1
|
Song X, Li M, Bao H, Hao M, Wang H, Tian Y, Wu Y, Zhou Y, Wan R, Li W, Guan H. Cs 2CO 3-N,N-Dimethylacetamide-Promoted Esterification of Arylformic Acids with a-Bromo Esters via Nucleophilic Substitution. ChemistryOpen 2025:e2500129. [PMID: 40357804 DOI: 10.1002/open.202500129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 03/30/2025] [Indexed: 05/15/2025] Open
Abstract
Herein, a nucleophilic substitution reaction between arylformic acids and α-bromo esters, facilitated by a Cs2CO3-DMA system, is reported. This reaction occurs under mild conditions, yielding a diverse range of valuable lactic acid derivatives (34 examples) with good to excellent yields (up to 97%). Subtle factors, such as the ion-dipole interactions between Cs2CO3, the substrates, and the solvent, may significantly influence the dynamics of the SN2 reaction.
Collapse
Affiliation(s)
- Xinyan Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mingxin Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Haihong Bao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mohan Hao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hanxiang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yu Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yue Wu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yun Zhou
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Ruiying Wan
- Experiment Center, Jinan Key Laboratory of Traditional Chinese Medicine Preparation Research and Evaluation in Medical Institutions, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wei Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Haixing Guan
- Experiment Center, Jinan Key Laboratory of Traditional Chinese Medicine Preparation Research and Evaluation in Medical Institutions, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
2
|
Chen X, Kurganskii IV, Zhuang Z, He Y, Rehmat N, Mahmood Z, Zhao J, Fedin MV, Luo L, Escudero D, Dick B. Thionated Perylenebisimides as Heavy-Atom-Free Triplet Photosensitizers: Intersystem Crossing, Electron Spin Dynamics, and Application in Photodynamic Therapy. Angew Chem Int Ed Engl 2025:e202500718. [PMID: 40242937 DOI: 10.1002/anie.202500718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
The thionation induced intersystem crossing (ISC) in perylenebisimide (PBI) derivatives was studied. The triplet state lifetimes of the thionated PBIs are substantially shortened (0.12-0.78 µs) as compared to the unsubstituted PBI (ca. 130 µs). Moreover, there is a clear trend of shortening of the triplet excited state lifetimes and the degree of thionation of the carbonyl groups in PBI. These findings rationalize the previous report of the contradictory lower 1O2 quantum yields for the PBI derivatives with more carbonyl groups thionated. Time-resolved electron paramagnetic resonance (TREPR) spectral study shows that the zero field splitting parameters D (1625-1992 MHz) of the lowest triplet states of thionated PBI are larger than that of the pristine PBI chromophore (D = 1166 MHz), which is attributed to the influence of sulfur atoms. Interestingly, the electron spin polarization (ESP) pattern of the TREPR spectra is inverted at longer delay time. Importantly we observed ISC for the dianion of the thionated PBI derivatives, and photoexcited dianion species can be used as super strong reductant for photocatalysis with the advantage of long excited state lifetimes (18-85 µs), and the excited state oxidation potentials are -1.47 to -1.77 V (versus Fc/Fc+).
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P.R. China
| | | | - Zhiyong Zhuang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of BioInorg. Chem. and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yue He
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
| | - Noreen Rehmat
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P.R. China
| | - Zafar Mahmood
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P.R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P.R. China
| | - Matvey V Fedin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of BioInorg. Chem. and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | | | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Regensburg, D-93053, Germany
| |
Collapse
|
3
|
Noto N, Kunisada R, Rohlfs T, Hayashi M, Kojima R, García Mancheño O, Yanai T, Saito S. Transfer learning across different photocatalytic organic reactions. Nat Commun 2025; 16:3388. [PMID: 40204731 PMCID: PMC11982376 DOI: 10.1038/s41467-025-58687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
While seasoned organic chemists can often predict suitable catalysts for new reactions based on their past experiences in other catalytic reactions, developing this ability is costly, laborious and time-consuming. Therefore, replicating this remarkable expertize of human researchers through machine learning (ML) is compelling, albeit that it remains highly challenging. Herein, we apply a domain-adaptation-based transfer-learning (TL) approach to photocatalysis. Despite being different reaction types, the knowledge of the catalytic behavior of organic photosensitizers (OPSs) from photocatalytic cross-coupling reactions is successfully transferred to ML for a [2+2] cycloaddition reaction, improving the prediction of the photocatalytic activity compared with conventional ML approaches. Furthermore, a satisfactory predictive performance is achieved by using only ten training data points. This experimentally readily accessible small dataset can also be used to identify effective OPSs for alkene photoisomerization, thereby showcasing the potential benefits of TL in catalyst exploration.
Collapse
Affiliation(s)
- Naoki Noto
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Nagoya, Japan.
| | - Ryuga Kunisada
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tabea Rohlfs
- Organic Chemistry Institute, University of Münster, Münster, Germany
| | - Manami Hayashi
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ryosuke Kojima
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Takeshi Yanai
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Susumu Saito
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Nagoya, Japan.
- Graduate School of Science, Nagoya University, Nagoya, Japan.
| |
Collapse
|
4
|
Cabrera-Afonso MJ, Jaafar A, Cristóbal C, Adrio J, Ribagorda M. Visible-Light-Promoted Synthesis of 1,6-Imino Alcohols by Metal-Free 1,2-Carboimination of Alkenes. Org Lett 2025; 27:2346-2351. [PMID: 40030084 DOI: 10.1021/acs.orglett.5c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
We report a metal-free synthesis of highly functionalized 1,6-amino alcohols through a visible-light 1,2-carboimination of alkenes and bifunctional starting materials prepared from commercially available alcohols. This protocol orchestrates the generation of up to four different types of radicals, which are efficiently recombined to yield 1,6-iminyl alcohols. The methodology demonstrated a broad functional group tolerance and was validated by the late-stage installation of the 1,6-amino alcohol motif in biomolecules and pharmaceuticals and the scale-up of the process. The versatility of the products was highlighted by their conversion into a variety of useful intermediates for target-directed synthesis.
Collapse
Affiliation(s)
- María J Cabrera-Afonso
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aida Jaafar
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Christian Cristóbal
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria Ribagorda
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Uppuluru A, Annamalai P, Padala K. Recent advances in 4CzIPN-mediated functionalizations with acyl precursors: single and dual photocatalytic systems. Chem Commun (Camb) 2025; 61:3601-3635. [PMID: 39911039 DOI: 10.1039/d4cc06594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
4CzIPN (1,2,3,5-tetrakis(carbazole-9-yl)-4,6-dicyanobenzene) has emerged as a key metal-free photocatalyst for sustainable organic synthesis. Due to its unique design enabling high photoluminescence quantum yield, thermally activated delayed fluorescence (TADF) and long excited state lifetime, 4CzIPN facilitates diverse reactions, such as C-C and C-X bond formation reactions, under mild reaction conditions. This review highlights its application in decarboxylation, acylation and cyclisation reactions involving α-keto acids, carboxylic acids and aldehydes in a single catalytic system, as well as the combination of a dual catalytic system with transition metals to enhance selectivity and scope. 4CzIPN contributes to the advancement of sustainable chemistry by enabling green, efficient and scalable reactions and this review covers studies published between 2020 and 2024.
Collapse
Affiliation(s)
- Ajay Uppuluru
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Pratheepkumar Annamalai
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Kishor Padala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh, 535003, India.
| |
Collapse
|
6
|
Rodriguez-Lugo RE, Sander J, Dietzmann S, Rittner T, Rückel J, Landaeta VR, Park J, Nuernberger P, Baik MH, Wolf R. Mechanistic insights into the visible-light-driven O-arylation of carboxylic acids catalyzed by xanthine-based nickel complexes. Chem Sci 2025; 16:2751-2762. [PMID: 39810999 PMCID: PMC11726235 DOI: 10.1039/d4sc04257c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
We present a photocatalytic protocol for the O-arylation of carboxylic acids using nickel complexes bearing C8-pyridyl xanthines. Our studies suggest that the underlying mechanism operates independently of external photosensitizers. Stoichiometric experiments and crystallographic studies characterize the catalytically relevant Ni complexes. Spectroscopic and computational investigations propose a thermally controlled Ni(i)/Ni(iii) cycle followed by a photochemical regeneration of Ni(i) species. Furthermore, the pathways leading to the hydrodehalogenation of aryl halides, the comproportionation of Ni(i) and Ni(iii) species, the dimerization of Ni(i) intermediates and the influence of the counter ion on the cross-coupling reaction are unveiled. These investigations offer a comprehensive mechanistic understanding of the photocatalytic cross-coupling reaction catalyzed by a single Ni species and highlight key aspects of nickel-catalyzed metallaphotoredox reactions.
