitatively determine the time-dependent electronic state population distribution dynamics of N_{2}^{+}. Our results show a remarkably low population of the A^{2}Π_{u} state, and nearly equal populations of the X^{2}Σ_{g}^{+} and B^{2}Σ_{u}^{+} states. In addition, we observe fragmentation of N_{2}^{+} into N and N^{+} on a timescale of several tens of picoseconds that we assign to significant collisional dynamics in the plasma, resulting in dissociative excitation of N_{2}^{+}.
Collapse
Affiliation(s)
- Carlo Kleine
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2a, 12489 Berlin, Germany
| | - Marc-Oliver Winghart
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2a, 12489 Berlin, Germany
| | - Zhuang-Yan Zhang
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2a, 12489 Berlin, Germany
| | - Maria Richter
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2a, 12489 Berlin, Germany
| | - Maria Ekimova
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2a, 12489 Berlin, Germany
| | - Sebastian Eckert
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2a, 12489 Berlin, Germany
| | - Marc J J Vrakking
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2a, 12489 Berlin, Germany
| | - Erik T J Nibbering
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2a, 12489 Berlin, Germany
| | - Arnaud Rouzée
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2a, 12489 Berlin, Germany
| | - Edward R Grant
- Department of Chemistry and Department of Physics and Astronomy, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
11
|
Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy. Nat Commun 2022; 13:3414. [PMID: 35701418 PMCID: PMC9198071 DOI: 10.1038/s41467-022-31008-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/24/2022] [Indexed: 12/02/2022] Open
Abstract
The localization dynamics of excitons in organic semiconductors influence the efficiency of charge transfer and separation in these materials. Here we apply time-resolved X-ray absorption spectroscopy to track photoinduced dynamics of a paradigmatic crystalline conjugated polymer: poly(3-hexylthiophene) (P3HT) commonly used in solar cell devices. The π→π* transition, the first step of solar energy conversion, is pumped with a 15 fs optical pulse and the dynamics are probed by an attosecond soft X-ray pulse at the carbon K-edge. We observe X-ray spectroscopic signatures of the initially hot excitonic state, indicating that it is delocalized over multiple polymer chains. This undergoes a rapid evolution on a sub 50 fs timescale which can be directly associated with cooling and localization to form either a localized exciton or polaron pair. A detailed understanding of ultrafast exciton dynamics is crucial for improving the efficiency of organic light-harvesting-devices. Here, the authors track exciton localization on a sub-50 fs timescale in an organic semiconductor using time resolved soft x-ray absorption spectroscopy.
Collapse
|
12
|
Nam Y, Montorsi F, Keefer D, Cavaletto SM, Lee JY, Nenov A, Garavelli M, Mukamel S. Time-Resolved Optical Pump-Resonant X-ray Probe Spectroscopy of 4-Thiouracil: A Simulation Study. J Chem Theory Comput 2022; 18:3075-3088. [PMID: 35476905 DOI: 10.1021/acs.jctc.2c00064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We theoretically monitor the photoinduced ππ* → nπ* internal conversion process in 4-thiouracil (4TU), triggered by an optical pump. The element-sensitive spectroscopic signatures are recorded by a resonant X-ray probe tuned to the sulfur, oxygen, or nitrogen K-edge. We employ high-level electronic structure methods optimized for core-excited electronic structure calculation combined with quantum nuclear wavepacket dynamics computed on two relevant nuclear modes, fully accounting for their quantum nature of nuclear motions. We critically discuss the capabilities and limitations of the resonant technique. For sulfur and nitrogen, we document a pre-edge spectral window free from ground-state background and rich with ππ* and nπ* absorption features. The lowest sulfur K-edge shows strong absorption for both ππ* and nπ*. In the lowest nitrogen K-edge window, we resolve a state-specific fingerprint of the ππ* and an approximate timing of the conical intersection via its depletion. A spectral signature of the nπ* transition, not accessible by UV-vis spectroscopy, is identified. The oxygen K-edge is not sensitive to molecular deformations and gives steady transient absorption features without spectral dynamics. The ππ*/nπ* coherence information is masked by more intense contributions from populations. Altogether, element-specific time-resolved resonant X-ray spectroscopy provides a detailed picture of the electronic excited-state dynamics and therefore a sensitive window into the photophysics of thiobases.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Convergence Research Center for Energy and Environmental Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Francesco Montorsi
- Dipartimento di Chimica Industriale "Toso Montanari", Universita' degli Studi di Bologna, I-40136 Bologna, Italy
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Stefano M Cavaletto
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Jin Yong Lee
- Convergence Research Center for Energy and Environmental Sciences, Sungkyunkwan University, Suwon 16419, Korea.,Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Universita' degli Studi di Bologna, I-40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Universita' degli Studi di Bologna, I-40136 Bologna, Italy
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
13
|
Zhang D, Zhu H, Wang C, Kang SY, Zhou Y, Sheng X. Three-Photon-Induced Singlet Excited-State Absorption for the Tunable Ultrafast Optical-Limiting in Distyrylbenzene: A First-Principles Study. Phys Chem Chem Phys 2022; 24:16852-16861. [DOI: 10.1039/d2cp01753a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ground and first singlet excited state absorption in distyrylbenzene(DSB) are simulated based on the linear-response time dependent density functional theory(LR-TDDFT). It is found that distyrylbenzene shows strong reverse saturable...
