1
|
Manoj Lena A, Yamauchi M, Murakami H, Kubo N, Masuo S, Matsuo K, Hayashi H, Aratani N, Yamada H. Orderly Arranged Cubic Quantum Dots along Supramolecular Templates of Naphthalenediimide Aggregates. Angew Chem Int Ed Engl 2025; 64:e202423912. [PMID: 39777849 PMCID: PMC11933521 DOI: 10.1002/anie.202423912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Precise control of assembled structures of quantum dots (QDs) is crucial for realizing the desired photophysical properties, but this remains challenging. Especially, the one-dimensional (1D) control is rare due to the nearly isotropic nature of QDs. Herein, we propose a novel strategy for controlling the 1D-arrangement range of cubic perovskite QDs in solution based on the morphological modification of a supramolecular polymer (SP) template. The original template with a short and tangled fibrous structure is prepared in a low-polarity solvent mixture via self-assembly of a naphthalenediimide-functionalized cholesterol derivative with an adhesion group for QDs. Mixing this template with QDs leads to the co-aggregation into short-range 1D-arrays of QDs on the templates. Notably, subsequent heating and cooling of the co-aggregate solution forms longer-range 1D-arrays of QDs with lateral growth, where arranged QDs are sandwiched between reconstructed SP templates. Furthermore, the longer-range 1D-array of QDs is achieved via an alternative route involving the pre-organization of templates into longer and dispersed fibers by heating and cooling of the original template, succeeded by co-assembly with QDs. Finally, we reveal continuous fluorescence resonance energy transfer between 1D-arranged QDs by an in-depth analysis of the photoluminescence decay curves.
Collapse
Affiliation(s)
- Amrutha Manoj Lena
- Division of Materials ScienceNara Institute of Science and Technology (NAIST)8916-5 Takayama-choIkoma, Nara630-0192Japan
| | - Mitsuaki Yamauchi
- Institute for Chemical ResearchKyoto University GokashoUji, Kyoto611-0011Japan
| | - Hideyuki Murakami
- Institute for Chemical ResearchKyoto University GokashoUji, Kyoto611-0011Japan
| | - Naoki Kubo
- Department of Applied Chemistry for EnvironmentKwansei Gakuin University1 Gakuen, UegaharaSanda, Hyogo669-1330Japan
| | - Sadahiro Masuo
- Department of Applied Chemistry for EnvironmentKwansei Gakuin University1 Gakuen, UegaharaSanda, Hyogo669-1330Japan
| | - Kyohei Matsuo
- Institute for Chemical ResearchKyoto University GokashoUji, Kyoto611-0011Japan
| | - Hironobu Hayashi
- Center for Basic Research on MaterialsNational Institute for Materials Science (NIMS)1-2-1 SengenTsukuba, Ibaraki305-0047Japan
| | - Naoki Aratani
- Division of Materials ScienceNara Institute of Science and Technology (NAIST)8916-5 Takayama-choIkoma, Nara630-0192Japan
| | - Hiroko Yamada
- Institute for Chemical ResearchKyoto University GokashoUji, Kyoto611-0011Japan
| |
Collapse
|
2
|
Shu Z, Sun X, Xu X, Qin M, Li J. Colloidal photonic crystals towards biological applications. J Mater Chem B 2024; 12:8488-8504. [PMID: 39161280 DOI: 10.1039/d4tb01325e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Colloidal photonic crystals (CPCs), fabricated from the assembly of micro-/nano-particles, have attracted considerable interest due to their unique properties, such as structural color, slow-photon effect, and high specific surface area (SSA). Benefiting from these properties, significant progress has been made in the biological applications of CPCs. In this perspective, these properties and relative manipulation strategies are firstly discussed, building bridges between properties and biological applications of CPCs. Structural color endows CPCs with naked-eye sensing capability, which can be applied to physiological state assessment and diagnosis, as well as self-report of CPC-based diagnostic and therapeutic devices. The slow-photon effect contributes to enhanced fluorescence, surface-enhanced Raman scattering, and efficacy of photodynamic/photothermal therapy, when CPCs are combined with corresponding functional materials. High SSA provides CPCs with abundant binding sites and superior capabilities for loading, adsorption, delivery, etc. These properties can be utilized individually or synergistically to grant CPCs superior performance in biological applications. Next, the recent advancements of CPCs towards biological applications are summarized, including biosensors, wound dressings, cells-on-a-chip, and phototherapy. Finally, a perspective on the challenges and future development of CPCs for biological applications is presented.
