1
|
Lian G, Zhao W, Ma G, Zhang S, Wu A, Wang L, Zhang D, Liu W, Jiang J. Orthogonally conjugated phthalocyanine-porphyrin oligomer for NIR photothermal-photodynamic antibacterial treatment. Commun Chem 2025; 8:80. [PMID: 40087397 PMCID: PMC11909192 DOI: 10.1038/s42004-025-01470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
With the increase of antibiotic resistance worldwide, there is an urgent demand to develop new fungicides and approaches to address the threat to human health posed by the ineffectiveness of traditional antibiotics. In this work, an orthogonal conjugated uniform oligomer bactericide of SiPc-ddCPP was constructed between silicon phthalocyanine and porphyrin, which can effectively treat infection through photodynamic-photothermal combined therapy without considering drug resistance. Compared with organic photothermal agents induced by unstable H-aggregation with blue-shifted absorption and fluorescence/ROS quenching, this orthogonal-structured uniform SiPc-ddCPP nanoparticle shows remarkably stability and NIR photothermal effect (η = 31.15%) along with fluorescence and ROS generation. Antibacterial studies have shown that both Gram-positive and Gram-negative bacteria could be efficiently annihilated in a few minutes through synergistic PDT-PTT along with satisfactory bacterial targeting. These results suggest SiPc-ddCPP is a multifunctional NIR bactericide, which afford a new approach of synergistic PDT-PTT sterilization to conquer the crisis of antibiotic resistance.
Collapse
Affiliation(s)
- Guixue Lian
- School of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Wanru Zhao
- School of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Gaoqiang Ma
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250100, China
| | - Sen Zhang
- School of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ailin Wu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250100, China
| | - Lin Wang
- School of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China.
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250100, China.
| | - Wei Liu
- School of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Jianzhuang Jiang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing, 100083, China.
| |
Collapse
|
2
|
Yang W, Wang F, Wang H, Ding D, Jiang S, Zhang G. Platform for the Immobilizing of Ultrasmall Pd Clusters for Carbonylation: In Situ Self-Templating Fabrication of ZIF-8 on ZnO. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306794. [PMID: 38072816 DOI: 10.1002/smll.202306794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/10/2023] [Indexed: 05/03/2024]
Abstract
Incorporating metal clusters into the confined cavities of metal-organic frameworks (MOFs) to form MOF-supported catalysts has attracted considerable research interest with regard to carbonylation reactions. Herein, a self-templating method is used to prepare the zinc oxide (ZnO)-supported core-shell catalyst ZnO@Pd/ZIF-8. This facile strategy controls the growth of metal sources on the ZIF-8 shell layer and avoids the metal diffusion or aggregation problems of the conventional synthesis method. The characteristics of the catalysts show that the palladium (Pd) clusters are highly dispersed with an average particle size of ≈1.2 nm, making them excellent candidates as a catalyst for carbonylation under mild conditions. The optimal catalyst (1.25-ZnO@Pd/ZIF-8) exhibits excellent activity in synthesizing α, β-alkynyl ketones under 1 atm of carbon monooxide (CO), and the conversion rate of 1, 3-diphenylprop-2-yn-1-one is 3.09 and 3.87 times more than those of Pd/ZIF-8 and Pd2+, respectively, for the first 2 h. Moreover, the 1.25-ZnO@Pd/ZIF-8 is recyclable, showing negligible metal leaching, and, under the conditions used in this investigation, can be reused at least five times without considerable loss in its catalytic efficiency. This protocol can also be applied with other nucleophile reagents to synthesize esters, amides, and acid products.