Collapse
|
14
|
Moitra T, Coriani S, Cabral Tenorio BN. Inner-shell photoabsorption and photoionisation cross-sections of valence excited states from asymmetric-Lanczos equation-of-motion coupled cluster singles and doubles theory. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1980235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Torsha Moitra
- DTU Chemistry–Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sonia Coriani
- DTU Chemistry–Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
15
|
Zheng B, Huo L. Recent Advances of Furan and Its Derivatives Based Semiconductor Materials for Organic Photovoltaics. SMALL METHODS 2021; 5:e2100493. [PMID: 34928062 DOI: 10.1002/smtd.202100493] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Indexed: 05/05/2023]
Abstract
The state-of-the-art bulk-heterojunction (BHJ)-type organic solar cells (OSCs) have exhibited power conversion efficiencies (PCEs) of exceeding 18%. Thereinto, thiophene and its fused-ring derivatives play significant roles in facilitating the development of OSCs due to their excellent semiconducting natures. Furan as thiophene analogue, is a ubiquitous motif in naturally occurring organic compounds. Driven by the advantages of furan, such as less steric hindrance, good solubility, excellent stacking, strong rigidity and fluorescence, biomass derived fractions, more and more research groups focus on the furan-based materials for using in OSCs in the past decade. To systematically understand the developments of furan-based photovoltaic materials, the relationships between the molecular structures, optoelectronic properties, and photovoltaic performances for the furan-based semiconductor materials including single furan, benzofuran, benzodifuran (BDF) (containing thienobenzofuran (TBF)), naphthodifurans (NDF), and polycyclic furan are summarized. Finally, the empirical regularities and perspectives of the development of this kind of new organic semiconductor materials are extracted.
Collapse
Affiliation(s)
- Bing Zheng
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Lijun Huo
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
16
|
Scutelnic V, Tsuru S, Pápai M, Yang Z, Epshtein M, Xue T, Haugen E, Kobayashi Y, Krylov AI, Møller KB, Coriani S, Leone SR. X-ray transient absorption reveals the 1A u (nπ*) state of pyrazine in electronic relaxation. Nat Commun 2021; 12:5003. [PMID: 34408141 PMCID: PMC8373973 DOI: 10.1038/s41467-021-25045-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/21/2021] [Indexed: 11/09/2022] Open
Abstract
Electronic relaxation in organic chromophores often proceeds via states not directly accessible by photoexcitation. We report on the photoinduced dynamics of pyrazine that involves such states, excited by a 267 nm laser and probed with X-ray transient absorption spectroscopy in a table-top setup. In addition to the previously characterized 1B2u (ππ*) (S2) and 1B3u (nπ*) (S1) states, the participation of the optically dark 1Au (nπ*) state is assigned by a combination of experimental X-ray core-to-valence spectroscopy, electronic structure calculations, nonadiabatic dynamics simulations, and X-ray spectral computations. Despite 1Au (nπ*) and 1B3u (nπ*) states having similar energies at relaxed geometry, their X-ray absorption spectra differ largely in transition energy and oscillator strength. The 1Au (nπ*) state is populated in 200 ± 50 femtoseconds after electronic excitation and plays a key role in the relaxation of pyrazine to the ground state.