Collapse
Affiliation(s)
| | - Joan Sander
- University of Regensburg, Institute of Inorganic Chemistry 93040 Regensburg Germany
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Simon Dietzmann
- University of Regensburg, Institute of Inorganic Chemistry 93040 Regensburg Germany
| | - Thomas Rittner
- University of Regensburg, Institute of Physical and Theoretical Chemistry 93040 Regensburg Germany
| | - Jannes Rückel
- University of Regensburg, Institute of Inorganic Chemistry 93040 Regensburg Germany
| | - Vanessa R Landaeta
- University of Regensburg, Institute of Inorganic Chemistry 93040 Regensburg Germany
| | - Jiyong Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 43141 Republic of Korea
| | - Patrick Nuernberger
- University of Regensburg, Institute of Physical and Theoretical Chemistry 93040 Regensburg Germany
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 43141 Republic of Korea
| | - Robert Wolf
- University of Regensburg, Institute of Inorganic Chemistry 93040 Regensburg Germany
| |
Collapse
|
7
|
Feng C, Liu Y, Xiang Z, Cheng X, Wei S, Liu X, Deng Q, Fu Q, Zhang Z. An Organic EnT Photocatalyst 4CzMeBN and the Application in the Synthesis of cis-Fused Azetidines. Chemistry 2025; 31:e202403881. [PMID: 39628344 DOI: 10.1002/chem.202403881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Indexed: 12/12/2024]
Abstract
A powerful EnT photocatalyst 4CzMeBN has been developed and utilized in the synthesis of cis-fused azetidines via dearomative [2+2] cycloaddition under visible light. The photocatalyst 4CzMeBN is a donor-acceptor cyanoarene and features high triplet state energy and long lifetime of triplet state, which would be an alternative to widely used EnT photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6. The photochemical [2+2] cycloaddition provides a facile method to synthesize valuable dihydroisoquinolone-fused azetidines with high efficiency.
Collapse
Affiliation(s)
- Chuan Feng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yilei Liu
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhihui Xiang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiong Cheng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Siping Wei
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Xinran Liu
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qinmin Deng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qiang Fu
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhijie Zhang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646000, China
| |
Collapse
|
8
|
Pei Y, Sukhanov AA, Chen X, Iagatti A, Doria S, Dong X, Zhao J, Li Y, Chi W, Voronkova VK, Di Donato M, Dick B. The Photophysics of Naphthalimide-Phenoselenazine Electron Donor-Acceptor Dyads: Revisiting the Heavy-Atom Effect in Thermally Activated Delayed Fluorescence. Chemistry 2025; 31:e202403542. [PMID: 39607385 DOI: 10.1002/chem.202403542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 11/29/2024]
Abstract
We prepared thermally activated delayed fluorescence (TADF) emitter dyads, NI-PTZ, NI-PTZ-2Br and NI-PSeZ, with naphthalimide (NI) as electron acceptor and 10H-phenothiazine (PTZ) or 10H-phenoselenazine (PSeZ) as electron donor to study the heavy-atom effect on the intersystem crossing (ISC) and reverse ISC (rISC) in the TADF emitters. The delayed fluorescence lifetimes of the dyads containing heavy atoms (τ D F ${{\tau }_{{\rm D}{\rm F}}}$ =5.9 μs for NI-PSeZ andτ D F ${{\tau }_{{\rm D}{\rm F}}}$ =16.5 μs for NI-PTZ-2Br, respectively) are longer than the heavy atom-free counterpart NI-PTZ (τ D F ${{\tau }_{{\rm D}{\rm F}}}$ =2.0 μs). Nanosecond transient absorption (ns-TA) spectral study and the time-resolved electron paramagnetic resonance (TREPR) spectra show the presence of both 3LE and 3CS states. These findings represent solid experimental evidences for the spin-vibronic coupling mechanism of TADF. Moreover, the ns-TA spectra show that the heavy atoms don't have a significant effect since the lifetime of the triplet transient species (1.3 μs for NI-PTZ) is not shortened in their presence (4.5 μs for NI-PSeZ and 5.3 μs for NI-PTZ-2Br). These results show that the previously claimed heavy-atom effect on rISC and TADF is not a universal principle. The femtosecond transient absorption (fs-TA) spectra of the compounds indicate the occurrence of fast charge separation within 1-2 ps, and the charge recombination is slow (>4 ns).
Collapse
Affiliation(s)
- Yuying Pei
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, 420029, Russia
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Alessandro Iagatti
- LENS (European Laboratory for Non-Linear Spectroscopy), via Nello Carrara n. Firenze, 1, 50019, Sesto Fiorentino (Florence), Italy
- INO-CNR Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125, Florence (FI), Italy
| | - Sandra Doria
- LENS (European Laboratory for Non-Linear Spectroscopy), via Nello Carrara n. Firenze, 1, 50019, Sesto Fiorentino (Florence), Italy
- ICCOM-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Xin Dong
- Ningbo Sunny Automotive Optech Co. Ltd., No. 27-29 Shunke Road, Ning Bo Shi, Yuyao, 315400, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian, 116024, P. R. China
| | - Yanqin Li
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, No. 58 Renmin Avenue, Meilan District, Haikou, 570228, China
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Sibirsky Tract 10/7, Kazan, 420029, Russia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via Nello Carrara n. Firenze, 1, 50019, Sesto Fiorentino (Florence), Italy
- ICCOM-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D, 93053, Regensburg, Germany
| |
Collapse
|
9
|
Zhao Z, Li W, Shan Q, Young DJ, Ren ZG, Li HX. Visible-Light-Induced Synthesis of Esters via a Self-Propagating Radical Reaction. J Org Chem 2025. [PMID: 39818844 DOI: 10.1021/acs.joc.4c02662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
We herein disclose a visible-light-induced synthesis of O-aryl esters through the cross-dehydrogenative coupling of aldehydes with phenols using BrCCl3, in which phenolate functions as both a substrate and a photosensitizer. This transition-metal- and photocatalyst-free visible-light-induced esterification is suitable for a wide range of substrates and gives moderate to excellent yields (up to 95%). Mechanistic studies provided evidence of a self-propagating radical reaction involving homolytic cleavage of the aldehydic C-H bond and the formation of acyl bromides. BrCCl3 serves as an oxidant and a hydrogen atom transfer (HAT) agent.
Collapse
Affiliation(s)
- Zelin Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Wenping Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiujie Shan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - David J Young
- James Watt School of Engineering, University of Glasgow, University Avenue, Glasgow G12 8QQ U.K
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
10
|
Ye K, Sukhanov AA, Pang Y, Mambetov A, Li M, Cao L, Zhao J, Voronkova VK, Peng Q, Wan Y. Time-resolved transient optical and electron paramagnetic resonance spectroscopic studies of electron donor-acceptor thermally activated delayed fluorescence emitters based on naphthalimide-phenothiazine dyads. Phys Chem Chem Phys 2025; 27:813-823. [PMID: 39660403 DOI: 10.1039/d4cp03629h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The photophysics of naphthalimide (NI)-phenothiazine (PTZ) dyads were investigated as electron donor-acceptor (D-A) thermally activated delayed fluorescence (TADF) emitters. Femtosecond transient absorption (fs-TA) spectra show that the photophysical processes in non-polar solvents are in singlet localized state (1LE, τ = 0.8 ps) → Franck-Condon singlet charge separation state (1CS, τ = 7.8 ps) → 1CS state (τ = 2.2 ns) → triplet state (3LE, τ = 16 μs). The 3LE state is formed via the spin-orbit charge transfer-intersystem crossing (SOCT-ISC) mechanism rather than the spin-orbit (SO)-ISC mechanism. In a polar solvent, the CS state has a much lower energy than the 3LE state; thus, the 3LE state is absent from the photophysical processes and no TADF was observed. Moreover, we found that the delayed fluorescence lifetime is related to the low-lying triplet state (3LE or 3CS states). When the 3CS state is the low-lying triplet state, the TADF lifetime is shorter than that of the 3LE state as the low-lying triplet state. In the time-resolved electron paramagnetic resonance (TREPR) spectra, both 3LE (zero field splitting parameter D = 2250 MHz, E = -150 MHz) and 3CS (D = 430 MHz, E = 0 MHz) states were observed. It is noteworthy that the electron spin polarization (ESP) phase pattern of the 3CS state was inverted at longer delay times as a consequence of the selective transition between the 3LE and 3CS states and a faster decay of one sublevel of the 3CS state. These results are strong and direct experimental evidence for the spin-vibronic coupling mechanism of TADF.
Collapse
Affiliation(s)
- Kaiyue Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia.
| | - Yu Pang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - Aidar Mambetov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia.
| | - Minjie Li
- College of Chemistry Beijing Normal University, Beijing 100875, P. R. China.
| | - Liyuan Cao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia.