Collapse
Affiliation(s)
- Wei Yang
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Fangchao Wang
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - He Wang
- The third Military Representative Office in Taiyuan, Taiyuan, Shanxi, 030001, P. R. China
| | - Ding Ding
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Guoying Zhang
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| |
Collapse
|
3
|
Jiang J, Lv X, Cheng H, Yang D, Xu W, Hu Y, Song Y, Zeng G. Type I photodynamic antimicrobial therapy: Principles, progress, and future perspectives. Acta Biomater 2024; 177:1-19. [PMID: 38336269 DOI: 10.1016/j.actbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The emergence of drug-resistant bacteria has significantly diminished the efficacy of existing antibiotics in the treatment of bacterial infections. Consequently, the need for finding a strategy capable of effectively combating bacterial infections has become increasingly urgent. Photodynamic therapy (PDT) is considered one of the most promising emerging antibacterial strategies due to its non-invasiveness, low adverse effect, and the fact that it does not lead to the development of drug resistance. However, bacteria at the infection sites often exist in the form of biofilm instead of the planktonic form, resulting in a hypoxic microenvironment. This phenomenon compromises the treatment outcome of oxygen-dependent type-II PDT. Compared to type-II PDT, type-I PDT is not constrained by the oxygen concentration in the infected tissues. Therefore, in the treatment of bacterial infections, type-I PDT exhibits significant advantages over type-II PDT. In this review, we first introduce the fundamental principles of type-I PDT in details, including its physicochemical properties and how it generates reactive oxygen species (ROS). Next, we explore several specific antimicrobial mechanisms utilized by type-I PDT and summarize the recent applications of type-I PDT in antimicrobial treatment. Finally, the limitations and future development directions of type-I photosensitizers are discussed. STATEMENT OF SIGNIFICANCE: The misuse and overuse of antibiotics have accelerated the development of bacterial resistance. To achieve the effective eradication of resistant bacteria, pathfinders have devised various treatment strategies. Among these strategies, type I photodynamic therapy has garnered considerable attention owing to its non-oxygen dependence. The utilization of non-oxygen-dependent photodynamic therapy not only enables the effective elimination of drug-resistant bacteria but also facilitates the successful eradication of hypoxic biofilms, which exhibits promising prospects for treating biofilm-associated infections. Based on the current research status, we anticipate that the novel type I photodynamic therapy agent can surmount the biofilm barrier, enabling efficient treatment of hypoxic biofilm infections.
Collapse
Affiliation(s)
- Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Huijuan Cheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wenjia Xu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China.
| | - Yanling Hu
- Nanjing Polytechnic Institute, Nanjing 210048, China.
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Guisheng Zeng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648.
| |
Collapse
|
4
|
Weigert Muñoz A, Zhao W, Sieber SA. Monitoring host-pathogen interactions using chemical proteomics. RSC Chem Biol 2024; 5:73-89. [PMID: 38333198 PMCID: PMC10849124 DOI: 10.1039/d3cb00135k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 02/10/2024] Open
Abstract
With the rapid emergence and the dissemination of microbial resistance to conventional chemotherapy, the shortage of novel antimicrobial drugs has raised a global health threat. As molecular interactions between microbial pathogens and their mammalian hosts are crucial to establish virulence, pathogenicity, and infectivity, a detailed understanding of these interactions has the potential to reveal novel therapeutic targets and treatment strategies. Bidirectional molecular communication between microbes and eukaryotes is essential for both pathogenic and commensal organisms to colonise their host. In particular, several devastating pathogens exploit host signalling to adjust the expression of energetically costly virulent behaviours. Chemical proteomics has emerged as a powerful tool to interrogate the protein interaction partners of small molecules and has been successfully applied to advance host-pathogen communication studies. Here, we present recent significant progress made by this approach and provide a perspective for future studies.
Collapse
Affiliation(s)
- Angela Weigert Muñoz
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 D-85748 Garching Germany
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University Shenzhen 518118 China
| | - Stephan A Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 D-85748 Garching Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Germany
| |
Collapse
|
5
|
Taylor IR, Jeffrey PD, Moustafa DA, Goldberg JB, Bassler BL. The PqsE Active Site as a Target for Small Molecule Antimicrobial Agents against Pseudomonas aeruginosa. Biochemistry 2022; 61:1894-1903. [PMID: 35985643 PMCID: PMC9454246 DOI: 10.1021/acs.biochem.2c00334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
The opportunistic pathogen Pseudomonas
aeruginosa causes antibiotic-resistant, nosocomial
infections in immuno-compromised
individuals and is a high priority for antimicrobial development.