Collapse
Affiliation(s)
- Valeriu Scutelnic
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Shota Tsuru
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark.,Ruhr-Universität, Bochum, Germany
| | - Mátyás Pápai
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark.,Wigner Research Centre for Physics, Budapest, Hungary
| | - Zheyue Yang
- Department of Chemistry, University of California, Berkeley, CA, USA.,, Shanghai, China
| | - Michael Epshtein
- Department of Chemistry, University of California, Berkeley, CA, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,, Beer-Sheva, Israel
| | - Tian Xue
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Eric Haugen
- Department of Chemistry, University of California, Berkeley, CA, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yuki Kobayashi
- Department of Chemistry, University of California, Berkeley, CA, USA.,Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Klaus B Møller
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, CA, USA. .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Department of Physics, University of California, Berkeley, CA, USA.
| |
Collapse
|
17
|
Kleine C, Ekimova M, Winghart MO, Eckert S, Reichel O, Löchel H, Probst J, Braig C, Seifert C, Erko A, Sokolov A, Vrakking MJJ, Nibbering ETJ, Rouzée A. Highly efficient soft x-ray spectrometer for transient absorption spectroscopy with broadband table-top high harmonic sources. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:034302. [PMID: 34235230 PMCID: PMC8249000 DOI: 10.1063/4.0000096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
We present a novel soft x-ray spectrometer for ultrafast absorption spectroscopy utilizing table-top femtosecond high-order harmonic sources. Where most commercially available spectrometers rely on spherical variable line space gratings with a typical efficiency on the order of 3% in the first diffractive order, this spectrometer, based on a Hettrick-Underwood design, includes a reflective zone plate as a dispersive element. An improved efficiency of 12% at the N K-edge is achieved, accompanied by a resolving power of 890. The high performance of the soft x-ray spectrometer is further demonstrated by comparing nitrogen K-edge absorption spectra from calcium nitrate in aqueous solution obtained with our high-order harmonic source to previous measurements performed at the electron storage ring facility BESSY II.
Collapse
Affiliation(s)
- Carlo Kleine
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| | - Maria Ekimova
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| | - Marc-Oliver Winghart
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| | - Sebastian Eckert
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| | - Oliver Reichel
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| | - Heike Löchel
- Nano Optics Berlin GmbH, Krumme Strasse 64, 10627 Berlin, Germany
| | - Jürgen Probst
- Nano Optics Berlin GmbH, Krumme Strasse 64, 10627 Berlin, Germany
| | - Christoph Braig
- Institute of Applied Photonics (IAP) e.V., Rudower Chaussee 29/31, 12489 Berlin, Germany
| | - Christian Seifert
- Institute of Applied Photonics (IAP) e.V., Rudower Chaussee 29/31, 12489 Berlin, Germany
| | - Alexei Erko
- Institute of Applied Photonics (IAP) e.V., Rudower Chaussee 29/31, 12489 Berlin, Germany
| | - Andrey Sokolov
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Strasse 15, 12489 Berlin, Germany
| | - Marc J. J. Vrakking
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| | - Erik T. J. Nibbering
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| | - Arnaud Rouzée
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| |
Collapse
|
18
|
Rankine CD, Penfold TJ. Progress in the Theory of X-ray Spectroscopy: From Quantum Chemistry to Machine Learning and Ultrafast Dynamics. J Phys Chem A 2021; 125:4276-4293. [DOI: 10.1021/acs.jpca.0c11267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- C. D. Rankine
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - T. J. Penfold
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
19
|
Fransson T, Brumboiu IE, Vidal ML, Norman P, Coriani S, Dreuw A. XABOOM: An X-ray Absorption Benchmark of Organic Molecules Based on Carbon, Nitrogen, and Oxygen 1s → π* Transitions. J Chem Theory Comput 2021; 17:1618-1637. [PMID: 33544612 PMCID: PMC8023667 DOI: 10.1021/acs.jctc.0c01082] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 01/05/2023]
Abstract
The performance of several standard and popular approaches for calculating X-ray absorption spectra at the carbon, nitrogen, and oxygen K-edges of 40 primarily organic molecules up to the size of guanine has been evaluated, focusing on the low-energy and intense 1s → π* transitions. Using results obtained with CVS-ADC(2)-x and fc-CVS-EOM-CCSD as benchmark references, we investigate the performance of CC2, ADC(2), ADC(3/2), and commonly adopted density functional theory (DFT)-based approaches. Here, focus is on precision rather than on accuracy of transition energies and intensities-in other words, we target relative energies and intensities and the spread thereof, rather than absolute values. The use of exchange-correlation functionals tailored for time-dependent DFT calculations of core excitations leads to error spreads similar to those seen for more standard functionals, despite yielding superior absolute energies. Long-range corrected functionals are shown to perform particularly well compared to our reference data, showing error spreads in energy and intensity of 0.2-0.3 eV and ∼10%, respectively, as compared to 0.3-0.6 eV and ∼20% for a typical pure hybrid. In comparing intensities, state mixing can complicate matters, and techniques to avoid this issue are discussed. Furthermore, the influence of basis sets in high-level ab initio calculations is investigated, showing that reasonably accurate results are obtained with the use of 6-311++G**. We name this benchmark suite as XABOOM (X-ray absorption benchmark of organic molecules) and provide molecular structures and ground-state self-consistent field energies and spectroscopic data. We believe that it provides a good assessment of electronic structure theory methods for calculating X-ray absorption spectra and will become useful for future developments in this field.
