1
|
Wu L, Glebe U, Kwok KTK, Sun J, Lam JWY, Tang BZ. AIE Bottlebrush Polymers: Verification of Internal Crowdedness in Bottlebrush Polymers Using the AIE Effect. Angew Chem Int Ed Engl 2025; 64:e202500850. [PMID: 40051290 DOI: 10.1002/anie.202500850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Bottlebrush polymers, characterized by densely grafted side chains along a central backbone, have gained significant interest due to their unique properties in bulk and solution states. Despite extensive research, a comprehensive understanding of the internal crowdedness within single polymer chains in dilute solutions remains challenging, and direct evidence to visualize and manifest this effect is scarce. Aggregation-induced emission (AIE) offers a novel method to address this challenge. To achieve this, a vinyl-derivatized AIE monomer was polymerized using atom transfer radical polymerization (ATRP) in a controlled way. Afterward, the end group of the synthesized polymer chain was transformed to azide, which was coupled with an alkyne-derivatized norbornene unit using click chemistry to produce the macromonomer. Ring-opening metathesis polymerization (ROMP) of the norbornenyl macromonomer using Grubbs catalyst, (H2IMes)(pyr)2(Cl)2Ru = CHPh (G3), resulted in well-defined bottlebrush polymers in a highly efficient way. We studied the polymerization behavior and characterized the single chain conformation of the bottlebrush polymers in dilute solution together with coarse-grained molecular dynamics (CG-MD) simulation. Photoluminescence investigation of the bottlebrush polymers in dilute solution revealed the expected AIE phenomenon, thus verifying the steric crowding effects within bottlebrush polymers. This work bridges AIE technology with polymer science and especially bottlebrush polymers. By doing this, our research not only broadens the bottlebrush polymer library but also provides insights into bottlebrush polymer chain study for potential applications.
Collapse
Affiliation(s)
- Lei Wu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Ulrich Glebe
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Kyan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, P.R. China
| |
Collapse
|
2
|
Sun Z, Liu B, Ma M, Alexander-Katz A, Ross CA, Johnson JA. ROMP of Macromonomers Prepared by ROMP: Expanding Access to Complex, Functional Bottlebrush Polymers. J Am Chem Soc 2025; 147:3855-3865. [PMID: 39808775 DOI: 10.1021/jacs.4c17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Graft-through ring-opening metathesis polymerization (ROMP) of norbornene-terminated macromonomers (MMs) prepared using various polymerization methods has been extensively used for the synthesis of bottlebrush (co)polymers, yet the potential of ROMP for the synthesis of MMs that can subsequently be polymerized by graft-through ROMP to produce new bottlebrush compositions remains untapped. Here, we report an efficient "ROMP-of-ROMP" method that involves the synthesis of norbornene-terminated poly(norbornene imide) (PNI)-based MMs that, following ROMP, provide new families of bottlebrush (co)polymers and "brush-on-brush" hierarchical architectures. In the bulk state, the organization of the PNI pendants drives bottlebrush backbone extension to enable rapid assembly of asymmetric lamellar morphologies with large asymmetry factors. Overall, this work expands the scope of complex macromolecular architectures and provides insights into the interplay of backbone rigidity and self-assembly that will guide future nanolithography applications.
Collapse
Affiliation(s)
- Zehao Sun
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bin Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingchao Ma
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Arimura S, Matsumoto I, Sekiya R, Haino T. Intermediate Color Emission via Nanographenes with Organic Fluorophores. Angew Chem Int Ed Engl 2024; 63:e202315508. [PMID: 38191241 DOI: 10.1002/anie.202315508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Photoluminescence (PL) color can be tuned by mixing fluorophores emitting the three primary colors in an appropriate ratio. When color tuning is achieved on a single substrate, we can simplify device structures. We demonstrated that nanographenes (NGs), which are graphene fragments with a size of tens of nanometers, could be utilized as carriers of fluorophores. The addition of red- and blue-light-emitting fluorophores on the edge successfully reproduced the purple light. The relative PL intensities of the fluorophores could be regulated by the excitation wavelength, enabling multicolor emission between blue and red light. Owing to the triphenylamine units of the fluorophores, the NGs showed PL enhancement due to aggregation. This characteristic was valuable for the fabrication of solid polymer materials. Specifically, the functionalized NGs can be dispersed into polyvinylidene difluoride. The resultant polymer films emitted red, blue, and purple color. Our study demonstrated the potential applicability of NGs for fluorophore carriers capable of reproducing intermediate colors of light.