Key to pathogenicity in P. aeruginosa are biofilm formation and virulence factor production. Both traits
are controlled by the cell-to-cell communication process called quorum
sensing (QS). QS involves the synthesis, release, and population-wide
detection of signal molecules called autoinducers. We previously reported
that the activity of the RhlR QS transcription factor depends on a
protein–protein interaction with the hydrolase, PqsE, and PqsE
catalytic activity is dispensable for this interaction. Nonetheless,
the PqsE–RhlR interaction could be disrupted by the substitution
of an active site glutamate residue with tryptophan [PqsE(E182W)].
Here, we show that disruption of the PqsE–RhlR interaction
via either the E182W change or alteration of PqsE surface residues
that are essential for the interaction with RhlR attenuates P. aeruginosa infection in a murine host. We use
crystallography to characterize the conformational changes induced
by the PqsE(E182W) substitution to define the mechanism underlying
disruption of the PqsE–RhlR interaction. A loop rearrangement
that repositions the E280 residue in PqsE(E182W) is responsible for
the loss of interaction. We verify the implications garnered from
the PqsE(E182W) structure using mutagenic, biochemical, and additional
structural analyses. We present the next generation of molecules targeting
the PqsE active site, including a structure of the tightest binding
of these compounds, BB584, in complex with PqsE. The findings presented
here provide insights into drug discovery against P.
aeruginosa with PqsE as the target.
Collapse
Affiliation(s)
- Isabelle R Taylor
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Dina A Moustafa
- School of Medicine, Children's Healthcare of Atlanta, Inc., Department of Pediatrics, and Center for Cystic Fibrosis and Airway Diseases Research, Emory University, Atlanta, Georgia 30322, United States
| | - Joanna B Goldberg
- School of Medicine, Children's Healthcare of Atlanta, Inc., Department of Pediatrics, and Center for Cystic Fibrosis and Airway Diseases Research, Emory University, Atlanta, Georgia 30322, United States
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| |
Collapse
|
6
|
Ernst S, Volkov AN, Stark M, Hölscher L, Steinert K, Fetzner S, Hennecke U, Drees SL. Azetidomonamide and Diazetidomonapyridone Metabolites Control Biofilm Formation and Pigment Synthesis in Pseudomonas aeruginosa. J Am Chem Soc 2022; 144:7676-7685. [PMID: 35451837 DOI: 10.1021/jacs.1c13653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthesis of azetidine-derived natural products by the opportunistic pathogen Pseudomonas aeruginosa is controlled by quorum sensing, a process involving the production and sensing of diffusible signal molecules that is decisive for virulence regulation. In this study, we engineered P. aeruginosa for the titratable expression of the biosynthetic aze gene cluster, which allowed the purification and identification of two new products, azetidomonamide C and diazetidomonapyridone. Diazetidomonapyridone was shown to have a highly unusual structure with two azetidine rings and an open-chain diimide moiety. Expression of aze genes strongly increased biofilm formation and production of phenazine and alkyl quinolone virulence factors. Further physiological studies revealed that all effects were mainly mediated by azetidomonamide A and diazetidomonapyridone, whereas azetidomonamides B and C had little or no phenotypic impact. The P450 monooxygenase AzeF which catalyzes a challenging, stereoselective hydroxylation of the azetidine ring converting azetidomonamide C into azetidomonamide A is therefore crucial for biological activity. Based on our findings, we propose this group of metabolites to constitute a new class of diffusible regulatory molecules with community-related effects in P. aeruginosa.