Collapse
Affiliation(s)
- Thomas Fransson
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls
University, Im Neuenheimer
Feld 205, 69120 Heidelberg, Germany
- Fysikum, Stockholm University, Albanova, 10691 Stockholm, Sweden
| | - Iulia E. Brumboiu
- Department
of Theoretical Chemistry and Biology, KTH
Royal Institute of Technology, 10691 Stockholm, Sweden
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology, 34141 Daejeon, Korea
| | - Marta L. Vidal
- DTU
Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | - Patrick Norman
- Department
of Theoretical Chemistry and Biology, KTH
Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Sonia Coriani
- DTU
Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
- Department
of Chemistry, NTNU-Norwegian University
of Science and Technology, N-7991 Trondheim, Norway
| | - Andreas Dreuw
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls
University, Im Neuenheimer
Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
De Sio A, Sommer E, Nguyen XT, Groß L, Popović D, Nebgen BT, Fernandez-Alberti S, Pittalis S, Rozzi CA, Molinari E, Mena-Osteritz E, Bäuerle P, Frauenheim T, Tretiak S, Lienau C. Intermolecular conical intersections in molecular aggregates. NATURE NANOTECHNOLOGY 2021; 16:63-68. [PMID: 33199882 DOI: 10.1038/s41565-020-00791-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Conical intersections (CoIns) of multidimensional potential energy surfaces are ubiquitous in nature and control pathways and yields of many photo-initiated intramolecular processes. Such topologies can be potentially involved in the energy transport in aggregated molecules or polymers but are yet to be uncovered. Here, using ultrafast two-dimensional electronic spectroscopy (2DES), we reveal the existence of intermolecular CoIns in molecular aggregates relevant for photovoltaics. Ultrafast, sub-10-fs 2DES tracks the coherent motion of a vibrational wave packet on an optically bright state and its abrupt transition into a dark state via a CoIn after only 40 fs. Non-adiabatic dynamics simulations identify an intermolecular CoIn as the source of these unusual dynamics. Our results indicate that intermolecular CoIns may effectively steer energy pathways in functional nanostructures for optoelectronics.
Collapse
Affiliation(s)
- Antonietta De Sio
- Institut für Physik and Center of Interface Science, Carl von Ossietzky Universität, Oldenburg, Germany.
| | - Ephraim Sommer
- Institut für Physik and Center of Interface Science, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Xuan Trung Nguyen
- Institut für Physik and Center of Interface Science, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Lynn Groß
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - Duško Popović
- Institut für Organische Chemie II und Neue Materialien, Universität Ulm, Ulm, Germany
| | | | - Sebastian Fernandez-Alberti
- National University of Quilmes/CONICET, Department of Science and Technology, Bernal (B1876BXD), Buenos Aires Province, Argentina
| | | | | | - Elisa Molinari
- Istituto Nanoscienze-CNR, Modena, Italy
- Università di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Modena, Italy
| | - Elena Mena-Osteritz
- Institut für Organische Chemie II und Neue Materialien, Universität Ulm, Ulm, Germany
| | - Peter Bäuerle
- Institut für Organische Chemie II und Neue Materialien, Universität Ulm, Ulm, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
- Computational Science Research Center, Beijing and Computational Science and Applied Research Institute Shenzhen, Shenzhen, China
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Christoph Lienau
- Institut für Physik and Center of Interface Science, Carl von Ossietzky Universität, Oldenburg, Germany
| |
Collapse
|
21
|
Epshtein M, Scutelnic V, Yang Z, Xue T, Vidal ML, Krylov AI, Coriani S, Leone SR. Table-Top X-ray Spectroscopy of Benzene Radical Cation. J Phys Chem A 2020; 124:9524-9531. [PMID: 33107734 DOI: 10.1021/acs.jpca.0c08736] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrafast table-top X-ray spectroscopy at the carbon K-edge is used to measure the X-ray spectral features of benzene radical cations (Bz+). The ground state of the cation is prepared selectively by two-photon ionization of neutral benzene, and the X-ray spectra are probed at early times after the ionization by transient absorption using X-rays produced by high harmonic generation (HHG). Bz+ is well-known to undergo Jahn-Teller distortion, leading to a lower symmetry and splitting of the π orbitals. Comparison of the X-ray absorption spectra of the neutral and the cation reveals a splitting of the two degenerate π* orbitals as well as an appearance of a new peak due to excitation to the partially occupied π-subshell. The π* orbital splitting of the cation, elucidated on the basis of high-level calculations in a companion theoretical paper [Vidal et al. J. Phys. Chem. A. http://dx.doi.org/10.1021/acs.jpca.0c08732], is discovered to be due to both the symmetry distortion and even more dominant spin coupling of the unpaired electron in the partially vacant π orbital (from ionization) with the unpaired electrons resulting from the transition from the 1sC core orbital to the fully vacant π* orbitals.