Collapse
Affiliation(s)
- Saki Arimura
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ikuya Matsumoto
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ryo Sekiya
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
4
|
Chan JM, Kordon AC, Wang M. Investigating the effects of the local environment on bottlebrush conformations using super-resolution microscopy. NANOSCALE 2024; 16:2409-2418. [PMID: 38230506 DOI: 10.1039/d3nr05000a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The single-chain physics of bottlebrush polymers plays a key role in their macroscopic properties. Although efforts have been made to understand the behavior of single isolated bottlebrushes, studies on their behavior in crowded, application-relevant environments have been insufficient due to limitations in characterization techniques. Here, we use single-molecule localization microscopy (SMLM) to study the conformations of individual bottlebrush polymers by direct imaging. Our previous work focused on bottlebrushes in a matrix of linear polymers, where our observations suggested that their behavior was largely influenced by an entropic incompatibility between the bottlebrush side chains and the linear matrix. Instead, here we focus on systems where this effect is reduced: in solvent-swollen polymer materials and in systems entirely composed of bottlebrushes. We measure chain conformations and rigidity using persistence length (lp) as side chain molecular weight (Msc) is varied. Compared to a system of linear polymers, we observe greater flexibility of the backbone in both systems. For bottlebrushes in bottlebrush matrices, we additionally observed a scaling relationship between lp and Msc that more closely follows theoretical predictions. For the more flexible chains in both systems, we reach the edge of our resolution limit and cannot visualize the entire contour of every chain. We bypass this limitation by discussing the aspect ratios of the features within the super-resolution images.
Collapse
Affiliation(s)
- Jonathan M Chan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Avram C Kordon
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
5
|
Resendiz-Lara DA, Azhdari S, Gojzewski H, Gröschel AH, Wurm FR. Water-soluble polyphosphonate-based bottlebrush copolymers via aqueous ring-opening metathesis polymerization. Chem Sci 2023; 14:11273-11282. [PMID: 37860667 PMCID: PMC10583743 DOI: 10.1039/d3sc02649c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Ring-opening metathesis polymerization (ROMP) is a versatile method for synthesizing complex macromolecules from various functional monomers. In this work, we report the synthesis of water-soluble and degradable bottlebrush polymers, based on polyphosphoesters (PPEs) via ROMP. First, PPE-macromonomers were synthesized via organocatalytic anionic ring-opening polymerization of 2-ethyl-2-oxo-1,3,2-dioxaphospholane using N-(hydroxyethyl)-cis-5-norbornene-exo-2,3-dicarboximide as the initiator and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the catalyst. The resulting norbornene-based macromonomers had degrees of polymerization (DPn) ranging from 25 to 243 and narrow molar mass dispersity (Đ ≤ 1.10). Subsequently, these macromonomers were used in ROMP with the Grubbs 3rd-generation bispyridyl complex (Ru-G3) to produce a library of well-defined bottlebrush polymers. The ROMP was carried out either in dioxane or in aqueous conditions, resulting in well-defined and water-soluble bottlebrush PPEs. Furthermore, a two-step protocol was employed to synthesize double hydrophilic diblock bottlebrush copolymers via ROMP in water at neutral pH-values. This general protocol enabled the direct combination of PPEs with ROMP to synthesize well-defined bottlebrush polymers and block copolymers in water. Degradation of the PPE side chains was proven resulting in low molar mass degradation products only. The biocompatible and biodegradable nature of PPEs makes this pathway promising for designing novel biomedical drug carriers or viscosity modifiers, as well as many other potential applications.