Collapse
Affiliation(s)
- Simon Ernst
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| | - Alexander N Volkov
- VIB Centre for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, Brussels 1050, Belgium.,Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050 Belgium
| | - Melina Stark
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| | - Lea Hölscher
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| | - Katharina Steinert
- Institute for Food Chemistry, University of Münster, Corrensstr. 45, Münster 48149, Germany
| | - Susanne Fetzner
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| | - Ulrich Hennecke
- Organic Chemistry Research Group, Department of Chemistry and Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Steffen Lorenz Drees
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, Münster 48149, Germany
| |
Collapse
|
7
|
Schmid P, Peñalver L, Böttcher T. A ligand selection strategy to customize small molecule probes for activity-based protein profiling (LS-ABPP). Methods Enzymol 2022; 664:23-58. [PMID: 35331376 DOI: 10.1016/bs.mie.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activity-based probes (ABPs) are the key components of activity-based protein profiling (ABPP). However, designing a probe that shows target-specific as well as site-selective binding can be a challenging and time-consuming task, often requiring complex synthetic procedures to provide a selection of probes from which to choose the ideal one. In this chapter, we present a ligand selection (LS) approach that allows us to rapidly diversify probe molecules in order to meet the steric and electronic demands of the binding site of any target enzyme. The central element of this method is a trifunctional LS probe synthesized from tyrosine in five steps, consisting of a highly reactive pentafluorophenyl (PFP) ester in addition to an electrophilic chloroacetamide warhead, and a bioorthogonal alkyne reporter group. By reacting a variety of primary amine ligands with the PFP ester, a probe library is created and screened for optimal binding characteristics to the target enzyme. With the optimized probe in hand, a compound library is subsequently screened by competitive profiling to identify potential enzyme inhibitors. Conveniently, this protocol is highly adaptable to a large variety of target proteins, representing a valuable tool for enzyme characterization and the discovery of enzyme inhibitors. Here, we apply this method exemplarily to the cysteine protease 3CLpro of the coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Philipp Schmid
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Vienna, Austria
| | - Lilian Peñalver
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Vienna, Austria
| | - Thomas Böttcher
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Chu Z, Chen H, Wang P, Wang W, Yang J, Sun J, Chen B, Tian T, Zha Z, Wang H, Qian H. Phototherapy Using a Fluoroquinolone Antibiotic Drug to Suppress Tumor Migration and Proliferation and to Enhance Apoptosis. ACS NANO 2022; 16:4917-4929. [PMID: 35274935 DOI: 10.1021/acsnano.2c00854] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a fluoroquinolone antibiotic drug (sparfloxacin (SP)) was selected as a chemotherapy drug and photosensitizer for combined therapy. A facile chemical process was developed to incorporate SP and upconversion nanoparticles (UCNPs) into the thermally sensitive amphiphilic polymer polyethylene glycol-poly(2-hexoxy-2-oxo-1,3,2-dioxaphospholane). In vitro and in vivo experiments showed that 60% of the SP molecules can be released from the micelles of thermal-sensitive polymers using a 1 W cm-2 980 nm laser, and this successfully inhibits cell migration and metastasis by inhibiting type II topoisomerases in nuclei. Additionally, intracellular metal ions were chelated by SP to induce cancer cell apoptosis by decreasing the activity of superoxide dismutase and catalase. In particular, the fluoroquinolone molecules produced singlet oxygen (1O2) to kill cancer cells, and this was triggered by UCNPs when irradiation was performed with a 980 nm laser. Overall, SP retained a weak chemotherapeutic effect, achieved enhanced photosensitizer-like effects, and was able to repurpose old drugs to elevate the therapeutic efficacy against cancer, increase the specificity for suppressing tumor migration and proliferation, and enhance apoptosis.