Collapse
Affiliation(s)
- Michael Epshtein
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Valeriu Scutelnic
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zheyue Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tian Xue
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Marta L Vidal
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sonia Coriani
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Vidal ML, Epshtein M, Scutelnic V, Yang Z, Xue T, Leone SR, Krylov AI, Coriani S. Interplay of Open-Shell Spin-Coupling and Jahn-Teller Distortion in Benzene Radical Cation Probed by X-ray Spectroscopy. J Phys Chem A 2020; 124:9532-9541. [PMID: 33103904 DOI: 10.1021/acs.jpca.0c08732] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report a theoretical investigation and elucidation of the X-ray absorption spectra of neutral benzene and of the benzene cation. The generation of the cation by multiphoton ultraviolet (UV) ionization and the measurement of the carbon K-edge spectra of both species using a table-top high-harmonic generation source are described in the companion experimental paper [Epshtein, M.; et al. J. Phys. Chem. A http://dx.doi.org/10.1021/acs.jpca.0c08736]. We show that the 1sC → π transition serves as a sensitive signature of the transient cation formation, as it occurs outside of the spectral window of the parent neutral species. Moreover, the presence of the unpaired (spectator) electron in the π-subshell of the cation and the high symmetry of the system result in significant differences relative to neutral benzene in the spectral features associated with the 1sC → π* transitions. High-level calculations using equation-of-motion coupled-cluster theory provide the interpretation of the experimental spectra and insight into the electronic structure of benzene and its cation. The prominent split structure of the 1sC → π* band of the cation is attributed to the interplay between the coupling of the core → π* excitation with the unpaired electron in the π-subshell and the Jahn-Teller distortion. The calculations attribute most of the splitting (∼1-1.2 eV) to the spin coupling, which is visible already at the Franck-Condon structure, and we estimate the additional splitting due to structural relaxation to be around ∼0.1-0.2 eV. These results suggest that X-ray absorption with increased resolution might be able to disentangle electronic and structural aspects of the Jahn-Teller effect in the benzene cation.
Collapse
Affiliation(s)
- Marta L Vidal
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Michael Epshtein
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Valeriu Scutelnic
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zheyue Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tian Xue
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sonia Coriani
- DTU Chemistry - Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
23
|
Garner SM, Neuscamman E. A variational Monte Carlo approach for core excitations. J Chem Phys 2020; 153:144108. [DOI: 10.1063/5.0020310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Scott M. Garner
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
24
|
Hait D, Haugen EA, Yang Z, Oosterbaan KJ, Leone SR, Head-Gordon M. Accurate prediction of core-level spectra of radicals at density functional theory cost via square gradient minimization and recoupling of mixed configurations. J Chem Phys 2020; 153:134108. [DOI: 10.1063/5.0018833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Diptarka Hait
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Eric A. Haugen
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Zheyue Yang
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Katherine J. Oosterbaan
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen R. Leone
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
25
|
Geng T, Ehrmaier J, Schalk O, Richings GW, Hansson T, Worth G, Thomas RD. Time-Resolved Photoelectron Spectroscopy Studies of Isoxazole and Oxazole. J Phys Chem A 2020; 124:3984-3992. [PMID: 32242664 PMCID: PMC7304896 DOI: 10.1021/acs.jpca.9b11788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
excited state relaxation pathways of isoxazole and oxazole
upon excitation with UV-light were investigated by nonadiabatic ab
initio dynamics simulations and time-resolved photoelectron spectroscopy.