Collapse
Affiliation(s)
- Diego A Resendiz-Lara
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Suna Azhdari
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
- Physical Chemistry, University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Hubert Gojzewski
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Andre H Gröschel
- Physical Chemistry, University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
6
|
Thompson KA, Mayder DM, Tonge CM, Sauvé ER, Lefeaux HR, Hudson ZM. A grafting-from strategy for the synthesis of bottlebrush nanofibers from organic semiconductors. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bottlebrush polymers with optoelectronic function show promise for applications in photonic crystals, nanomedicine, and encoding of information. In particular, bottlebrush polymers formed from organic semiconductors give wire-like nanoparticles where band gaps, fluorescence, and energy transfer can be tuned. To date, such bottlebrush polymers have largely been prepared by grafting-through polymerization of organic semiconductor macromonomers, where pre-synthesized side chains are polymerized along a bottlebrush backbone. While this approach provides high side-chain grafting densities, the length of bottlebrush polymers that is possible to obtain is limited by steric crowding at the propagating chain end. Here, we describe methods for preparing ultralong bottlebrush nanofibers from organic semiconductors, with backbone lengths approaching 800 repeating units and molecular weights in excess of 4 MDa. By combining reversible addition fragmentation chain transfer and Cu(0) reversible deactivation radical polymerization, a “grafting-from” protocol is described where monomers can be grown from a pre-synthesized backbone. Bottlebrush polymers were prepared from organic semiconductors used as n-type, p-type, and host materials in multilayer organic devices. Finally, a two-component bottlebrush polymer exhibiting deep blue emission, two-photon fluorescence, and a quantum yield of unity is also prepared by this method.
Collapse
Affiliation(s)
- Kyle A. Thompson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Don M. Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Christopher M. Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ethan R. Sauvé
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Harrison R. Lefeaux
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
7
|
Lattice-mismatch-free growth of organic heterostructure nanowires from cocrystals to alloys. Nat Commun 2022; 13:3099. [PMID: 35661752 PMCID: PMC9166754 DOI: 10.1038/s41467-022-30870-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Organic heterostructure nanowires, such as multiblock, core/shell, branch-like and related compounds, have attracted chemists’ extensive attention because of their novel physicochemical properties. However, owing to the difficulty in solving the lattice mismatch of distinct molecules, the construction of organic heterostructures at large scale remains challenging, which restricts its wide use in future applications. In this work, we define a concept of lattice-mismatch-free for hierarchical self-assembly of organic semiconductor molecules, allowing for the large-scale synthesis of organic heterostructure nanowires composed of the organic alloys and cocrystals. Thus, various types of organic triblock nanowires are prepared in large scale, and the length ratio of different segments of the triblock nanowires can be precisely regulated by changing the stoichiometric ratio of different components. These results pave the way towards fine synthesis of heterostructures in a large scale and facilitate their applications in organic optoelectronics at micro/nanoscale. The large-scale synthesis of organic heterostructure nanowires is challenging. Here, the authors report the synthesis of organic triblock nanowires via a lattice mismatch-free strategy.
Collapse
|
8
|
Blosch SE, Scannelli SJ, Alaboalirat M, Matson JB. Complex Polymer Architectures Using Ring-Opening Metathesis Polymerization: Synthesis, Applications, and Practical Considerations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sarah E. Blosch
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha J. Scannelli
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mohammed Alaboalirat
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Kang N, Cho S, Leonhardt EE, Liu C, Verkhoturov SV, Woodward WHH, Eller MJ, Yuan T, Fitzgibbons TC, Borguet YP, Jahnke AA, Sokolov AN, McIntire T, Reinhardt C, Fang L, Schweikert EA, Spencer LP, Sun G, Xie G, Trefonas P, Wooley KL. Topological Design of Highly Anisotropic Aligned Hole Transporting Molecular Bottlebrushes for Solution-Processed OLEDs. J Am Chem Soc 2022; 144:8084-8095. [PMID: 35471843 DOI: 10.1021/jacs.2c00420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyvinyl polymers bearing pendant hole transport functionalities have been extensively explored for solution-processed hole transport layer (HTL) technologies, yet there are only rare examples of high anisotropic packing of the HT moieties of these polymers into substrate-parallel orientations within HTL films. For small molecules, substrate-parallel alignment of HT moieties is a well-established approach to improve overall device performance. To address the longstanding challenge of extension from vapor-deposited small molecules to solution-processable polymer systems, a fundamental chemistry tactic is reported here, involving the positioning of HT side chains within macromolecular frameworks by the construction of HT polymers having bottlebrush topologies. Applying state-of-the-art polymer synthetic techniques, various functional subunits, including triphenylamine (TPA) for hole transport and adhesion to the substrate, and perfluoro alkyl-substituted benzyloxy styrene for migration to the air interface, were organized with exquisite control over the composition and placement throughout the bottlebrush topology. Upon assembling the HT bottlebrush (HTB) polymers into monolayered HTL films on various substrates through spin-casting and thermal annealing, the backbones of HTBs were vertically aligned while the grafts with pendant TPAs were extended parallel to the substrate. The overall design realized high TPA π-stacking along the out-of-plane direction of the substrate in the HTLs, which doubled the efficiency of organic light-emitting diodes compared with linear poly(vinyl triphenylamine)s.