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - Yan Wan
- College of Chemistry Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
11
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
12
|
Kumar A, Kim D, Nguyen G, Jiang C, Chakraborty S, Teets TS. Photophysical properties of three-coordinate heteroleptic Cu(I) β-diketiminate triarylphosphine complexes. Dalton Trans 2024; 54:396-404. [PMID: 39552323 DOI: 10.1039/d4dt02681k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A series of heteroleptic copper(I) β-diketiminate triarylphosphine complexes is reported, having the general formula Cu(R1NacNacR2)(PPhX3), where R1NacNacR2 is a substituted β-diketiminate and PPhX3 is a triphenylphosphine derivative. A total of five different R1NacNacR2 ligands and three different triarylphosphines are used to assemble the nine complexes. The syntheses, X-ray crystal structures, cyclic voltammograms, and UV-vis absorption spectra of all compounds are described. Whereas most of the compounds are weakly luminescent or only luminesce at 77 K, the four complexes with the more sterically encumbered β-diketiminate ligands, with methyl or isopropyl substituents at the 2- and 6-positions of the N-phenyl rings, exhibit weak room-temperature photoluminescence with peaks between 519 and 566 nm and long excited-state lifetimes in the range of 15-70 μs. The sterically encumbering substituents in this subset have subtle effects on the UV-vis absorption maximum, which red shifts slightly as the steric bulk increases, as well as significant effects on the photoluminescence lifetime, which is observed to increase as the steric bulk is augmented. Substituents on the triarylphosphine also influence the excited-state dynamics in the bulky complexes, with the more electron-rich tris(4-methoxyphenyl)phosphine (PPhOMe3) giving longer-excited-state lifetimes compared to triphenylphosphine (PPh3) when the same R1NacNacR2 ligand is used.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Dooyoung Kim
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Giao Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Chenggang Jiang
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Soumi Chakraborty
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| |
Collapse
|
13
|
Taylor OR, Saucedo PJ, Bahamonde A. Leveraging the Redox Promiscuity of Nickel To Catalyze C-N Coupling Reactions. J Org Chem 2024; 89:16093-16105. [PMID: 38231475 DOI: 10.1021/acs.joc.3c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This perspective details advances made in the field of Ni-catalyzed C-N bond formation. The use of this Earth abundant metal to decorate amines, amides, lactams, and heterocycles enables direct access to a variety of biologically active and industrially relevant compounds in a sustainable manner. Herein, different strategies that leverage the propensity of Ni to facilitate both one- and two-electron processes will be surveyed. The first part of this Perspective focuses on strategies that facilitate C-N couplings at room temperature by accessing oxidized Ni(III) intermediates. In this context, advances in photochemical, electrochemical, and chemically mediated processes will be analyzed. A special emphasis has been put on providing a comprehensive explanation of the different mechanistic avenues that have been proposed to facilitate these chemistries; either Ni(I/III) self-sustained cycles or Ni(0/II/III) photochemically mediated pathways. The second part of this Perspective details the ligand designs that also enable access to this reactivity via a two-electron Ni(0/II) mechanism. Finally, we discuss our thoughts on possible future directions of the field.
Collapse
Affiliation(s)
- Olivia R Taylor
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Paul J Saucedo
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ana Bahamonde
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
14
|
Li R, Ou T, Wen L, Yan Y, Li W, Qin X, Wang S. All-Visible-Light-Activated Diarylethene Photoswitches. Molecules 2024; 29:5202. [PMID: 39519843 PMCID: PMC11547923 DOI: 10.3390/molecules29215202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Photochromic compounds have attracted much attention for their potential applications in photo-actuators, optoelectronic devices and optical recording techniques. This interest is driven by their key photochemical and photophysical properties, which can be reversibly modulated by light irradiation. Among them, diarylethene compounds have garnered extensive investigation due to their excellent thermal stability of both open- and closed-form isomers, robust fatigue resistance, high photocyclization quantum yield and good photochromic performance in both solution and solid phases. However, a notable limitation in expanding the utility of diarylethene compounds is the necessity for ultraviolet light to induce their photochromism. This requirement poses challenges, as ultraviolet light can be detrimental to biological tissues, and its penetration is often restricted in various media. This review provides an overview of design strategies employed in the development of visible-light-responsive diarylethene compounds. These design strategies serve as a guideline for molecular design, with the potential to significantly broaden the applications of all-visible-light-activated diarylethene compounds in the realms of materials science and biomedical science.
Collapse
Affiliation(s)
- Ruiji Li
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Tao Ou
- School of Pharmacy, Binzhou Medical University, Yantai 256603, China;
| | - Li Wen
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Yehao Yan
- School of Public Health, Jining Medical University, Jining 272067, China;
| | - Wei Li
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Xulong Qin
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Shouxin Wang
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| |
Collapse
|
15
|
Wu C, Zhu Y. Organic photosensitized aziridination of alkenes. Chem Commun (Camb) 2024; 60:12449-12452. [PMID: 39380316 DOI: 10.1039/d4cc03291h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
We report a new TADF-catalyzed aziridination of alkenes under visible light. In this protocol, a free triplet nitrene is in situ generated from the commercially available tosyl azide by energy transfer of the excited photocatalyst 4DPAIPN. Our finding enables the smooth installation of the strained aziridine ring into a remarkably wide scope of alkenes and pharmaceutical-derived olefins and natural products, as well as the synthesis of sitagliptin. This metal-free method provides a new opportunity for the late-stage modification of complex molecules or synthesis of nitrogen-containing pharmaceuticals.
Collapse
Affiliation(s)
- Chunying Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi 710061, China.
| | - Yunbo Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
16
|
Stuart AN, Bergmann K, Cho I, Kendrick WJ, Hudson ZM, Wong WWH, Lakhwani G. Triplet dynamics reveal loss pathways in multi-resonance thermally activated delayed fluorescence emitters. Chem Sci 2024:d4sc03649b. [PMID: 39144466 PMCID: PMC11318651 DOI: 10.1039/d4sc03649b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials are of interest for light-emitting applications due to their narrow emission bandwidths and high photoluminescence quantum yields. Whilst there have been numerous examples of multi-resonance molecules exhibiting efficient TADF, the photophysics and mechanism of TADF in multi-resonance emitters have not been investigated to the same extent as the more conventional spatially separated donor-acceptor TADF materials, limiting the development of MR-TADF devices. Here we study the photophysics of a multi-resonance TADF material, OQAO(mes)2, using transient absorption spectroscopy to spectrally resolve the triplet population(s). We identify multiple triplet populations with distinct spectral contributions, and resolve the dynamics between them. Unlike conventional donor-acceptor TADF materials that have previously been studied, we find these triplet states are not formed in equilibrium, instead exhibiting a slow evolution from a high-energy triplet to a low-energy triplet. Delayed fluorescence predominantly reflects the lifetime of the high-energy triplet state, indicating that the formation of the low-energy triplet is a loss pathway for TADF. We also find that greater amounts of the low-energy triplet are formed in a higher dielectric environment, which leads to less delayed fluorescence. These triplet dynamics have significant implications for TADF in devices, as depending on the identity of the triplet formed by electrical excitation, there will either be a significant barrier to TADF, or a competing nonradiative decay pathway.
Collapse
Affiliation(s)
- Alexandra N Stuart
- Department of Chemistry, The University of Sydney Camperdown New South Wales 2000 Australia
- Australian Research Council Centre of Excellence in Exciton Science Parkville 3010 Australia
| | - Katrina Bergmann
- Department of Chemistry, The University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
| | - Inseong Cho
- Department of Chemistry, The University of Sydney Camperdown New South Wales 2000 Australia
- Australian Research Council Centre of Excellence in Exciton Science Parkville 3010 Australia
| | - William J Kendrick
- Australian Research Council Centre of Excellence in Exciton Science Parkville 3010 Australia
- School of Chemistry, The University of Melbourne Parkville 3010 VIC Australia
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
| | - Wallace W H Wong
- Australian Research Council Centre of Excellence in Exciton Science Parkville 3010 Australia
- School of Chemistry, The University of Melbourne Parkville 3010 VIC Australia
| | - Girish Lakhwani
- Department of Chemistry, The University of Sydney Camperdown New South Wales 2000 Australia
- Australian Research Council Centre of Excellence in Exciton Science Parkville 3010 Australia
| |
Collapse
|
17
|
Wei W, Li C, Fan Y, Chen X, Zhao X, Qiao B, Jiang Z. Catalytic Asymmetric Redox-Neutral [3+2] Photocycloadditions of Cyclopropyl Ketones with Vinylazaarenes Enabled by Consecutive Photoinduced Electron Transfer. Angew Chem Int Ed Engl 2024; 63:e202406845. [PMID: 38687326 DOI: 10.1002/anie.202406845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Consecutive photoinduced electron transfer (ConPET) is a powerful and atom-economical protocol to overcome the limitations of the intrinsic redox potential of visible light-absorbing photosensitizers, thereby considerably improving the substrate and reaction types. Likely because such an exothermic single-electron transfer (SET) process usually does not require the aid of chiral catalysts, resulting in an inevitable racemic background reaction, notably, no enantioselective manifolds have been reported. Herein, we report on the viability of cooperative ConPET and chiral hydrogen-bonding catalysis for the [3+2] photocycloaddition of cyclopropyl ketones with vinylazaarenes. In addition to enabling the first use of olefins that preferentially interact with chiral catalysts, this catalysis platform paves the way for the efficient synthesis of pharmaceutically and synthetically important cyclopentyl ketones functionalized by azaarenes with high yields, ees and dr. The robust capacity of the method can be further highlighted by the low loading of the chiral catalyst (1.0 mol %), the good compatibility of both 2-azaarene and 3-pyridine-based olefins, and the successful concurrent construction of three stereocenters on cyclopentane rings involving an elusive but important all-carbon quaternary.