Collapse
Affiliation(s)
- Zhaoyou Chu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, P. R. China
| | - Hao Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, P. R. China
| | - Peisan Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Juan Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, P. R. China
| | - Jianan Sun
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Benjin Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, P. R. China
| | - Tian Tian
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
| | - Haisheng Qian
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, P. R. China
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
9
|
Prothiwa M, Filz V, Oehler S, Böttcher T. Inhibiting quinolone biosynthesis of Burkholderia. Chem Sci 2021; 12:6908-6912. [PMID: 34123319 PMCID: PMC8153077 DOI: 10.1039/d0sc06167k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
2-Alkylquinolones are important signalling molecules of Burkholderia species. We developed a substrate-based chemical probe against the central quinolone biosynthesis enzyme HmqD and applied it in competitive profiling experiments to discover the first known HmqD inhibitors. The most potent inhibitors quantitatively blocked quinolone production in Burkholderia cultures with single-digit micromolar efficacy.
Collapse
Affiliation(s)
- Michaela Prothiwa
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz 78457 Konstanz Germany
| | - Verena Filz
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz 78457 Konstanz Germany.,Faculty of Chemistry, Department of Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna 1090 Vienna Austria
| | - Sebastian Oehler
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz 78457 Konstanz Germany
| | - Thomas Böttcher
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz 78457 Konstanz Germany.,Faculty of Chemistry, Department of Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna 1090 Vienna Austria
| |
Collapse
|
10
|
Peñalver L, Schmid P, Szamosvári D, Schildknecht S, Globisch C, Sawade K, Peter C, Böttcher T. A Ligand Selection Strategy Identifies Chemical Probes Targeting the Proteases of SARS-CoV-2. Angew Chem Int Ed Engl 2021; 60:6799-6806. [PMID: 33350010 PMCID: PMC7986205 DOI: 10.1002/anie.202016113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 01/05/2023]
Abstract
Activity-based probes are valuable tools for chemical biology. However, finding probes that specifically target the active site of an enzyme remains a challenging task. Herein, we present a ligand selection strategy that allows to rapidly tailor electrophilic probes to a target of choice and showcase its application for the two cysteine proteases of SARS-CoV-2 as proof of concept. The resulting probes were specific for the active site labeling of 3CLpro and PLpro with sufficient selectivity in a live cell model as well as in the background of a native human proteome. Exploiting the probes as tools for competitive profiling of a natural product library identified salvianolic acid derivatives as promising 3CLpro inhibitors. We anticipate that our ligand selection strategy will be useful to rapidly develop customized probes and discover inhibitors for a wide range of target proteins also beyond corona virus proteases.
Collapse
Affiliation(s)
- Lilian Peñalver
- Department of ChemistryKonstanz Research School Chemical BiologyZukunftskollegUniversity of KonstanzKonstanzGermany
| | - Philipp Schmid
- Department of ChemistryKonstanz Research School Chemical BiologyZukunftskollegUniversity of KonstanzKonstanzGermany
- Faculty of ChemistryDepartment of Biological Chemistry & Centre for Microbiology and Environmental Systems ScienceDivision of Microbial EcologyUniversity of ViennaViennaAustria
| | - Dávid Szamosvári
- Department of ChemistryKonstanz Research School Chemical BiologyZukunftskollegUniversity of KonstanzKonstanzGermany
| | - Stefan Schildknecht
- In Vitro Toxicology and BiomedicineDepartment of BiologyUniversity of KonstanzKonstanzGermany
- Albstadt-Sigmaringen UniversitySigmaringenGermany
| | | | - Kevin Sawade
- Department of ChemistryUniversity of KonstanzKonstanzGermany
| | - Christine Peter
- Department of ChemistryUniversity of KonstanzKonstanzGermany
| | - Thomas Böttcher
- Department of ChemistryKonstanz Research School Chemical BiologyZukunftskollegUniversity of KonstanzKonstanzGermany
- Faculty of ChemistryDepartment of Biological Chemistry & Centre for Microbiology and Environmental Systems ScienceDivision of Microbial EcologyUniversity of ViennaViennaAustria
| |
Collapse
|
11
|