Excitation of the bright ππ*-state of isoxazole predominantly
leads to ring-opening dynamics. Both the initially excited ππ*-state
and the dissociative πσ*-state offer a combined barrier-free
reaction pathway, such that ring-opening, defined as a distance of
more than 2 Å between two neighboring atoms, occurs within 45
fs. For oxazole, in contrast, the excited state dynamics is about
twice as slow (85 fs) and the quantum yield for ring-opening is lower.
This is caused by a small barrier between the ππ*-state
and the πσ*-state along the reaction path, which suppresses
direct ring-opening. Theoretical findings are consistent with the
measured time-resolved photoelectron spectra, confirming the timescales
and the quantum yields for the ring-opening channel. The results indicate
that a combination of time-resolved photoelectron spectroscopy and
excited state dynamics simulations can explain the dominant reaction
pathways for this class of molecules. As a general rule, we suggest
that the antibonding σ*-orbital located between the oxygen atom
and a neighboring atom of a five-membered heterocyclic system provides
a driving force for ring-opening reactions, which is modified by the
presence and position of additional nitrogen atoms.
Collapse
Affiliation(s)
- Ting Geng
- Department of Physics, AlbaNova University Centre, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm, Sweden
| | - Johannes Ehrmaier
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Oliver Schalk
- Department of Physics, AlbaNova University Centre, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm, Sweden.,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Gareth W Richings
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, CV4 7AL Coventry, U.K
| | - Tony Hansson
- Department of Physics, AlbaNova University Centre, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm, Sweden
| | - Graham Worth
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, U.K
| | - Richard D Thomas
- Department of Physics, AlbaNova University Centre, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm, Sweden
| |
Collapse
|
26
|
Barreau L, Ross AD, Garg S, Kraus PM, Neumark DM, Leone SR. Efficient table-top dual-wavelength beamline for ultrafast transient absorption spectroscopy in the soft X-ray region. Sci Rep 2020; 10:5773. [PMID: 32238820 PMCID: PMC7113301 DOI: 10.1038/s41598-020-62461-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/09/2020] [Indexed: 11/08/2022] Open
Abstract
We present a table-top beamline providing a soft X-ray supercontinuum extending up to 370 eV from high-order harmonic generation with sub-13 fs 1300 nm driving pulses and simultaneous production of sub-5 fs pulses centered at 800 nm. Optimization of high harmonic generation in a long and dense gas medium yields a photon flux of ~ 1.4 × 106 photons/s/1% bandwidth at 300 eV. The temporal resolution of X-ray transient absorption experiments with this beamline is measured to be 11 fs for 800 nm excitation. This dual-wavelength approach, combined with high flux and high spectral and temporal resolution soft X-ray absorption spectroscopy, is a new route to the study of ultrafast electronic dynamics in carbon-containing molecules and materials at the carbon K-edge.
Collapse
Affiliation(s)
- Lou Barreau
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrew D Ross
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Samay Garg
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Peter M Kraus
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG, Amsterdam, The Netherlands
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Physics, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
27
|
Hait D, Head-Gordon M. Highly Accurate Prediction of Core Spectra of Molecules at Density Functional Theory Cost: Attaining Sub-electronvolt Error from a Restricted Open-Shell Kohn-Sham Approach. J Phys Chem Lett 2020; 11:775-786. [PMID: 31917579 DOI: 10.1021/acs.jpclett.9b03661] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present the use of the recently developed square gradient minimization (SGM) algorithm for excited-state orbital optimization to obtain spin-pure restricted open-shell Kohn-Sham (ROKS) energies for core excited states of molecules. The SGM algorithm is robust against variational collapse and offers a reliable route to converging orbitals for target excited states at only 2-3 times the cost of ground-state orbital optimization (per iteration). ROKS/SGM with the modern SCAN/ωB97X-V functionals is found to predict the K-edge of C, N, O, and F to a root mean squared error of ∼0.3 eV. ROKS/SGM is equally effective at predicting L-edge spectra of third period elements, provided a perturbative spin-orbit correction is employed. This high accuracy can be contrasted with traditional time-dependent density functional theory (TDDFT), which typically has greater than 10 eV error and requires translation of computed spectra to align with experiment. ROKS is computationally affordable (having the same scaling as ground-state DFT and a slightly larger prefactor) and can be applied to geometry optimizations/ab initio molecular dynamics of core excited states, as well as condensed phase simulations. ROKS can also model doubly excited/ionized states with one broken electron pair, which are beyond the ability of linear response based methods.