Collapse
Affiliation(s)
- Zixin Shu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xiaoning Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Wang K, Margolis S, Cho JM, Wang S, Arianpour B, Jabalera A, Yin J, Hong W, Zhang Y, Zhao P, Zhu E, Reddy S, Hsiai TK. Non-Invasive Detection of Early-Stage Fatty Liver Disease via an On-Skin Impedance Sensor and Attention-Based Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400596. [PMID: 38887178 PMCID: PMC11336938 DOI: 10.1002/advs.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/17/2024] [Indexed: 06/20/2024]
Abstract
Early-stage nonalcoholic fatty liver disease (NAFLD) is a silent condition, with most cases going undiagnosed, potentially progressing to liver cirrhosis and cancer. A non-invasive and cost-effective detection method for early-stage NAFLD detection is a public health priority but challenging. In this study, an adhesive, soft on-skin sensor with low electrode-skin contact impedance for early-stage NAFLD detection is fabricated. A method is developed to synthesize platinum nanoparticles and reduced graphene quantum dots onto the on-skin sensor to reduce electrode-skin contact impedance by increasing double-layer capacitance, thereby enhancing detection accuracy. Furthermore, an attention-based deep learning algorithm is introduced to differentiate impedance signals associated with early-stage NAFLD in high-fat-diet-fed low-density lipoprotein receptor knockout (Ldlr-/-) mice compared to healthy controls. The integration of an adhesive, soft on-skin sensor with low electrode-skin contact impedance and the attention-based deep learning algorithm significantly enhances the detection accuracy for early-stage NAFLD, achieving a rate above 97.5% with an area under the receiver operating characteristic curve (AUC) of 1.0. The findings present a non-invasive approach for early-stage NAFLD detection and display a strategy for improved early detection through on-skin electronics and deep learning.
Collapse
Affiliation(s)
- Kaidong Wang
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
- Department of MedicineGreater Los Angeles Veterans Affairs (VA) Healthcare SystemLos AngelesCA90073USA
| | - Samuel Margolis
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Jae Min Cho
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Shaolei Wang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Brian Arianpour
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Alejandro Jabalera
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Junyi Yin
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Wen Hong
- Department of Materials Science and EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Yaran Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Peng Zhao
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Enbo Zhu
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Materials Science and EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Srinivasa Reddy
- Department of Molecular and Medical PharmacologyUniversity of California Los AngelesLos AngelesCA90095USA
| | - Tzung K. Hsiai
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
- Department of MedicineGreater Los Angeles Veterans Affairs (VA) Healthcare SystemLos AngelesCA90073USA
| |
Collapse
|
4
|
Ma X, Ma L, Tan Y, Chen X, Tong Q, Tang L, Cao X, Liu D, Li X. Biomimetic mineralization by confined diffusion with viscous hyaluronan network: Assembly of hierarchical flower-like supraparticles. Carbohydr Polym 2023; 322:121345. [PMID: 37839848 DOI: 10.1016/j.carbpol.2023.121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Biomolecules-mediated biomimetic mineralization has been extensively investigated and applied to fabricate nano-assemblies with unique hierarchical architectures and salient properties. The confined-source ion diffusion plays a key role in the biomineralization process, but little investigative efforts have focused on it. Here, we developed a simple method to mimic the in vivo condition by a confined diffusion method, and hydroxyapatite nanoflower assemblies (HNAs) with exquisite hierarchical architectures were obtained. The HNAs were assembled from needle-like hybrid nanocrystals of hydroxyapatite and hyaluronan. The results revealed that the strong interactions between ions and hyaluronan led to the nucleation of hydroxyapatite and the following aggregation. The combination of the external diffusion field and the internal multiple interactions induced the self-assembling processes. Additionally, HNAs with colloid stability and excellent biocompatibility were proved to be a promising cargo carrier for intranuclear delivery. This work presents a novel biomimetic mineralization strategy based on confined diffusion system for fabricating delicate hydroxyapatite, which offers a new perspective for the development of biomimetic strategies.