Collapse
Affiliation(s)
| | | | | | - Chun Liu
- The Dow Chemical Company, Midland, Michigan 48667, United States
| | | | | | | | | | | | | | | | | | - Travis McIntire
- The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Carl Reinhardt
- The Dow Chemical Company, Midland, Michigan 48667, United States
| | | | | | | | | | - Guohua Xie
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Peter Trefonas
- DuPont, Electronics and Imaging Division, Marlborough, Massachusetts 01752, United States
| | | |
Collapse
|
10
|
Wang MQ, Zou H, Liu WB, Liu N, Wu ZQ. Bottlebrush Polymers Based on RAFT and the "C1" Polymerization Method: Controlled Synthesis and Application in Anticancer Drug Delivery. ACS Macro Lett 2022; 11:179-185. [PMID: 35574766 DOI: 10.1021/acsmacrolett.1c00706] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this work, we reported a strategy to synthesize well-defined bottlebrush polymers. Diazoacetate macromonomers of polystyrene (1-PSn) with controlled molecular weights were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diazo can tolerate the RAFT polymerization conditions and remained on the chain end of the yielded PS macromonomer. The terminal diazo groups of the macromonomer were polymerized by the allyl PdCl/L catalyst to afford well-defined bottlebrush polymers ((1-PSn)ms) carrying a side chain on each backbone atom. Meanwhile, an amphiphilic bottlebrush polymer containing brush-shaped PS and polyethylene glycol (PEG) was synthesized by polymerization of the diazoacetate macromonomer of PEG (2-PEG) using Pd(II)-terminated (1-PSn)m as the macroinitiator. The yielded amphiphilic (1-PS30)50-b-(2-PEG)100 could self assemble into a well-defined core-shell micelle in aqueous solutions. The hydrodynamic diameter of the micelle was ca. 146 nm and had good biocompatibility. These results indicate the micelles have great potential in drug delivery.
Collapse
Affiliation(s)
- Meng-Qing Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Wen-Bin Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province 230009, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
11
|
Alaboalirat M, Vu C, Matson JB. Radical–radical coupling effects in the direct-growth grafting-through synthesis of bottlebrush polymers using RAFT and ROMP. Polym Chem 2022. [DOI: 10.1039/d2py00794k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The direct-growth technique was used to synthesize macromonomers from four classes of vinyl monomers, and the influence of monomer type and conversion on coupling reactions was followed in grafting-through ring-opening metathesis polymerization.
Collapse
Affiliation(s)
- Mohammed Alaboalirat
- Department of Chemistry and, Macromolecules Innovation Institute, 1040 Drillfield Dr., Blacksburg, VA 24061, USA
| | - Clark Vu
- Department of Chemistry and, Macromolecules Innovation Institute, 1040 Drillfield Dr., Blacksburg, VA 24061, USA
| | - John B. Matson
- Department of Chemistry and, Macromolecules Innovation Institute, 1040 Drillfield Dr., Blacksburg, VA 24061, USA
| |
Collapse
|
12
|
Mei G, Zheng Y, Fu Y, Huo M. Polymerization-induced self-assembly of random bottlebrush copolymers. Polym Chem 2022. [DOI: 10.1039/d2py00858k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bottlebrush polymers have shown unique self-assembly behaviors, providing an access to hierarchical nanoparticles with a precise structure and tailorable function. However, the self-assembly pattern of random bottlebrush copolymers (random BBCPs)...