Collapse
Affiliation(s)
- Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
28
|
Wang F, Islam S, Backler F. Probing Intramolecular Interaction of Stereoisomers Using Computational Spectroscopy. Aust J Chem 2020. [DOI: 10.1071/ch19453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several model stereoisomers such as ferrocene (Fc), methoxyphenol, and furfural conformers are discussed. It was discovered that the Fc IR spectroscopic band(s) below 500cm−1 serve as fingerprints for eclipsed (splitting 17 (471–488)cm−1) and staggered Fc (splitting is ~2 (459–461)cm−1) in the gas phase. It is revealed that in the gas phase the dominance of the eclipsed Fc (D5h) at very low temperatures changes to a mixture of both eclipsed and staggered Fc when the temperature increases. However, in solvents such as CCl4, eclipsed Fc dominates at room temperature (300K) due to the additional solvation energy. Intramolecular interactions of organic model compounds such as methoxyphenols (guaiacol (GUA) and mequinol (MEQ)) and furfural, ionization energies such as the carbon 1s (core C1s), as well as valence binding energy spectra serve this purpose well. Hydrogen bonding alters the C1s binding energies of the methoxy carbon (C(7)) of anti-syn and anti-gauche conformers of GUA to 292.65 and 291.91eV, respectively. The trans and cis MEQ conformers, on the other hand, are nearly energy degenerate, whereas their dipole moments are significantly different: 2.66 Debye for cis and 0.63 Debye for trans-MEQ. Moreover, it is found that rotation around the Cring–OH and the Cring–OCH3 bonds differ in energy barrier height by ~0.50 kcal⋅mol−1. The Dyson orbital momentum profiles of the most different ionic states, 25a′ (0.35eV) and 3a′ (−0.33eV), between cis and trans-MEQ in outer valence space (which is measurable using electron momentum spectroscopy (EMS)), exhibit quantitative differences. Finally, the molecular switch from trans and cis-furfural engages with a small energy difference of 0.74 kcal mol−1, however, at the calculated C(3)(–H⋅⋅⋅O=C) site the C1s binding energy difference is 0.105eV (2.42 kcal mol−1) and the NMR chemical shift of the same carbon site is also significant; 7.58ppm from cis-furfural without hydrogen bonding.
Collapse
|
29
|
Hua W, Mukamel S, Luo Y. Transient X-ray Absorption Spectral Fingerprints of the S 1 Dark State in Uracil. J Phys Chem Lett 2019; 10:7172-7178. [PMID: 31625754 DOI: 10.1021/acs.jpclett.9b02692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Low-lying dark nπ* states play an important role in many photophysical and photochemical processes of organic chromophores. Transient X-ray absorption spectroscopy (TXAS) provides a powerful technique for probing the dynamics of valence states by exciting the electrons into high-lying core excited states. We employ multiconfigurational self-consistent field calculations to investigate the TXAS of uracil along its nonradiative photodecay pathways. An open issue is whether dark nπ* state S1 (n is the lone pair localized on an oxygen atom) is accessible when bright ππ* state S2 is selectively excited. Vertical core excitations were calculated along the potential energy surfaces of the three lowest states, S0-S2, interpolated between two minima and two minimum-energy conical intersections. Computed TXAS data from the C, N, and O K edges show distinct spectral fingerprints of the dark state in all spectral regimes. At the O 1s edge, the nπ* state has a very strong absorption at 526-527 eV, while at the C (N) 1s edge, by contrast, there is almost zero (very weak) absorption at 279-282 eV (397-398 eV). All K-edge spectra can be used to sensitively detect the dark states. Our proposed O 1s feature has already been observed in a recent TXAS experiment with thymine. Natural transition orbital analysis is used to interpret all dominant features of the three lowest-valence states along the reaction coordinate and reveal some important valence fine-structure information from the core excitation.
Collapse
Affiliation(s)
- Weijie Hua
- Department of Applied Physics, School of Science , Nanjing University of Science and Technology , 210094 Nanjing , China
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , S-106 91 Stockholm , Sweden
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy , University of California, Irvine , Irvine , California 92697 , United States
| | - Yi Luo
- Hefei National Laboratory for Physical Science at the Microscale , University of Science and Technology of China , 230026 Hefei , China
| |
Collapse
|
30
|
Wang H, Odelius M, Prendergast D. A combined multi-reference pump-probe simulation method with application to XUV signatures of ultrafast methyl iodide photodissociation. J Chem Phys 2019; 151:124106. [PMID: 31575206 DOI: 10.1063/1.5116816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UV pump-XUV/X-ray probe measurements have been successfully applied in the study of photo-induced chemical reactions. Although rich element-specific electronic structure information is accessible within XUV/X-ray (inner-shell) absorption spectra, it can be difficult to interpret the chemistry directly from the spectrum without supporting theoretical simulations. A multireference method to completely simulate UV pump-XUV/X-ray probe measurement has been developed and applied to study the methyl iodide photodissociation process. Multireference, fewest-switches surface hopping (FSSH) trajectories were used to explore the coupled electronic and ionic dynamics upon photoexcitation of methyl iodide. Interpretation of previous measurements is provided by associated multireference, restricted active space, inner-shell spectral simulations. This combination of multireference FSSH trajectories and XUV spectra provides an interpretation of transient features appearing in previous measurements within the first 100 fs after photoexcitation and validates the significant branching ratio in the final excited-state population. This methodology should prove useful for interpretation of the increasing number of inner-shell probe studies of molecular excited states or for directing new experiments toward interesting regions of the potential energy landscape.