Collapse
Affiliation(s)
- Wenhui Wei
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Chunyang Li
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Yifan Fan
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xiaowei Chen
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xiaowei Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Baokun Qiao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Zhiyong Jiang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
18
|
Ning J, Du B, Cao S, Liu X, Kong D. Combining Umpolung and Carbon Isotope Exchange Strategies for Accessing Isotopically Labeled α-Keto Acids. Org Lett 2024; 26:5966-5971. [PMID: 38958587 DOI: 10.1021/acs.orglett.4c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The integration of umpolung and carbon isotope exchange for accessing isotopically labeled α-keto acids through photoredox catalysis is elucidated. This process involves the carbonyl umpolung of C(sp2)-α-keto acids to yield C(sp3)-α-thioketal acids, followed by the carbon isotope exchange of C(sp3)-α-thioketal acids, and ultimately, deprotection to generate carbon-labeled α-keto acids.
Collapse
Affiliation(s)
- Jingran Ning
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoyang Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shilong Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xia Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
19
|
Prakash R, Sen PP, Pathania V, Raha Roy S. Photocatalytic Proficiency of Cinnoline Moiety for Cross-Coupling Reactions: A Two in One Photocatalyst. Org Lett 2024; 26:5923-5927. [PMID: 38959051 DOI: 10.1021/acs.orglett.4c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Herein, we have developed a new class of organic photocatalysts that can mimic transition metals for several oxidative and reductive organic cross-coupling transformations. Due to its wide potential window in both the oxidation and reduction ranges, cinnoline exhibits dual catalytic activity under visible light illumination, acting as both a photoreductant and photooxidant.
Collapse
Affiliation(s)
- Rashmi Prakash
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Partha Pratim Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vishali Pathania
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
20
|
Zhen YY, Qu JP, Kang YB. Synthesis Enabled by E-to-Z Isomerization Using CBZ6 as Energy Transfer Photocatalyst. Org Lett 2024; 26:5177-5181. [PMID: 38856646 DOI: 10.1021/acs.orglett.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The reactions of Z-isomers and E-isomers usually are different in consideration of the regioselectivity of chemoselectivity. The syntheses of Z-isomers are not feasible in many cases. The energy transfer (EnT) E/Z-photoisomerization might yield the Z-isomers. In this work, CBZ6 was proven to be an EnT photocatalyst for the E → Z-isomerization of C-C or C-N double bonds. The transformations of in situ generated Z-isomers of oximes and stilbenes consequently afforded the desired reversed Beckmann rearrangement products and phenanthrenes, respectively.
Collapse
Affiliation(s)
- Ying-Ying Zhen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
21
|
Jeon W, Kwon Y, Kwon MS. Highly efficient dual photoredox/copper catalyzed atom transfer radical polymerization achieved through mechanism-driven photocatalyst design. Nat Commun 2024; 15:5160. [PMID: 38886349 PMCID: PMC11183263 DOI: 10.1038/s41467-024-49509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Atom transfer radical polymerization (ATRP) with dual photoredox/copper catalysis combines the advantages of photo-ATRP and photoredox-mediated ATRP, utilizing visible light and ensuring broad monomer scope and solvent compatibility while minimizing side reactions. Despite its popularity, challenges include high photocatalyst (PC) loadings (10 to 1000 ppm), requiring additional purification and increasing costs. In this study, we discover a PC that functions at the sub-ppm level for ATRP through mechanism-driven PC design. Through studying polymerization mechanisms, we find that the efficient polymerizations are driven by PCs whose ground state oxidation potential-responsible for PC regeneration-play a more important role than their excited state reducing power, responsible for initiation. This is verified by screening PCs with varying redox potentials and triplet excited state generation capabilities. Based on these findings, we identify a highly efficient PC, 4DCDP-IPN, featuring moderate excited state reducing power and a maximized ground state oxidation potential. Employing this PC at 50 ppb, we synthesize poly(methyl methacrylate) with high conversion, narrow molecular weight distribution, and high chain-end fidelity. This system exhibits oxygen tolerance and supports large-scale reactions under ambient conditions. Our findings, driven by the systematic PC design, offer meaningful insights for controlled radical polymerizations and metallaphotoredox-mediated syntheses beyond ATRP.
Collapse
Affiliation(s)
- Woojin Jeon
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea.
| | - Min Sang Kwon
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Cagan D, Bím D, Kazmierczak NP, Hadt RG. Mechanisms of Photoredox Catalysis Featuring Nickel-Bipyridine Complexes. ACS Catal 2024; 14:9055-9076. [PMID: 38868098 PMCID: PMC11165457 DOI: 10.1021/acscatal.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Metallaphotoredox catalysis can unlock useful pathways for transforming organic reactants into desirable products, largely due to the conversion of photon energy into chemical potential to drive redox and bond transformation processes. Despite the importance of these processes for cross-coupling reactions and other transformations, their mechanistic details are only superficially understood. In this review, we have provided a detailed summary of various photoredox mechanisms that have been proposed to date for Ni-bipyridine (bpy) complexes, focusing separately on photosensitized and direct excitation reaction processes. By highlighting multiple bond transformation pathways and key findings, we depict how photoredox reaction mechanisms, which ultimately define substrate scope, are themselves defined by the ground- and excited-state geometric and electronic structures of key Ni-based intermediates. We further identify knowledge gaps to motivate future mechanistic studies and the development of synergistic research approaches spanning the physical, organic, and inorganic chemistry communities.
Collapse
Affiliation(s)
- David
A. Cagan
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Daniel Bím
- Institute
of Organic Chemistry and Biochemistry, The
Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Nathanael P. Kazmierczak
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
23
|
Di Maiolo F, Phan Huu DKA, Giavazzi D, Landi A, Racchi O, Painelli A. Shedding light on thermally-activated delayed fluorescence. Chem Sci 2024; 15:5434-5450. [PMID: 38638233 PMCID: PMC11023041 DOI: 10.1039/d4sc00033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/17/2024] [Indexed: 04/20/2024] Open
Abstract
Thermally activated delayed fluorescence (TADF) is a hot research topic in view of its impressive applications in a wide variety of fields from organic LEDs to photodynamic therapy and metal-free photocatalysis. TADF is a rare and fragile phenomenon that requires a delicate equilibrium between tiny singlet-triplet gaps, sizable spin-orbit couplings, conformational flexibility and a balanced contribution of charge transfer and local excited states. To make the picture more complex, this precarious equilibrium is non-trivially affected by the interaction of the TADF dye with its local environment. The concurrent optimization of the dye and of the embedding medium is therefore of paramount importance to boost practical applications of TADF. Towards this aim, refined theoretical and computational approaches must be cleverly exploited, paying attention to the reliability of adopted approximations. In this perspective, we will address some of the most important issues in the field. Specifically, we will critically review theoretical and computational approaches to TADF rates, highlighting the limits of widespread approaches. Environmental effects on the TADF photophysics are discussed in detail, focusing on the major role played by dielectric and conformational disorder in liquid solutions and amorphous matrices.
Collapse
Affiliation(s)
- Francesco Di Maiolo
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - D K Andrea Phan Huu
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Davide Giavazzi
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Andrea Landi
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Ottavia Racchi
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Anna Painelli
- Dept. Chemistry, Life Science and Environmental Sustainability, University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
24
|
Bryden MA, Millward F, Lee OS, Cork L, Gather MC, Steffen A, Zysman-Colman E. Lessons learnt in photocatalysis - the influence of solvent polarity and the photostability of the photocatalyst. Chem Sci 2024; 15:3741-3757. [PMID: 38455004 PMCID: PMC10915810 DOI: 10.1039/d3sc06499a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
Herein, we show that there is significant variation in both the triplet energies and redox properties of photocatalysts as a function of solvent based on a study of eight PCs in four solvents of varying polarity. A range of photocatalytic electron and energy transfer reactions were investigated using a subset of the PCs. For the photoredox reactions, the yields are not correlated with solvent polarity. Instead, when the PC could promote the formation of the target product, we observed photodegradation for all PCs across all solvents, something that is rarely investigated in the literature. This, therefore, makes it difficult to ascertain whether the parent PC and/or the photodegraded product is responsible for the photochemistry, or indeed, whether photodegradation is actually detrimental to the reaction yield. Conversely, the PCs were found to be photostable for energy transfer reactions; however, yields were not correlated to the triplet energies of the PCs, highlighting that triplet energies alone are not a suitable descriptor to discriminate the performance between PCs in photoinduced energy transfer processes.