Collapse
|
13
|
Kim KH, Nam J, Choi J, Seo M, Bang J. From macromonomers to bottlebrush copolymers with sequence control: synthesis, properties, and applications. Polym Chem 2022. [DOI: 10.1039/d2py00126h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bottlebrush polymers (BBPs) are a type of comb-like macromolecules with densely grafted polymeric sidechains attached to the polymer backbones, and many intriguing properties and applications have been demonstrated due to...
Collapse
|
14
|
Zhang J, Jin B, Tang G, Luo Y, Li X. Core–Shell Copolymers with Brush-on-Hyperbranched Arm Architecture: Synthesis, Dual Thermoresponsive Behaviors, and Nanocarriers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bixin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gang Tang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yunjun Luo
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
- Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
15
|
Abstract
The development of degradable polymers has commanded significant attention over the past half century. Approaches have predominantly relied on ring-opening polymerization of cyclic esters (e.g., lactones, lactides) and N-carboxyanhydrides, as well as radical ring-opening polymerizations of cyclic ketene acetals. In recent years, there has been a significant effort applied to expand the family of degradable polymers accessible via olefin metathesis polymerization. Given the excellent functional group tolerance of olefin metathesis polymerization reactions generally, a broad range of conceivable degradable moieties can be incorporated into appropriate monomers and thus into polymer backbones. This approach has proven particularly versatile in synthesizing a broad spectrum of degradable polymers including poly(ester), poly(amino acid), poly(acetal), poly(carbonate), poly(phosphoester), poly(phosphoramidate), poly(enol ether), poly(azobenzene), poly(disulfide), poly(sulfonate ester), poly(silyl ether), and poly(oxazinone) among others. In this review, we will highlight the main olefin metathesis polymerization strategies that have been used to access degradable polymers, including (i) acyclic diene metathesis polymerization, (ii) entropy-driven and (iii) enthalpy-driven ring-opening metathesis polymerization, as well as (iv) cascade enyne metathesis polymerization. In addition, the livingness or control of polymerization reactions via different strategies are highlighted and compared. Potential applications, challenges and future perspectives of this new library of degradable polyolefins are discussed. It is clear from recent and accelerating developments in this field that olefin metathesis polymerization represents a powerful synthetic tool towards degradable polymers with novel structures and properties inaccessible by other polymerization approaches.
Collapse
Affiliation(s)
- Hao Sun
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Yifei Liang
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Matthew P. Thompson
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Nathan C. Gianneschi
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science & Engineering,
Department of Biomedical Engineering, Department of Pharmacology, Chemistry of Life
Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
16
|
Semeniuchenko V, Sharif S, Day J, Chandrasoma N, Pietro WJ, Manthorpe J, Braje WM, Organ MG. (DiMeIHept Cl)Pd: A Low-Load Catalyst for Solvent-Free (Melt) Amination. J Org Chem 2021; 86:10343-10359. [PMID: 34254799 DOI: 10.1021/acs.joc.1c01057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(DiMeIHeptCl)Pd, a hyper-branched N-aryl Pd NHC catalyst, has been shown to be efficient at performing amine arylation reactions in solvent-free ("melt") conditions. The highly lipophilic environment of the alkyl chains flanking the Pd center serves as lubricant to allow the complex to navigate through the paste-like environment of these mixtures. The protocol can be used on a multi-gram scale to make a variety of aniline derivatives, including substrates containing alcohol moieties.