Collapse
Affiliation(s)
- Xiaomin Ma
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Liwen Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiaoyu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Danni Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
5
|
Zhu E, Liu Y, Huang J, Zhang A, Peng B, Liu Z, Liu H, Yu J, Li YR, Yang L, Duan X, Huang Y. Bubble-Mediated Large-Scale Hierarchical Assembly of Ultrathin Pt Nanowire Network Monolayer at Gas/Liquid Interfaces. ACS NANO 2023. [PMID: 37410702 PMCID: PMC10373521 DOI: 10.1021/acsnano.3c04771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Extensive macroscale two-dimensional (2-D) platinum (Pt) nanowire network (NWN) sheets are created through a hierarchical self-assembly process with the aid of biomolecular ligands. The Pt NWN sheet is assembled from the attachment growth of 1.9 nm-sized 0-D nanocrystals into 1-D nanowires featuring a high density of grain boundaries, which then interconnect to form monolayer network structures extending into centimeter-scale size. Further investigation into the formation mechanism reveals that the initial emergence of NWN sheets occurs at the gas/liquid interfaces of the bubbles produced by sodium borohydride (NaBH4) during the synthesis process. Upon the rupture of these bubbles, an exocytosis-like process releases the Pt NWN sheets at the gas/liquid surface, which subsequently merge into a continuous monolayer Pt NWN sheet. The Pt NWN sheets exhibit outstanding oxygen reduction reaction (ORR) activities, with specific and mass activities 12.0 times and 21.2 times greater, respectively, than those of current state-of-the-art commercial Pt/C electrocatalysts.
Collapse
|
6
|
Wang L, Li Z, Wang Y, Gao M, He T, Zhan Y, Li Z. Surface ligand-assisted synthesis and biomedical applications of metal-organic framework nanocomposites. NANOSCALE 2023. [PMID: 37323021 DOI: 10.1039/d3nr01723k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic framework (MOF) nanocomposites have recently gained intensive attention for biosensing and disease therapy applications owing to their outstanding physiochemical properties. However, the direct growth of MOF nanocomposites is usually hindered by the mismatched lattice in the interface between the MOF and other nanocomponents. Surface ligands, molecules with surfactant-like properties, are demonstrated to exhibit the robust capability to modify the interfacial properties of nanomaterials and can be utilized as a powerful strategy for the synthesis of MOF nanocomposites. Besides this, surface ligands also exhibit significant functions in the morphological control and functionalization of MOF nanocomposites, thus greatly enhancing their performance in biomedical applications. In this review, the surface ligand-assisted synthesis and biomedical applications of MOF nanocomposites are comprehensively reviewed. Firstly, the synthesis of MOF nanocomposites is discussed according to the diverse roles of surface ligands. Then, MOF nanocomposites with different properties are listed with their applications in biosensing and disease therapy. Finally, current challenges and further directions of MOF nanocomposites are presented to motivate the development of MOF nanocomposites with elaborate structures, enriched functions, and excellent application prospects.