Peñalver L, Schmid P, Szamosvári D, Schildknecht S, Globisch C, Sawade K, Peter C, Böttcher T. Eine Strategie zur Ligandenselektion identifiziert chemische Sonden für die Markierung von SARS‐CoV‐2‐Proteasen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lilian Peñalver
- Fachbereich Chemie Konstanz Research School Chemical Biology Zukunftskolleg Universität Konstanz Konstanz Deutschland
| | - Philipp Schmid
- Fachbereich Chemie Konstanz Research School Chemical Biology Zukunftskolleg Universität Konstanz Konstanz Deutschland
- Fakultät für Chemie Institut für Biologische Chemie & Centre for Microbiology and Environmental Systems Science Division of Microbial Ecology Universität Wien Wien Österreich
| | - Dávid Szamosvári
- Fachbereich Chemie Konstanz Research School Chemical Biology Zukunftskolleg Universität Konstanz Konstanz Deutschland
| | - Stefan Schildknecht
- In Vitro Toxicology and Biomedicine Fachbereich Biologie Universität Konstanz Konstanz Deutschland
- Hochschule Albstadt-Sigmaringen Sigmaringen Deutschland
| | | | - Kevin Sawade
- Fachbereich Chemie Universität Konstanz Konstanz Deutschland
| | - Christine Peter
- Fachbereich Chemie Universität Konstanz Konstanz Deutschland
| | - Thomas Böttcher
- Fachbereich Chemie Konstanz Research School Chemical Biology Zukunftskolleg Universität Konstanz Konstanz Deutschland
- Fakultät für Chemie Institut für Biologische Chemie & Centre for Microbiology and Environmental Systems Science Division of Microbial Ecology Universität Wien Wien Österreich
| |
Collapse
|
12
|
Parthasarathy A, Mantravadi PK, Kalesh K. Detectives and helpers: Natural products as resources for chemical probes and compound libraries. Pharmacol Ther 2020; 216:107688. [PMID: 32980442 DOI: 10.1016/j.pharmthera.2020.107688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
About 70% of the drugs in use are derived from natural products, either used directly or in chemically modified form. Among all possible small molecules (not greater than 5 kDa), only a few of them are biologically active. Natural product libraries may have a higher rate of finding "hits" than synthetic libraries, even with the use of fewer compounds. This is due to the complementarity between the "chemical space" of small molecules and biological macromolecules such as proteins, DNA and RNA, in addition to the three-dimensional complexity of NPs. Chemical probes are molecules which aid in the elucidation of the biological mechanisms behind the action of drugs or drug-like molecules by binding with macromolecular/cellular interaction partners. Probe development and application have been spurred by advancements in photoaffinity label synthesis, affinity chromatography, activity based protein profiling (ABPP) and instrumental methods such as cellular thermal shift assay (CETSA) and advanced/hyphenated mass spectrometry (MS) techniques, as well as genome sequencing and bioengineering technologies. In this review, we restrict ourselves to a survey of natural products (including peptides/mini-proteins and excluding antibodies), which have been applied largely in the last 5 years for the target identification of drugs/drug-like molecules used in research on infectious diseases, and the description of their mechanisms of action.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Dr, Rochester, NY 14623, USA
| | | | - Karunakaran Kalesh
- Department of Chemistry, Durham University, Lower Mount Joy, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
13
|
Pawar A, Basler M, Goebel H, Alvarez Salinas GO, Groettrup M, Böttcher T. Competitive Metabolite Profiling of Natural Products Reveals Subunit Specific Inhibitors of the 20S Proteasome. ACS CENTRAL SCIENCE 2020; 6:241-246. [PMID: 32123742 PMCID: PMC7047272 DOI: 10.1021/acscentsci.9b01170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 05/11/2023]
Abstract
We have developed a syringolin-based chemical probe and explored its utility for the profiling of metabolite extracts as potent inhibitors of the 20S proteasome. Activity-guided fractionation by competitive labeling allowed us to isolate and identify glidobactin A and C as well as luminmycin A from a Burkholderiales strain. The natural products exhibited unique subunit specificities for the proteolytic subunits of human and mouse constitutive and immunoproteasome in the lower nanomolar range. In particular, glidobactin C displayed an unprecedented β2/β5 coinhibition profile with single-digit nanomolar potency in combination with sufficiently high cell permeability. These properties render glidobactin C a promising live cell proteasome inhibitor with potent activity against human breast cancer cell lines and comparably low immunotoxicity.