Collapse
Affiliation(s)
- Megan Amy Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews Fife St Andrews KY16 9ST UK https://www.zysman-colman.com +44 (0)1334 463808 +44 (0)1334 463826
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews Fife St Andrews KY16 9ST UK https://www.zysman-colman.com +44 (0)1334 463808 +44 (0)1334 463826
| | - Oliver S Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews Fife St Andrews KY16 9ST UK https://www.zysman-colman.com +44 (0)1334 463808 +44 (0)1334 463826
| | - Lauren Cork
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews Fife St Andrews KY16 9ST UK https://www.zysman-colman.com +44 (0)1334 463808 +44 (0)1334 463826
| | - Malte C Gather
- Department of Chemistry, Humboldt Centre for Nano- and Biophotonics, University of Cologne Greinstr. 4-6 50939 Cologne Germany
| | - Andreas Steffen
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortumund Otto-Hahn-Str. 644227 Dortmund Germany
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews Fife St Andrews KY16 9ST UK https://www.zysman-colman.com +44 (0)1334 463808 +44 (0)1334 463826
| |
Collapse
|
25
|
Sharma S, Sengupta S. Diindolocarbazole-Based Rigid Donor-Acceptor TADF Molecules for Energy and Electron Transfer Photocatalysis. Chemistry 2024; 30:e202303754. [PMID: 38009376 DOI: 10.1002/chem.202303754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 11/28/2023]
Abstract
The design and synthesis of four twisted donor-acceptor (D-A) thermally activated delayed fluorescence (TADF) molecules CBZ-IQ, CBZ-2FIQ, DI-IQ and DI-2FIQ is reported in this work based on diindolocarbazole (DI) and phenyl carbazole as donor and indoloquinoxalines as acceptor. These compounds serve as photocatalysts for organic transformations. Theoretical calculations and experimental data showed reasonable singlet and triplet energy gaps of 0.17-0.26 eV for all compounds. All molecules showed increase in fluorescence quantum yields after degassing the solution and the transient photoluminescence decay showed two components: shorter prompt components (11.4 ns to 31 ns) and longer delayed components (36.4 ns to 1.5 μs) which further indicate the occurrence of TADF process. Cyclic voltammetry studies indicated well-suited excited state redox potentials of all compounds to catalyze organic transformations such as heteroarene arylation. Accordingly, photocatalytic C-H arylation of heteroarenes were performed using these compounds with excellent isolated yields of upto 80 %. Due to their suitable efficient triplet energy levels, all the emitters were also employed as energy transfer photocatalysts in E to Z isomerization of stilbene with the excellent conversion of ~90 %.
Collapse
Affiliation(s)
- Sushil Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Punjab, 140306, India
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Punjab, 140306, India
| |
Collapse
|
26
|
Quirós I, Martín M, Gomez-Mendoza M, Cabrera-Afonso MJ, Liras M, Fernández I, Nóvoa L, Tortosa M. Isonitriles as Alkyl Radical Precursors in Visible Light Mediated Hydro- and Deuterodeamination Reactions. Angew Chem Int Ed Engl 2024; 63:e202317683. [PMID: 38150265 DOI: 10.1002/anie.202317683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 12/28/2023]
Abstract
Herein, we report the use of isonitriles as alkyl radical precursors in light-mediated hydro- and deuterodeamination reactions. The reaction is scalable, shows broad functional group compatibility and potential to be used in late-stage functionalization. Importantly, the method is general for Cα -primary, Cα -secondary and Cα -tertiary alkyl isonitriles. For most examples, high yields were obtained through direct visible-light irradiation of the isonitrile in the presence of a silyl radical precursor. Interestingly, in the presence of an organic photocatalyst (4CzIPN) a dramatic acceleration was observed. In-depth mechanistic studies using UV/Vis absorption, steady-state and time-resolved photoluminescence, and transient absorption spectroscopy suggest that the excited state of 4CzIPN can engage in a single-electron transfer with the isonitrile.
Collapse
Affiliation(s)
- Irene Quirós
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
| | - María Martín
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA Energy, Av. Ramón de la Sagra 3, Móstoles, 28935, Madrid, Spain
| | - María Jesús Cabrera-Afonso
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
| | - Marta Liras
- Photoactivated Processes Unit, IMDEA Energy, Av. Ramón de la Sagra 3, Móstoles, 28935, Madrid, Spain
| | - Israel Fernández
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
- Center of Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| | - Luis Nóvoa
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
| | - Mariola Tortosa
- Organic Chemistry Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente 7, Cantoblanco, 28049, Madrid, Spain
- Center of Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| |
Collapse
|
27
|
Deka R, Dey S, Upadhyay M, Chawla S, Ray D. Conformational Effect of Catechol-Terephthalonitrile Emitters Leading to Ambient Violet Phosphorescence. J Phys Chem A 2024; 128:581-589. [PMID: 38206828 DOI: 10.1021/acs.jpca.3c06877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Organic ambient violet phosphorescent (AVP) materials are of great interest due to their involvement of high energy and longer-lived triplet excitons. Here, we show three fused ring functionalized donor-acceptor-donor (D-A-D/D-A-D') emitters (BPT1-BPT3), in which two catechol-based donors (3,4-dihydroxybenzophenone, catechol, or 3,5-ditert-butylcatechol) are covalently fused to the terephthalonitrile acceptor via four O-C single bonds. Spectroscopic analysis revealed that all the molecules show AVP (∼390-394 nm, τAVP = 73-101 μs) with phosphorescence quantum yields (ϕP) of 1.8-27.4% due to low singlet-triplet gaps (0.036-0.046 eV) and conformational effects. BPT3 with bulky tert-butyl groups increases AVP (ϕP = 27.4%). Quantum chemistry calculations reveal flat (F1) and twisted (F2) conformers (ground state) with a low energy difference (∼4-5 kcal/mol) for all molecules; the F1 conformer is responsible for efficient AVP, while weak blue thermally activated delayed fluorescence with longer-lived delayed components is realized from the F2 conformer. This approach may provide important clues for the design of high-energy organic phosphorescent materials.
Collapse
Affiliation(s)
- Raktim Deka
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Suvendu Dey
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Manoj Upadhyay
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Sakshi Chawla
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| | - Debdas Ray
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
28
|
Mayerhofer VJ, Lippolis M, Teskey CJ. Dual-Catalysed Intermolecular Reductive Coupling of Dienes and Ketones. Angew Chem Int Ed Engl 2024; 63:e202314870. [PMID: 37947372 DOI: 10.1002/anie.202314870] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
We report a mild, catalytic method for the intermolecular reductive coupling of feedstock dienes and styrenes with ketones. Our conditions allow concomitant formation of a cobalt hydride species and single-electron reduction of ketones. Subsequent selective hydrogen-atom transfer from the cobalt hydride generates an allylic radical which can selectively couple with the persistent radical-anion of the ketone. This radical-radical coupling negates unfavourable steric interactions of ionic pathways and avoids the unstable alkoxy radical of previous radical olefin-carbonyl couplings, which were limited, as a result, to aldehydes. Applications of this novel and straightforward approach include the efficient synthesis of drug molecules, key intermediates in drug synthesis and site-selective late-stage functionalisation.
Collapse
Affiliation(s)
- Victor J Mayerhofer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Martina Lippolis
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Christopher J Teskey
- Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
29
|
Li XL, Han N, Zhang RZ, Niu KK, Dong RZ, Liu H, Yu S, Wang YB, Xing LB. Host-Guest Photosensitizer of a Cationic BODIPY Derivative and Cucurbit[7]uril for High-Efficiency Visible Light-Induced Photooxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55803-55812. [PMID: 37983520 DOI: 10.1021/acsami.3c12827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In recent years, there has been a notable surge of interest in the fields of organic and pharmaceutical research about photocatalysts (PCs) and photosensitizers (PSs). In this study, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) molecule adorned with quaternary ammonium (TMB) functionality was meticulously designed and synthesized. This compound has remarkable characteristics such as exceptional water solubility, great optical qualities, and commendable photostability. It can form a 1:1 complex (TMB-CB[7]) with cucurbit[7]uril (CB[7]) through host-guest interactions in the aqueous solution and shows obvious fluorescence enhancement. The reactive oxygen species (ROS) including superoxide anion radical (O2·-) and singlet oxygen (1O2) generation ability of TMB-CB[7] were promoted compared with that of TMB in the aqueous solution. More interestingly, the ROS generated from TMB-CB[7] can be used as PCs for aerobic cross dehydrogenation coupling reactions and photooxidation reactions in water with high yields of 89 and 95%, respectively. Therefore, the utilization of a host-guest PS presents a novel and environmentally friendly approach for conducting photocatalyzed organic processes under ambient conditions using visible light.
Collapse
Affiliation(s)
- Xin-Long Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Rui-Zhi Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Yue-Bo Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
30
|
Qin J, Zhang Z, Lu Y, Zhu S, Chu L. Divergent 1,2-carboallylation of terminal alkynes enabled by metallaphotoredox catalysis with switchable triplet energy transfer. Chem Sci 2023; 14:12143-12151. [PMID: 37969584 PMCID: PMC10631246 DOI: 10.1039/d3sc04645a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023] Open
Abstract
We report a metallaphotoredox strategy for stereodivergent three-component carboallylation of terminal alkynes with allylic carbonates and alkyl trifluoroborates. This redox-neutral dual catalytic protocol utilizes commercially available organic photocatalyst 4CzIPN and nickel catalysts to trigger a radical addition/alkenyl-allyl coupling sequence, enabling straightforward access to functionalized 1,4-dienes in a highly chemo-, regio-selective, and stereodivergent fashion. This reaction features a broad substrate generality and a tunable triplet energy transfer control with pyrene as a simple triplet energy modulator, offering a facile synthesis of complex trans- and cis-selective skipped dienes with the same set of readily available substrates.