Collapse
Affiliation(s)
- Lihua Wang
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Zhiheng Li
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yingqian Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Mengyue Gao
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Ting He
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Yifang Zhan
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Zhihao Li
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| |
Collapse
|
7
|
Liu Y, Zhu E, Huang J, Zhang A, Shah AH, Jia Q, Xu M, Liu E, Sun Q, Duan X, Huang Y. Periodic Assembly of Diblock Pt-Au Heteronanowires for the Methanol Oxidation Reaction. NANO LETTERS 2023; 23:2758-2763. [PMID: 36971471 DOI: 10.1021/acs.nanolett.3c00029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Periodic assembly of heterogeneous nanoparticles provides a strategy for integrating distinct nanocatalyst blocks where their synergic effects can be explored for diverse applications. To achieve the synergistic enhancement, an intimate clean interface is preferred which however is usually plagued by the bulky surfactant molecules used in the synthesis and assembly process. Herein, we showed the creation of one-dimensional Pt-Au nanowires (NWs) with periodic alternating Pt and Au nanoblocks, by assembling Pt-Au Janus nanoparticles with the assistance of peptide T7 (Ac-TLTTLTN-CONH2). It is demonstrated that the Pt-Au NWs showed much-improved performance in the methanol oxidation reaction (MOR), exhibiting 5.3 times higher specific activity and 2.5 times higher mass activity than the current state-of-the-art commercial Pt/C catalyst. In addition, the periodic heterostructure also improves the stability of Pt-Au NWs in the MOR, where the Pt-Au NWs retained 93.9% of their initial mass activity much higher than commercial Pt/C (30.6%).
Collapse
Affiliation(s)
| | | | | | | | | | - Qingying Jia
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mingjie Xu
- Irvine Materials Research Institute and Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Ershuai Liu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Qiang Sun
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
8
|
Zong K, Chu T, Liu D, Mehmood A, Fan T, Raza W, Hussain A, Deng Y, Liu W, Saad A, Zhao J, Li Y, Aurbach D, Cai X. Bridging 1D Inorganic and Organic Synthesis to Fabricate Ultrathin Bismuth-Based Nanotubes with Controllable Size as Anode Materials for Secondary Li Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204236. [PMID: 35988142 DOI: 10.1002/smll.202204236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The growth of ultrathin 1D inorganic nanomaterials with controlled diameters remains challenging by current synthetic approaches. A polymer chain templated method is developed to synthesize ultrathin Bi2 O2 CO3 nanotubes. This formation of nanotubes is a consequence of registry between the electrostatic absorption of functional groups on polymer template and the growth habit of Bi2 O2 CO3 . The bulk bismuth precursor is broken into nanoparticles and anchored onto the polymer chain periodically. These nanoparticles react with the functional groups and gradually evolve into Bi2 O2 CO3 nanotubes along the chain. 5.0 and 3.0 nm tubes with narrow diameter deviation are synthesized by using branched polyethyleneimine and polyvinylpyrrolidone as the templates, respectively. Such Bi2 O2 CO3 nanotubes show a decent lithium-ion storage capacity of around 600 mA h g-1 at 0.1 A g-1 after 500 cycles, higher than other reported bismuth oxide anode materials. More interestingly, the Bi materials developed herein still show decent capacity at very low temperatures, that is, around 330 mA h g-1 (-22 °C) and 170 mA h g-1 (-35 °C) after 75 cycles at 0.1 A g-1 , demonstrating their promising potential for practical application in extreme conditions.
Collapse
Affiliation(s)
- Kai Zong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tianzhi Chu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Dongqing Liu
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Andleeb Mehmood
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tianju Fan
- Department of Chemistry and BINA, BIU Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Waseem Raza
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Arshad Hussain
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yonggui Deng
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Ali Saad
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jie Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Doron Aurbach
- Department of Chemistry and BINA, BIU Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Xingke Cai
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
9
|
Niu H, Xia C, Huang L, Zaman S, Maiyalagan T, Guo W, You B, Xia BY. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63862-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Jin B, Yan F, Qi X, Cai B, Tao J, Fu X, Tan S, Zhang P, Pfaendtner J, Naser NY, Baneyx F, Zhang X, DeYoreo JJ, Chen C. Peptoid-Directed Formation of Five-Fold Twinned Au Nanostars through Particle Attachment and Facet Stabilization. Angew Chem Int Ed Engl 2022; 61:e202201980. [PMID: 35167709 PMCID: PMC9258440 DOI: 10.1002/anie.202201980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Indexed: 11/17/2022]
Abstract
While bio-inspired synthesis offers great potential for controlling nucleation and growth of inorganic particles, precisely tuning biomolecule-particle interactions is a long-standing challenge. Herein, we used variations in peptoid sequence to manipulate peptoid-Au interactions, leading to the synthesis of concave five-fold twinned, five-pointed Au nanostars via a process of repeated particle attachment and facet stabilization. Ex situ and liquid-phase TEM observations show that a balance between particle attachment biased to occur near the star points, preferential growth along the [100] direction, and stabilization of (111) facets is critical to forming star-shaped particles. Molecular simulations predict that interaction strengths between peptoids and distinct Au facets differ significantly and thus can alter attachment kinetics and surface energies to form the stars. This work provides new insights into how sequence-defined ligands affect particle growth to regulate crystal morphology.