Collapse
Affiliation(s)
- Han Wang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - David Prendergast
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
31
|
Bhattacherjee A, Leone SR. Ultrafast X-ray Transient Absorption Spectroscopy of Gas-Phase Photochemical Reactions: A New Universal Probe of Photoinduced Molecular Dynamics. Acc Chem Res 2018; 51:3203-3211. [PMID: 30462481 DOI: 10.1021/acs.accounts.8b00462] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Time-resolved spectroscopic investigations of light-induced chemical reactions with universal detection capitalize recently on single-photon molecular probing using laser pulses in the extreme ultraviolet or X-ray regimes. Direct and simultaneous mappings of the time-evolving populations of ground-state reactants, Franck-Condon (FC) and transition state regions, excited-state intermediates and conical intersections (CI), and photoproducts in photochemical reactions utilize probe pulses that are broadband and energy-tunable. The limits on temporal resolution are set by the transit- or dwell-time of the photoexcited molecules at specific locations on the potential energy surface, typically ranging from a few femtoseconds to several hundred picoseconds. Femtosecond high-harmonic generation (HHG) meets the stringent demands for a universal spectroscopic probe of large regions of the intramolecular phase-space in unimolecular photochemical reactions. Extreme-ultraviolet and soft X-ray pulses generated in this manner with few-femtosecond or sub-femtosecond durations have enormous bandwidths, allowing the probing of many elements simultaneously through excitation or ionization of core-electrons, creating molecular movies that shed light on entire photochemical pathways. At free electron lasers (FELs), powerful investigations are also possible, recognizing their higher flux and tunability but more limited bandwidths. Femtosecond time-resolved X-ray transient absorption spectroscopy, in particular, is a valuable universal probe of reaction pathways that maps changes via the fingerprint core-to-valence resonances. The particular power of this method over valence-ionization probes lies in its unmatched element and chemical-site specificities. The elements carbon, nitrogen, and oxygen constitute the fundamental building blocks of life; photochemical reactions involving these elements are ubiquitous, diverse, and manifold. However, table-top HHG sources in the "water-window" region (280-550 eV), which encompasses the 1s-absorption edges of carbon (284 eV), nitrogen (410 eV), and oxygen (543 eV), are far from abundant or trivial. Recent breakthroughs in the laboratory have embraced this region by using long driving-wavelength optical parametric amplifiers coupled with differentially pumped high-pressure gas source cells. This has opened avenues to study a host of photochemical reactions in organic molecules using femtosecond time-resolved transient absorption at the carbon K-edge. In this Account, we summarize recent efforts to deploy a table-top carbon K-edge source to obtain crucial chemical insights into ultrafast, ultraviolet-induced chemical reactions involving ring-opening, nonadiabatic excited-state relaxation, bond dissociation and radical formation. The X-ray probe provides a direct spectroscopic viewport into the electronic characters and configurations of the valence electronic states through spectroscopic core-level transitions into the frontier molecular orbitals of the photoexcited molecules, laying fertile ground for the real-time mapping of the evolving valence electronic structure. The profound detail and mechanistic insights emerging from the pioneering experiments at the carbon K-edge are outlined here. Comparisons of the experimental methodology with other techniques employed to study similar reactions are drawn, where applicable and relevant. We show that femtosecond time-resolved X-ray transient absorption spectroscopy blazes a new trail in the study of nonadiabatic molecular dynamics. Despite table-top implementations being largely in their infancy, future chemical applications of the technique will set the stage for widely applicable, universal probes of photoinduced molecular dynamics with unprecedented temporal resolution.
Collapse
Affiliation(s)
- Aditi Bhattacherjee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stephen R. Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
| |
Collapse
|