Collapse
Affiliation(s)
- Jian Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| | - Zhuzhu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| | - Yi Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| |
Collapse
|
31
|
Kim D, Rosko MC, Dang VQ, Castellano FN, Teets TS. Sterically Encumbered Heteroleptic Copper(I) β-Diketiminate Complexes with Extended Excited-State Lifetimes. Inorg Chem 2023; 62:16759-16769. [PMID: 37782937 DOI: 10.1021/acs.inorgchem.3c02042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
One of the main challenges in developing effective copper(I) photosensitizers is their short excited-state lifetimes, usually attributed to structural distortion upon light excitation. We have previously introduced copper(I) charge-transfer chromophores of the general formula Cu(N^N)(ArNacNac), where N^N is a conjugated diimine ligand and ArNacNac is a substituted β-diketiminate ligand. These chromophores were promising regarding their tunable redox potentials and intense visible absorption but were ineffective as photosensitizers, presumably due to short excited-state lifetimes. Here, we introduce sterically crowded analogues of these heteroleptic chromophores with bulky alkyl substituents on the N^N and/or ArNacNac ligand. Structural analysis was combined with electrochemical and photophysical characterization, including ultrafast transient absorption (UFTA) spectroscopy to investigate the effects of the alkyl groups on the excited-state lifetimes of the complexes. The molecular structures determined by single-crystal X-ray diffraction display more distortion in the ground state as alkyl substituents are introduced into the phenanthroline or the NacNac ligand, showing smaller τ4 values due to the steric hindrance. UFTA measurements were carried out to determine the excited-state dynamics. Sterically encumbered Cu5 and Cu6 display excited-state lifetimes 15-20 times longer than unsubstituted complex Cu1, likely indicating that the incorporation of bulky alkyl substituents inhibits the pseudo-Jahn-Teller (PJT) flattening distortion in the excited state. This work suggests that the steric properties of these heteroleptic copper(I) charge-transfer chromophores can be readily modified and that the excited-state dynamics are strongly responsive to these modifications.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Vinh Q Dang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
32
|
Back JH, Kwon Y, Cho H, Lee H, Ahn D, Kim HJ, Yu Y, Kim Y, Lee W, Kwon MS. Visible-Light-Curable Acrylic Resins toward UV-Light-Blocking Adhesives for Foldable Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204776. [PMID: 35901501 DOI: 10.1002/adma.202204776] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Current technological advances in the organic light-emitting diode panel design of foldable smartphones demand advanced adhesives with UV-blocking abilities, beyond their conventional roles of bonding objects and relieving deformation stress. However, optically clear adhesives (OCAs) with UV-blocking ability cannot be prepared using conventional UV-curing methods relying on a photoinitiator. Herein, a new acrylic resin that can be efficiently cured using visible light without oxygen removal is presented, which may be used to develop UV-blocking OCAs for use in current flexible displays. A novel photocatalyst and a specific combination of additives facilitate sufficiently rapid curing under visible light in the presence of UV-absorbers. Only a very small amount of the highly active photocatalyst is required to prepare UV-blocking OCA films with very high transparency in the visible region. Using this system, a UV-blocking OCA that nearly meets the specifications of an OCA used in commercialized foldable smartphones is realized. This technology can also be utilized in other applications that require highly efficient visible light curing, such as optically clear resins, dental resins, and 3D/4D-printable materials.
Collapse
Affiliation(s)
- Jong-Ho Back
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyeju Cho
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Huesoo Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Dowon Ahn
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Hyun-Joong Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngchang Yu
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Youngdo Kim
- Samsung Display Co., Ltd., Cheonan, 31086, Republic of Korea
| | - Wonjoo Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
33
|
Nusser BD, Accardo JV, Zhu L. Luminescence and Stability of 1,4,5-Triaryl-1,2,3-Triazoles. Chemphyschem 2023; 24:e202300209. [PMID: 37395382 DOI: 10.1002/cphc.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
The fluorescence, phosphorescence, and photochemical properties of di- and triaryl-substituted-1,2,3-triazoles are reported in this work. The ease of synthesis of regioisomers of substituted triazoles enables a systematic study on the correlation between regiochemistry and excited state properties, which include the solvent dependence of fluorescence, energy gap between singlet and triplet emitters, and propensity to photon-triggered transformations. The triazoles that carry electron (e)-donor and e-acceptor aryl substituents show high fluorescence quantum yields in weakly polar solvents and exhibit solvent-dependent fluorescence. The luminescence properties of these compounds in glass matrices at 77 K are characterized. The thermal and photo-stability, two parameters that are crucial to their potential utilities in optical devices, of these compounds are determined. The position of the e-donor substituent has a significant impact on the fluorescence emission energy and solvent sensitivity, singlet-triplet energy gap, and photochemical reactivity and stability. The experimental observations on the structural correlation with the photophysical and photochemical properties are explained by quantum chemical calculations. This study provides a rationale on the placement of substituent on a donor-acceptor type fluorophore to maneuver a range of photo-related properties.
Collapse
Affiliation(s)
- Brandon D Nusser
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA
| | - Joseph V Accardo
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
34
|
Chen G, Xu B. Gold-Catalyzed C-O Cross-Coupling Reactions of Aryl Iodides with Silver Carboxylates. Org Lett 2023; 25:6334-6339. [PMID: 37602793 DOI: 10.1021/acs.orglett.3c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
We have developed a C-O cross-coupling reaction of (hetero)aryl iodides with silver carboxylates via a AuI/AuIII catalytic cycle. The transformation featured exclusive chemoselectivity and moisture/air insensitivity. Aromatic and aliphatic (including primary, secondary, and tertiary) silver carboxylates are all suitable substrates. Moreover, this protocol worked well intermolecularly and intramolecularly. Most importantly, good yields were obtained regardless of the substrates' electronic effect and steric hindrance.
Collapse
Affiliation(s)
- Guifang Chen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
35
|
Hojo R, Bergmann K, Elgadi SA, Mayder DM, Emmanuel MA, Oderinde MS, Hudson ZM. Imidazophenothiazine-Based Thermally Activated Delayed Fluorescence Materials with Ultra-Long-Lived Excited States for Energy Transfer Photocatalysis. J Am Chem Soc 2023; 145:18366-18381. [PMID: 37556344 DOI: 10.1021/jacs.3c04132] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Triplet-triplet energy transfer (EnT) is a powerful activation pathway in photocatalysis that unlocks new organic transformations and improves the sustainability of organic synthesis. Many current examples, however, still rely on platinum-group metal complexes as photosensitizers, with associated high costs and environmental impacts. Photosensitizers that exhibit thermally activated delayed fluorescence (TADF) are attractive fully organic alternatives in EnT photocatalysis. However, TADF photocatalysts incorporating heavy atoms remain rare, despite their utility in inducing efficient spin-orbit-coupling, intersystem-crossing, and consequently a high triplet population. Here, we describe the synthesis of imidazo-phenothiazine (IPTZ), a sulfur-containing heterocycle with a locked planar structure and a shallow LUMO level. This acceptor is used to prepare seven TADF-active photocatalysts with triplet energies up to 63.9 kcal mol-1. We show that sulfur incorporation improves spin-orbit coupling and increases triplet lifetimes up to 3.64 ms, while also allowing for tuning of photophysical properties via oxidation at the sulfur atom. These IPTZ materials are applied as photocatalysts in five seminal EnT reactions: [2 + 2] cycloaddition, the disulfide-ene reaction, and Ni-mediated C-O and C-N cross-coupling to afford etherification, esterification, and amination products, outcompeting the industry-standard TADF photocatalyst 2CzPN in four of the five studied scenarios. Detailed photophysical and theoretical studies are used to understand structure-activity relationships and to demonstrate the key role of the heavy atom effect in the design of TADF materials with superior photocatalytic performance.
Collapse
Affiliation(s)
- Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katrina Bergmann
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Seja A Elgadi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Megan A Emmanuel
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Martins S Oderinde
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
36
|
Liu J, Perez OM, Lavergne D, Rasu L, Murphy E, Galvez-Rodriguez A, Bergens SH. One-Step Electropolymerization of a Dicyanobenzene-Carbazole-Imidazole Dye to Prepare Photoactive Redox Polymer Films. Polymers (Basel) 2023; 15:3340. [PMID: 37631397 PMCID: PMC10457835 DOI: 10.3390/polym15163340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
To the best of our knowledge, this study reports the first direct electropolymerization of a dicyanobenzene-carbazole dye functionalized with an imidazole group to prepare redox- and photoactive porous organic polymer (POP) films in controlled amounts. The POP films were grown on indium-doped tin oxide (ITO) and carbon surfaces using a new monomer, 1-imidazole-2,4,6-tri(carbazol-9-yl)-3,5-dicyanobenzene (1, 3CzImIPN), through a simple one-step process. The structure and activities of the POP films were investigated as photoelectrodes for electrooxidations, as heterogeneous photocatalysts for photosynthetic olefin isomerizations, and for solid-state photoluminescence behavior tunable by lithium-ion concentrations in solution. The results demonstrate that the photoredox-POPs can be used as efficient photocatalysts, and they have potential applications in sensing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Steven H. Bergens
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
37
|
Dasi R, Villinger A, Brasholz M. Visible light-induced iridium(III)-sensitized [2 + 2] and [3 + 2] photocycloadditions of 2-cyanochromone with alkenes. Org Biomol Chem 2023. [PMID: 37449652 DOI: 10.1039/d3ob00862b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
2-Cyanochromone (1) readily undergoes visible light-induced photocycloadditions with diverse alkene partners mediated by (Ir[dF(CF3)ppy]2(dtbpy))PF6 as the photosensitizer. While mono-, di- and trisubstituted styrenes and acrylonitriles as the reactants lead to [2 + 2] cycloadducts with good regiocontrol and high diastereoselectivity, the use of trialkyl-substituted alkenes allows for the isolation of cyclopentenone-fused chromones resulting from a [3 + 2] cycloaddition process in moderate yields.