Collapse
Affiliation(s)
- Atul Pawar
- Department
of Chemistry, Zukunftskolleg, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Michael Basler
- Division
of Immunology, Department of Biology, University
of Konstanz, 78457 Konstanz, Germany
- Biotechnology
Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | - Heike Goebel
- Division
of Immunology, Department of Biology, University
of Konstanz, 78457 Konstanz, Germany
- Biotechnology
Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | - Gerardo Omar Alvarez Salinas
- Division
of Immunology, Department of Biology, University
of Konstanz, 78457 Konstanz, Germany
- Biotechnology
Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | - Marcus Groettrup
- Division
of Immunology, Department of Biology, University
of Konstanz, 78457 Konstanz, Germany
- Biotechnology
Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | - Thomas Böttcher
- Department
of Chemistry, Zukunftskolleg, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
14
|
Kirsch P, Hartman AM, Hirsch AKH, Empting M. Concepts and Core Principles of Fragment-Based Drug Design. Molecules 2019; 24:molecules24234309. [PMID: 31779114 PMCID: PMC6930586 DOI: 10.3390/molecules24234309] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
In this review, a general introduction to fragment-based drug design and the underlying concepts is given. General considerations and methodologies ranging from library selection/construction over biophysical screening and evaluation methods to in-depth hit qualification and subsequent optimization strategies are discussed. These principles can be generally applied to most classes of drug targets. The examples given for fragment growing, merging, and linking strategies at the end of the review are set in the fields of enzyme-inhibitor design and macromolecule–macromolecule interaction inhibition. Building upon the foundation of fragment-based drug discovery (FBDD) and its methodologies, we also highlight a few new trends in FBDD.
Collapse
Affiliation(s)
- Philine Kirsch
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| | - Alwin M. Hartman
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anna K. H. Hirsch
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
- Correspondence: ; Tel.: +49-681-988-062-031
| |
Collapse
|
15
|
Abstract
Enzyme inhibitors are central tools for chemical biology. In this chapter we will discuss the application of chemical probes for competitive profiling of inhibitors of the quinolone biosynthesis enzyme PqsD of Pseudomonas aeruginosa. The human pathogen P. aeruginosa produces a large diversity of 2-alkyl-4(1H)-quinolones and their derivatives as metabolites with major roles in quorum sensing, virulence, and interspecies competition. PqsD is a central enzyme in the biosynthesis of all of these quinolones and hence an interesting target for inhibitor discovery. Activity-based probes with an electrophilic warhead bind covalently to active site nucleophiles like cysteine or serine. An α-chloroacetamide probe with terminal alkyne tag allowed to selectively label the active site cysteine of PqsD and was demonstrated to be a useful tool for inhibitor discovery using competition experiments. Potent inhibitors bind to the active site and thereby prevent labeling of the enzyme by the probe. Labeling intensity is quantified on polyacrylamide gels by the fluorescence of a reporter tag appended by bioorthogonal click chemistry. The competitive inhibitor profiling strategy has many advantages over traditional screening approaches and is applicable in vitro as well as in live cells. Here we describe the synthesis of an activity-based probe and provide our detailed protocols for target enzyme labeling as well as its application for the screening for potent enzyme inhibitors of PqsD by a competitive profiling strategy.