Collapse
Affiliation(s)
- Biao Jin
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
| | - Feng Yan
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
- School of Chemistry & Chemical Engineering, Linyi University The Middle Part of Shuangling Road, Linyi, Shandong Province, 276005 (China)
| | - Xin Qi
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - Bin Cai
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
| | - Jinhui Tao
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
| | - Xiaofeng Fu
- Department of Biological Science, Florida State University 600 W College Ave, Tallahassee, FL 32306 (USA)
| | - Susheng Tan
- Department of Electrical and Computer Engineering & Petersen Institute of Nanoscience and Engineering (PINSE) University of Pittsburgh 4200 Fifth Ave, Pittsburgh, PA 15260 (USA)
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford University Offices, Wellington Square, Oxford, OX1 2JD (UK)
- Diamond Light Source Harwell Science and Innovation Campus, Didcot OX11 0DE (UK)
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - Nada Y. Naser
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - François Baneyx
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - Xin Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
| | - James J. DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
- Department of Materials Science and Engineering University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - Chunlong Chen
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| |
Collapse
|
11
|
Jin B, Yan F, Qi X, Cai B, Tao J, Fu X, Tan S, Zhang P, Pfaendtner J, Naser NY, Baneyx F, Zhang X, DeYoreo JJ, Chen C. Peptoid‐Directed Formation of Five‐Fold Twinned Au Nanostars through Particle Attachment and Facet Stabilization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biao Jin
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
| | - Feng Yan
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- School of Chemistry & Chemical Engineering Linyi University The Middle Part of Shuangling Road Linyi Shandong Province 276005 China
| | - Xin Qi
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - Bin Cai
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- School of Chemistry and Chemical Engineering Shandong University Shanda Nan Road 27 Jinan China
| | - Jinhui Tao
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
| | - Xiaofeng Fu
- Department of Biological Science Florida State University 600 W College Ave Tallahassee FL 32306 USA
| | - Susheng Tan
- Department of Electrical and Computer Engineering & Petersen Institute of Nanoscience and Engineering (PINSE) University of Pittsburgh 4200 Fifth Ave Pittsburgh PA 15260 USA
| | - Peijun Zhang
- Division of Structural Biology Wellcome Trust Centre for Human Genetics University of Oxford Roosevelt Drive, Wellington Square Oxford OX3 7BN UK
- Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0DE UK
| | - Jim Pfaendtner
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - Nada Y. Naser
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - François Baneyx
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - Xin Zhang
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
| | - James J. DeYoreo
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- Department of Materials Science and Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - Chun‐Long Chen
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| |
Collapse
|
12
|
Xie X, Liu X, Ma Z, Zhao H, Li W. Cationic peptides template the assembly of polyoxometalates into ultrathin nanosheet with in-plane ordered arrangement. Dalton Trans 2022; 51:3839-3844. [DOI: 10.1039/d1dt04292k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrathin polyoxometalates nanosheets with in-plane alignment have been constructed in aqueous solution with the assistance of cationic peptides. Different POMs varying in topology, size, and charges could be templated into...
Collapse
|
13
|
De Yoreo JJ, Nakouzi E, Jin B, Chun J, Mundy CJ. Assembly-based pathways of crystallization. Faraday Discuss 2022; 235:9-35. [DOI: 10.1039/d2fd00061j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution crystallization of materials ranging from simple salts to complex supramolecular assemblies has long been viewed through the lens of classical nucleation and growth theories in which monomeric building blocks...