Collapse
Affiliation(s)
- Volodymyr Semeniuchenko
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Sepideh Sharif
- Department of Chemistry, Carleton University, 203 Steacie Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Jonathan Day
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Nalin Chandrasoma
- Department of Chemistry, Carleton University, 203 Steacie Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.,Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - William J Pietro
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Jeffrey Manthorpe
- Department of Chemistry, Carleton University, 203 Steacie Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Wilfried M Braje
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Michael G Organ
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.,Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
17
|
Affiliation(s)
- Ning Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
18
|
|
19
|
Xiao L, Li J, Li W, Li W, Huang G. The synthesis of multiblock copolymer brush based on
DSPAAC
and
CuAAC
click reaction. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lifen Xiao
- College of Chemistry and Materials Science, Hengyang Normal University Key Laboratory of Functional Organometallic Materials of Hunan Province University Hengyang China
| | - Jie Li
- College of Chemistry and Materials Science, Hengyang Normal University Key Laboratory of Functional Organometallic Materials of Hunan Province University Hengyang China
| | - Wenyi Li
- College of Chemistry and Materials Science, Hengyang Normal University Key Laboratory of Functional Organometallic Materials of Hunan Province University Hengyang China
| | - Wei Li
- College of Chemistry and Materials Science, Hengyang Normal University Key Laboratory of Functional Organometallic Materials of Hunan Province University Hengyang China
| | - Geng Huang
- College of Chemistry and Materials Science, Hengyang Normal University Key Laboratory of Functional Organometallic Materials of Hunan Province University Hengyang China
| |
Collapse
|
20
|
Walsh DJ, Wade MA, Rogers SA, Guironnet D. Challenges of Size-Exclusion Chromatography for the Analysis of Bottlebrush Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01357] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew A. Wade
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Simon A. Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Obhi NK, Jarrett-Wilkins CN, Hicks GEJ, Seferos DS. Self-Assembly of Poly(3-hexylthiophene) Bottlebrush Polymers into End-On-End Linear Fiber Morphologies. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Nimrat K. Obhi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Charles N. Jarrett-Wilkins
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Garion E. J. Hicks
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Dwight S. Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
22
|
Su YX, Xu L, Xu XH, Hou XH, Liu N, Wu ZQ. Controlled Synthesis of Densely Grafted Bottlebrushes That Bear Helical Polyisocyanide Side Chains on Polyisocyanide Backbones and Exhibit Greatly Increased Viscosity. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yi-Xu Su
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Xiao-Hua Hou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| |
Collapse
|
23
|
Mukherjee S, Xie R, Reynolds VG, Uchiyama T, Levi AE, Valois E, Wang H, Chabinyc ML, Bates CM. Universal Approach to Photo-Crosslink Bottlebrush Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02210] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sanjoy Mukherjee
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Center for Advanced Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Renxuan Xie
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Center for Advanced Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Veronica G. Reynolds
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Center for Advanced Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Takumi Uchiyama
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Adam E. Levi
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Center for Advanced Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Eric Valois
- Biomolecular Science and Engineering Graduate Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Hengbin Wang
- Mitsubishi Center for Advanced Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Michael L. Chabinyc
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Center for Advanced Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Christopher M. Bates
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
24
|
Shao F, Wang Y, Tonge CM, Sauvé ER, Hudson ZM. Self-assembly of luminescent triblock bottlebrush copolymers in solution. Polym Chem 2020. [DOI: 10.1039/c9py01695c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly presents bottom-up strategies for the construction of complex micelles from luminescent bottlebrush copolymers.
Collapse
Affiliation(s)
- Feng Shao
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Yonghui Wang
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | | | - Ethan R. Sauvé
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Zachary M. Hudson
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
25
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Sauvé ER, Tonge CM, Hudson ZM. Aggregation-Induced Energy Transfer in Color-Tunable Multiblock Bottlebrush Nanofibers. J Am Chem Soc 2019; 141:16422-16431. [DOI: 10.1021/jacs.9b08133] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ethan R. Sauvé
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Christopher M. Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
27
|
Tonge CM, Hudson ZM. Interface-Dependent Aggregation-Induced Delayed Fluorescence in Bottlebrush Polymer Nanofibers. J Am Chem Soc 2019; 141:13970-13976. [DOI: 10.1021/jacs.9b07156] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Christopher M. Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
28
|
Wang Y, Shao F, Sauvé ER, Tonge CM, Hudson ZM. Self-assembly of giant bottlebrush block copolymer surfactants from luminescent organic electronic materials. SOFT MATTER 2019; 15:5421-5430. [PMID: 31243420 DOI: 10.1039/c9sm00931k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bottlebrush copolymers have shown promise as building blocks for self-assembled nanomaterials due to their reduced chain entanglement relative to linear polymers and their ability to self-assemble with remarkably low critical micelle concentrations (CMCs). Concurrently, the preparation of bottlebrush polymers from organic electronic materials has recently been described, allowing multiple optoelectronic functions to be incorporated along the length of single bottlebrush strands. Here we describe the self-assembly of bottlebrush surfactants containing soluble n-butyl acrylate blocks and carbazole-based organic semiconductors, which self-assemble in selective solvent to give spherical micelles with CMCs below 54 nM. These narrowly dispersed structures were stable in solution at high dilution over periods of months, and could further be functionalized with fluorescent dyes to give micelles with quantum yields of 100%. These results demonstrate that bottlebrush-based nanostructures can be formed from organic semiconductor building blocks, opening the door to the preparation of fluorescent or redox-active micelles from giant polymeric surfactants.