Collapse
Affiliation(s)
- Michaela Prothiwa
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Thomas Böttcher
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
16
|
Okada BK, Li A, Seyedsayamdost MR. Identification of the Hypertension Drug Guanfacine as an Antivirulence Agent in Pseudomonas aeruginosa. Chembiochem 2019; 20:2005-2011. [PMID: 30927315 PMCID: PMC6814388 DOI: 10.1002/cbic.201900129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 12/11/2022]
Abstract
An alternative solution to the cyclical development of new antibiotics is the concept of disarming pathogens without affecting their growth, thereby eliminating the selective pressures that lead to resistant phenotypes. Here, we have employed our previously developed HiTES methodology to identify one such compound against the ESKAPE pathogen Pseudomonas aeruginosa. Rather than induce silent biosynthetic gene clusters, we used HiTES to suppress actively expressed virulence genes. By screening a library of 770 FDA-approved drugs, we identified guanfacine, a clinical hypertension drug, as an antivirulence agent in P. aeruginosa. Follow-up studies showed that guanfacine reduces biofilm formation and pyocycanin production without altering growth. Moreover, we identified a homologue of QseC, a sensor His kinase used by multiple pathogens to turn on virulence, as a target of guanfacine. Our studies suggest that guanfacine might be an attractive antivirulence lead in P. aeruginosa and provide a template for uncovering such molecules by screening for downregulators of actively expressed biosynthetic genes.
Collapse
Affiliation(s)
- Bethany K Okada
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Anran Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
17
|
Wang X, Abbas M, Zhang Y, Elshahawi SI, Ponomareva LV, Cui Z, Van Lanen SG, Sajid I, Voss SR, Shaaban KA, Thorson JS. Baraphenazines A-G, Divergent Fused Phenazine-Based Metabolites from a Himalayan Streptomyces. JOURNAL OF NATURAL PRODUCTS 2019; 82:1686-1693. [PMID: 31117525 PMCID: PMC6630045 DOI: 10.1021/acs.jnatprod.9b00289] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The structures and bioactivities of three unprecedented fused 5-hydroxyquinoxaline/alpha-keto acid amino acid metabolites (baraphenazines A-C, 1-3), two unique diastaphenazine-type metabolites (baraphenazines D and E, 4 and 5) and two new phenazinolin-type (baraphenazines F and G, 6 and 7) metabolites from the Himalayan isolate Streptomyces sp. PU-10A are reported. This study highlights the first reported bacterial strain capable of producing diastaphenazine-type, phenazinolin-type, and izumiphenazine A-type metabolites and presents a unique opportunity for the future biosynthetic interrogation of late-stage phenazine-based metabolite maturation.
Collapse
Affiliation(s)
- Xiachang Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Muhammad Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam campus, Lahore 54590, Pakistan
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Imran Sajid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam campus, Lahore 54590, Pakistan
| | - S. Randal Voss
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40506, United States
- Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky 40506, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors.,
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors.,
| |
Collapse
|
18
|
Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens. Int J Mol Sci 2019; 20:ijms20081838. [PMID: 31013936 PMCID: PMC6515091 DOI: 10.3390/ijms20081838] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder which leads to the secretion of a viscous mucus layer on the respiratory epithelium that facilitates colonization by various bacterial pathogens. The problem of drug resistance has been reported for all the species able to colonize the lung of CF patients, so alternative treatments are urgently needed. In this context, a valid approach is to investigate new natural and synthetic molecules for their ability to counteract alternative pathways, such as virulence regulating quorum sensing (QS). In this review we describe the pathogens most commonly associated with CF lung infections: Staphylococcus aureus, Pseudomonas aeruginosa, species of the Burkholderia cepacia complex and the emerging pathogens Stenotrophomonas maltophilia, Haemophilus influenzae and non-tuberculous Mycobacteria. For each bacterium, the QS system(s) and the molecules targeting the different components of this pathway are described. The amount of investigations published in the last five years clearly indicate the interest and the expectations on antivirulence therapy as an alternative to classical antibiotics.
Collapse
|