Collapse
|
14
|
Li Z, Gao H, Shen R, Zhang C, Li L, Lv Y, Tang L, Du Y, Yuan Q. Facet Selectivity Guided Assembly of Nanoarchitectures onto Two-Dimensional Metal-Organic Framework Nanosheets. Angew Chem Int Ed Engl 2021; 60:17564-17569. [PMID: 34050591 DOI: 10.1002/anie.202103486] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 01/13/2023]
Abstract
Facet-selective nanostructures in living systems usually exhibit outstanding optical and enzymatic properties, playing important roles in photonics, matter exchange, and biocatalysis. Bioinspired construction of facet-selective nanostructures offers great opportunities for sophisticated nanomaterials, but remains a formidable task. We have developed a macromolecule-mediated strategy for the assembly of upconversion nanoparticles (UCNPs)/two-dimensional metal-organic frameworks (2DMOFs) heterostructures with facet selectivity. Both experimental and theoretical results demonstrate that polyvinylpyrrolidone (PVP) can be utilized as an interface-selective mediator to further promote the facet-selective assembly of MOFs onto the surface of UCNPs. The UCNPs/2DMOFs nanostructures with facet selectivity display specific optical properties and show great advantages in anti-counterfeiting. Our demonstration of UCNPs/2DMOFs provides a vivid example for the controlled fabrication of facet-selective nanostructures and can promote the development of advanced functional materials for applications in biosensing, energy conversion, and information assurance.
Collapse
Affiliation(s)
- Zhihao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Huajian Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Ruichen Shen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Caixin Zhang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Leisi Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Yawei Lv
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Liming Tang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials, Key Laboratory of Advanced Energy Materials Chemistry, Tianjin Key Lab for Rare Earth Materials and Applications, Centre for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin, 300350, China
| | - Quan Yuan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China.,Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
15
|
Li Z, Gao H, Shen R, Zhang C, Li L, Lv Y, Tang L, Du Y, Yuan Q. Facet Selectivity Guided Assembly of Nanoarchitectures onto Two‐Dimensional Metal–Organic Framework Nanosheets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhihao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education College of Chemistry and Molecular Sciences School of Microelectronics Wuhan University Wuhan 430072 China
| | - Huajian Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education College of Chemistry and Molecular Sciences School of Microelectronics Wuhan University Wuhan 430072 China
| | - Ruichen Shen
- Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Caixin Zhang
- Department of Applied Physics School of Physics and Electronics Hunan University Changsha 410082 China
| | - Leisi Li
- Key Laboratory of Biomedical Polymers of Ministry of Education College of Chemistry and Molecular Sciences School of Microelectronics Wuhan University Wuhan 430072 China
| | - Yawei Lv
- Department of Applied Physics School of Physics and Electronics Hunan University Changsha 410082 China
| | - Liming Tang
- Department of Applied Physics School of Physics and Electronics Hunan University Changsha 410082 China
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials Key Laboratory of Advanced Energy Materials Chemistry Tianjin Key Lab for Rare Earth Materials and Applications Centre for Rare Earth and Inorganic Functional Materials Nankai University Tianjin 300350 China
| | - Quan Yuan
- Key Laboratory of Biomedical Polymers of Ministry of Education College of Chemistry and Molecular Sciences School of Microelectronics Wuhan University Wuhan 430072 China
- Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| |
Collapse
|
16
|
Zhang S, Chen J, Liu J, Pyles H, Baker D, Chen CL, De Yoreo JJ. Engineering Biomolecular Self-Assembly at Solid-Liquid Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1905784. [PMID: 32627885 DOI: 10.1002/adma.201905784] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Biomolecular self-assembly is a key process used by life to build functional materials from the "bottom up." In the last few decades, bioengineering and bionanotechnology have borrowed this strategy to design and synthesize numerous biomolecular and hybrid materials with diverse architectures and properties. However, engineering biomolecular self-assembly at solid-liquid interfaces into predesigned architectures lags the progress made in bulk solution both in practice and theory. Here, recent achievements in programming self-assembly of peptides, proteins, and peptoids at solid-liquid interfaces are summarized and corresponding applications are described. Recent advances in the physical understandings of self-assembly pathways obtained using in situ atomic force microscopy are also discussed. These advances will lead to novel strategies for designing biomaterials organized at and interfaced with inorganic surfaces.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jiajun Chen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jianli Liu