Collapse
Affiliation(s)
- Rajesh Dasi
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Alexander Villinger
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Malte Brasholz
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
38
|
Rourke MJ, Wang CT, Schull CR, Scheidt KA. Acyl Azolium-Photoredox-Enabled Synthesis of β-Keto Sulfides. ACS Catal 2023; 13:7987-7994. [PMID: 37969469 PMCID: PMC10651059 DOI: 10.1021/acscatal.3c01558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
α-Heteroatom functionalization is a key strategy for C-C bond formation in organic synthesis, as exemplified by the addition of a nucleophile to electrophilic functional groups, such as iminium ions; oxocarbenium ions; and their sulfur analogues, sulfenium ions. We envisioned a photoredox-enabled radical Pummerer-type reaction realized through the single-electron oxidation of a sulfide. Following this oxidative event, α-deprotonation would afford α-thio radicals that participate in radical-radical coupling reactions with azolium-bound ketyl radicals, thereby accessing a commonly proposed mechanistic intermediate of the radical-radical coupling en route to functionalized additive Pummerer products. This system provides a complementary synthetic approach to highly functionalized sulfurous products, including modification of methionine residues in peptides, and beckons further exploration in C-C bond formations previously limited in the standard two-electron process.
Collapse
Affiliation(s)
- Michael J Rourke
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Charles T Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Cullen R Schull
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
39
|
Rolka AB, Archipowa N, Kutta RJ, König B, Toste FD. Hybrid Catalysts for Enantioselective Photo-Phosphoric Acid Catalysis. J Org Chem 2023; 88:6509-6522. [PMID: 37126846 PMCID: PMC10198958 DOI: 10.1021/acs.joc.3c00191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The syntheses of two novel, organic, and chiral photocatalysts are presented. By combining donor-acceptor cyanoarene-based photocatalysts with a chiral phosphoric acid, bifunctional catalysts have been designed. In preliminary proof-of-concept reactions, their use in both enantioselective energy transfer and photoredox catalysis is demonstrated.
Collapse
Affiliation(s)
- Alessa B Rolka
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nataliya Archipowa
- Institute of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93040 Regensburg, Germany
| | - Roger J Kutta
- Institute of Theoretical and Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
40
|
Gao C, Zeng J, Zhang X, Liu Y, Zhan ZP. A Photosensitizer for N-O Bond Activation: 2,7-Br-4CzIPN-Catalyzed Difunctionalization of Alkenes with Oxime Esters. Org Lett 2023; 25:3146-3151. [PMID: 37083314 DOI: 10.1021/acs.orglett.3c01073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
We developed 2,4,5,6-tetrakis(2,7-dibromo-9H-carbazol-9-yl)isophthalonitrile (2,7-Br-4CzIPN) as a new photosensitizer for the energy-transfer-driven N-O bond dissociation of oxime esters. In the presence of 2,7-Br-4CzIPN, difunctionalization of alkenes with oxime esters, including oxyimination, aminocarboxylation, and amidylimination, could afford a variety of versatile molecules in good yields with excellent regioselectivity, which widely occur in natural products and drugs. Our theoretical investigations and experiments have demonstrated that 2,7-Br-4CzIPN has unique photophysical properties, favorable triplet energy, and excellent photocatalytic activity.
Collapse
Affiliation(s)
- Cai Gao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Jiahao Zeng
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xianming Zhang
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Yanzhi Liu
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Zhuang-Ping Zhan
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
41
|
Sahari A, Puumi J, Mannisto JK, Repo T. Dual Nickel Photocatalysis for O-Aryl Carbamate Synthesis from Carbon Dioxide. J Org Chem 2023; 88:3822-3829. [PMID: 36848485 PMCID: PMC10028690 DOI: 10.1021/acs.joc.3c00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
We report the use of dual nickel photocatalysis in the synthesis of O-aryl carbamates from aryl iodides or bromides, amines, and carbon dioxide. The reaction proceeded in visible light, at ambient carbon dioxide pressure, and without stoichiometric activating reagents. Mechanistic analysis is consistent with a Ni(I-III) cycle, where the active species is generated by the photocatalyst. The rate-limiting steps were the photocatalyst-mediated reduction of Ni(II) to Ni(I) and subsequent oxidative addition of the aryl halide. The physical properties of the photocatalyst were critical for promoting formation of O-aryl carbamates over various byproducts. Nine new phthalonitrile photocatalysts were synthesized, which exhibited properties that were vital to achieve high selectivity and activity.
Collapse
Affiliation(s)
- Aleksi Sahari
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jukka Puumi
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jere K Mannisto
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Timo Repo
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
42
|
Primrose WL, Mayder DM, Hojo R, Hudson ZM. Dibenzodipyridophenazines with Dendritic Electron Donors Exhibiting Deep-Red Emission and Thermally Activated Delayed Fluorescence. J Org Chem 2023; 88:4224-4233. [PMID: 36920272 DOI: 10.1021/acs.joc.2c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The development of deep-red thermally activated delayed fluorescence (TADF) emitters is important for applications such as organic light-emitting diodes (OLEDs) and biological imaging. Design strategies for red-shifting emission include synthesizing rigid acceptor cores to limit nonradiative decay and employing strong electron-donating groups. In this work, three novel luminescent donor-acceptor compounds based on the dibenzo[a,c]dipyrido[3,2-h:20-30-j]-phenazine-12-yl (BPPZ) acceptor were prepared using dendritic carbazole-based donors 3,3″,6,6″-tetramethoxy-9'H-9,3':6',9″-tercarbazole (TMTC), N3,N3,N6,N6-tetra-p-tolyl-9H-carbazole-3,6-diamine (TTAC), and N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-9H-carbazole-3,6-diamine (TMAC). Here, dimethoxycarbazole, ditolylamine, and bis(4-methoxyphenyl)amine were introduced at the 3,6-positions of carbazole to increase the strength of these donors and induce long-wavelength emission. Substituent effects were investigated with experiments and theoretical calculations. The emission maxima of these materials in toluene were found to be 562, 658, and 680 nm for BPPZ-2TMTC, BPPZ-2TTAC, and BPPZ-2TMAC, respectively, highlighting the exceptional strength of the TMAC donor, which pushes the emission into the deep-red region of the visible spectrum as well as into the biological transparency window (650-1350 nm). Long-lived emission lifetimes were observed in each emitter due to TADF in BPPZ-2TMC and BPPZ-2TTAC, as well as room-temperature phosphorescence in BPPZ-2TMAC. Overall, this work showcases deep-red emissive dendritic donor-acceptor materials which have potential as bioimaging agents with emission in the biological transparency window.
Collapse
Affiliation(s)
- William L Primrose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
43
|
Noto N, Yada A, Yanai T, Saito S. Machine-Learning Classification for the Prediction of Catalytic Activity of Organic Photosensitizers in the Nickel(II)-Salt-Induced Synthesis of Phenols. Angew Chem Int Ed Engl 2023; 62:e202219107. [PMID: 36645619 DOI: 10.1002/anie.202219107] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Catalytic systems using a small amount of organic photosensitizer for the activation of an inorganic (on-demand ligand-free) nickel(II) salt represent a cost-effective method for cross-coupling reactions, while C(sp2 )-O bond formation remains less developed. Herein, we report a strategy for the synthesis of phenols with a nickel(II) salt and an organic photosensitizer, which was identified via an investigation into the catalytic activity of 60 organic photosensitizers consisting of various electron donor and acceptor moieties. To examine the effect of multiple intractable parameters on the catalytic activity of photosensitizers, machine-learning (ML) models were developed, wherein we embedded descriptors representing their physical and structural properties, which were obtained from DFT calculations and RDKit, respectively. The study clarified that integrating both DFT- and RDKit-derived descriptors in ML models balances higher "precision" and "recall" across a wide range of search space relative to using only one of the two descriptor sets.
Collapse
Affiliation(s)
- Naoki Noto
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Akira Yada
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Susumu Saito
- Integrated Research Consortium on Chemical Sciences (IRCCS) and Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|
44
|
Zhao TT, Qin HN, Xu PF. Light-Promoted Nickel-Catalyzed C-O/C-N Coupling of Aryl Halides with Carboxylic Acids and Sulfonamides. Org Lett 2023; 25:636-641. [PMID: 36668813 DOI: 10.1021/acs.orglett.2c04210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A general strategy for the construction of dual-functional carbon-heteroatom bonds has been developed via a light-promoted nickel catalytic system. Employing a simple NiBr2 as the catalyst without any exogeneous ligands and photosensitizers, a variety of esters and sulfonamide N-arylation derivatives, including celecoxib- and glimepiride-derived sulfonamides, were readily accessed with high functional group tolerance and high efficiency. Moreover, the UV-vis absorption spectrum and free radical trapping experiments aimed at revealing the mechanism of the reaction are also presented.