Collapse
Affiliation(s)
- Yonghui Wang
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Feng Shao
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Ethan R Sauvé
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Christopher M Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
29
|
Tonge CM, Yuan F, Lu ZH, Hudson ZM. Cu(0)-RDRP as an efficient and low-cost synthetic route to blue-emissive polymers for OLEDs. Polym Chem 2019. [DOI: 10.1039/c9py00294d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cu(0)-RDRP has been used to prepare deep-blue emissive polymers for OLEDs using a simple room-temperature procedure with copper wire catalyst.
Collapse
Affiliation(s)
- Christopher M. Tonge
- Department of Chemistry
- 2026 Main Mall
- The University of British Columbia
- Vancouver
- Canada
| | - Fanglong Yuan
- Department of Materials Science and Engineering
- 184 College Street
- University of Toronto
- Toronto
- Canada MS5 3E4
| | - Zheng-Hong Lu
- Department of Materials Science and Engineering
- 184 College Street
- University of Toronto
- Toronto
- Canada MS5 3E4
| | - Zachary M. Hudson
- Department of Chemistry
- 2026 Main Mall
- The University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
30
|
Wang J, Wang N, Wu G, Wang S, Li X. Multicolor Emission from Non-conjugated Polymers Based on a Single Switchable Boron Chromophore. Angew Chem Int Ed Engl 2018; 58:3082-3086. [PMID: 30461144 DOI: 10.1002/anie.201812210] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 01/22/2023]
Abstract
Multicolor emissive and responsive materials are highly attractive owing to their potential applications in various fields, and polymers are preferred for their good processability and high stability. Herein, we report a series of new polymers based on a methacrylate monomer containing a switchable boron chromophore. In spite of their unconjugated nature, interestingly, the homopolymers from this monomer display rare multicolor fluorescence in solution that is highly dependent on the degree of polymerization (DP). With an increasing DP, the local concentration of the chromophore increases, leading to a higher propensity for switching the blue-emitting tricoordinate boron chromophore to the red-emitting tetracoordinate one. The homopolymers also display temperature- and solvent-dependent emission color change. Furthermore, pure white-light emission could be achieved in various solvents by precisely tuning the homopolymer molecular weight, or in films/solid state by copolymerizing the emissive boron monomer with non-emissive monomers in an appropriate ratio.
Collapse
Affiliation(s)
- Junwei Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, P. R. China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, P. R. China
| | - Gang Wu
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Suning Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, P. R. China.,Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Xiaoyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, P. R. China
| |
Collapse
|
31
|
Wang J, Wang N, Wu G, Wang S, Li X. Multicolor Emission from Non‐conjugated Polymers Based on a Single Switchable Boron Chromophore. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Junwei Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology P. R. China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology P. R. China
| | - Gang Wu
- Department of ChemistryQueen's University Kingston ON K7L 3N6 Canada
| | - Suning Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology P. R. China
- Department of ChemistryQueen's University Kingston ON K7L 3N6 Canada
| | - Xiaoyu Li
- School of Materials Science and EngineeringBeijing Institute of Technology 5 South Zhongguancun Street Beijing P. R. China
| |
Collapse
|