Collapse
Affiliation(s)
- Tian-Tian Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hao-Ni Qin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
45
|
Thaggard GC, Leith GA, Sosnin D, Martin CR, Park KC, McBride MK, Lim J, Yarbrough BJ, Maldeni Kankanamalage BKP, Wilson GR, Hill AR, Smith MD, Garashchuk S, Greytak AB, Aprahamian I, Shustova NB. Confinement-Driven Photophysics in Hydrazone-Based Hierarchical Materials. Angew Chem Int Ed Engl 2023; 62:e202211776. [PMID: 36346406 DOI: 10.1002/anie.202211776] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Confinement-imposed photophysics was probed for novel stimuli-responsive hydrazone-based compounds demonstrating a conceptual difference in their behavior within 2D versus 3D porous matrices for the first time. The challenges associated with photoswitch isomerization arising from host interactions with photochromic compounds in 2D scaffolds could be overcome in 3D materials. Solution-like photoisomerization rate constants were realized for sterically demanding hydrazone derivatives in the solid state through their coordinative immobilization in 3D scaffolds. According to steady-state and time-resolved photophysical measurements and theoretical modeling, this approach provides access to hydrazone-based materials with fast photoisomerization kinetics in the solid state. Fast isomerization of integrated hydrazone derivatives allows for probing and tailoring resonance energy transfer (ET) processes as a function of excitation wavelength, providing a novel pathway for ET modulation.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Daniil Sosnin
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Corey R Martin
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Margaret K McBride
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Austin R Hill
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew B Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
46
|
Prentice C, Morrison J, Smith AD, Zysman-Colman E. Multi-Resonant Thermally Activated Delayed Fluorescent (MR-TADF) Compounds as Photocatalysts. Chemistry 2023; 29:e202202998. [PMID: 36208058 PMCID: PMC10099988 DOI: 10.1002/chem.202202998] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Donor-acceptor (D-A) thermally activated delayed fluorescent (TADF) compounds, such as 4CzIPN, have become a widely used sub-class of organic photocatalysts for a plethora of photocatalytic reactions. Multi-resonant TADF (MR-TADF) compounds, a subclass of TADF emitters that are rigid nanographene derivatives, such as DiKTa and Mes3 DiKTa, have to date not been explored as photocatalysts. In this study both DiKTa and Mes3 DiKTa were found to give comparable or better product yield than 4CzIPN in a range of photocatalytic processes that rely upon reductive quenching, oxidative quenching, energy transfer and dual photocatalytic processes. In a model oxidative quench process, DiKTa and Mes3 DiKTa gave increased reaction rates in comparison to 4CzIPN, with DiKTa being of particular interest due to the lower material cost (£0.94/mmol) compared to that of 4CzIPN (£3.26/mmol). These results suggest that DiKTa and Mes3 DiKTa would be excellent additions to any chemist's collection of photocatalysts.
Collapse
Affiliation(s)
- Callum Prentice
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY169ST, UK.,EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY169ST, UK
| | - James Morrison
- Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, SK102NA, UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY169ST, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY169ST, UK
| |
Collapse
|
47
|
Morofuji T, Kurokawa T, Chitose Y, Adachi C, Kano N. Trifluoromethylated thermally activated delayed fluorescence molecule as a versatile photocatalyst for electron-transfer- and energy-transfer-driven reactions. Org Biomol Chem 2022; 20:9600-9603. [PMID: 36412506 DOI: 10.1039/d2ob02055f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we propose that the trifluoromethylated thermally activated delayed fluorescent molecule 4[Cz(CF3)2]IPN is a versatile organic photocatalyst that can be used for electron-transfer-driven reactions requiring a photocatalyst with high oxidizing power and energy-transfer-driven reactions that require an Ir photocatalyst. 4[Cz(CF3)2]IPN was used in radical reactions via electron transfer and dearomative cycloaddition reactions via energy transfer.
Collapse
Affiliation(s)
- Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Takuma Kurokawa
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Youhei Chitose
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.,International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
48
|
Wang XY, He YQ, Wang M, Zhou Y, Li N, Song XR, Zhou ZZ, Tian WF, Xiao Q. Visible-light-driven proton reduction for semi-hydrogenation of alkynes via organophotoredox/manganese dual catalysis. RSC Adv 2022; 12:36138-36141. [PMID: 36545070 PMCID: PMC9761695 DOI: 10.1039/d2ra07920h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Described here is a unprecedented organophotoredox/manganese dual catalyzed proton reduction and its application for semi-reduction of alkynes. The catalytic active pre-catalyst [Mn-1] can be feasibly be prepared on gram-scale from Mn(acac)2·2H2O in air. This dual catalytic protocol features noble-metal-free catalysts, simple ligand, and mild conditions. Besides, a unique ortho-halogen and -hydroxyl effect was observed to achieve high Z-stereoselectivity.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Yong-Qin He
- School of Pharmaceutical Science, Nanchang UniversityNanchang330006P. R. China
| | - Mei Wang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Yi Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Na Li
- School of Pharmaceutical Science, Nanchang UniversityNanchang330006P. R. China
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Zhao-Zhao Zhou
- College of Chemistry and Food Science, Nanchang Normal UniversityNanchangP. R. China
| | - Wan-Fa Tian
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| |
Collapse
|
49
|
Toriumi N, Inoue T, Iwasawa N. Shining Visible Light on Reductive Elimination: Acridine-Pd-Catalyzed Cross-Coupling of Aryl Halides with Carboxylic Acids. J Am Chem Soc 2022; 144:19592-19602. [PMID: 36219695 DOI: 10.1021/jacs.2c09318] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the recent tremendous progress on transition-metal/photoredox dual catalysis in organic synthesis, single transition-metal catalysis under visible-light irradiation, which can utilize light energy more efficiently, is still underdeveloped. Herein, we report the design of photosensitizing phosphinoacridine bidentate ligands for visible-light-induced transition-metal catalysis, expecting that the electron-accepting acridine moiety would create a highly reactive electron-deficient metal center toward reductive elimination via metal-to-ligand charge transfer (MLCT). Using these ligands, we have achieved a palladium-catalyzed cross-coupling reaction of aryl halides with carboxylic acids under visible-light irradiation. Electronic tuning of the phosphinoacridine ligands not only enabled the use of a variety of aryl halides as the coupling partner, including less reactive aryl chlorides, under blue light irradiation, but also realized the employment of lower-energy green and red light for the cross-coupling. Experimental mechanistic studies have proved that the reductive elimination of aryl esters is induced by photoirradiation of phosphinoacridine-ligated arylpalladium(II) carboxylate complexes. The theoretical calculation suggests that the reductive elimination in the excited state is promoted by decreasing the electron density of the Pd center through photoinduced intramolecular electron transfer, i.e., MLCT, in the transition state owing to the electron-deficient acridine scaffold. This is a very rare example of photoinduced reductive elimination on palladium(II) complexes.
Collapse
Affiliation(s)
- Naoyuki Toriumi
- Department of Chemistry, Tokyo Institute of Technology, O̅okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tomonori Inoue
- Department of Chemistry, Tokyo Institute of Technology, O̅okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O̅okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
50
|
Zhao Z, Chen X, Li B, Zhao S, Niu L, Zhang Z, Chen Y. Spatial Regulation of Acceptor Units in Olefin-Linked COFs toward Highly Efficient Photocatalytic H 2 Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203832. [PMID: 35981892 PMCID: PMC9561862 DOI: 10.1002/advs.202203832] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Indexed: 05/19/2023]
Abstract
Covalent organic frameworks (COFs)-based photocatalysts have received growing attention for photocatalytic hydrogen (H2 ) production. One of the big challenges in the field is to find ways to promote energy/electron transfer and exciton dissociation. Addressing this challenge, herein, a series of olefin-linked 2D COFs is fabricated with high crystallinity, porosity, and robustness using a melt polymerization method without adding volatile organic solvents. It is found that regulation of the spatial distances between the acceptor units (triazine and 2, 2'-bipyridine) of COFs to match the charge carrier diffusion length can dramatically promote the exciton dissociation, hence leading to outstanding photocatalytic H2 evolution performance. The COF with the appropriate acceptor distance achieves exceptional photocatalytic H2 evolution with an apparent quantum yield of 56.2% at 475 nm, the second highest value among all COF photocatalysts and 70 times higher than the well-studied polymer carbon nitride. Various experimental and computation studies are then conducted to in-depth unveil the mechanism behind the enhanced performance. This study will provide important guidance for the design of highly efficient organic semiconductor photocatalysts.
Collapse
Affiliation(s)
- Zhengfeng Zhao
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353P. R. China
| | - Xuepeng Chen
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| | - BaoYing Li
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353P. R. China
| | - Shu Zhao
- Institute of Advanced Battery Materials and DevicesFaculty of Materials and ManufacturingBeijing University of TechnologyBeijing100124P. R. China
| | - Liwei Niu
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353P. R. China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| |
Collapse
|