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523830, China
| | - Harley Pyles
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Chun-Long Chen
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - James J De Yoreo
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
17
|
Liu J, Zeng J, Zhu C, Miao J, Huang Y, Heinz H. Interpretable molecular models for molybdenum disulfide and insight into selective peptide recognition. Chem Sci 2020; 11:8708-8722. [PMID: 34094188 PMCID: PMC8162032 DOI: 10.1039/d0sc01443e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Molybdenum disulfide (MoS2) is a layered material with outstanding electrical and optical properties. Numerous studies evaluate the performance in sensors, catalysts, batteries, and composites that can benefit from guidance by simulations in all-atom resolution. However, molecular simulations remain difficult due to lack of reliable models. We introduce an interpretable force field for MoS2 with record performance that reproduces structural, interfacial, and mechanical properties in 0.1% to 5% agreement with experiments. The model overcomes structural instability, deviations in interfacial and mechanical properties by several 100%, and empirical fitting protocols in earlier models. It is compatible with several force fields for molecular dynamics simulation, including the interface force field (IFF), CVFF, DREIDING, PCFF, COMPASS, CHARMM, AMBER, and OPLS-AA. The parameters capture polar covalent bonding, X-ray structure, cleavage energy, infrared spectra, bending stability, bulk modulus, Young's modulus, and contact angles with polar and nonpolar solvents. We utilized the models to uncover the binding mechanism of peptides to the MoS2 basal plane. The binding strength of several 7mer and 8mer peptides scales linearly with surface contact and replacement of surface-bound water molecules, and is tunable in a wide range from -86 to -6 kcal mol-1. The binding selectivity is multifactorial, including major contributions by van-der-Waals coordination and charge matching of certain side groups, orientation of hydrophilic side chains towards water, and conformation flexibility. We explain the relative attraction and role of the 20 amino acids using computational and experimental data. The force field can be used to screen and interpret the assembly of MoS2-based nanomaterials and electrolyte interfaces up to a billion atoms with high accuracy, including multiscale simulations from the quantum scale to the microscale.
Collapse
Affiliation(s)
- Juan Liu
- Department of Chemical and Biological Engineering, University of Colorado- Boulder Boulder CO 80309 USA
| | - Jin Zeng
- Department of Chemical and Biological Engineering, University of Colorado- Boulder Boulder CO 80309 USA
| | - Cheng Zhu
- Department of Chemical and Biological Engineering, University of Colorado- Boulder Boulder CO 80309 USA
| | - Jianwei Miao
- Department of Physics and Astronomy, University of California Los Angeles California 90095 USA
- California NanoSystems Institute, University of California, Los Angeles CA 90095 USA
| | - Yu Huang
- California NanoSystems Institute, University of California, Los Angeles CA 90095 USA
- Department of Materials Science and Engineering, University of California, Los Angeles 90095 USA
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado- Boulder Boulder CO 80309 USA
| |
Collapse
|
18
|
Zhou W, Šmidlehner T, Jerala R. Synthetic biology principles for the design of protein with novel structures and functions. FEBS Lett 2020; 594:2199-2212. [PMID: 32324903 DOI: 10.1002/1873-3468.13796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Nature provides a large number of functional proteins that evolved during billions of years of evolution. The diversity of natural proteins encompasses versatile functions and more than a thousand different folds, which, however, represents only a tiny fraction of all possible folds and polypeptide sequences. Recent advances in the rational design of proteins demonstrate that it is possible to design de novo protein folds unseen in nature. Novel protein topologies have been designed based on similar principles as natural proteins using advanced computational modelling or modular construction principles, such as oligomerization domains. Designed proteins exhibit several interesting features such as extreme stability, designability of 3D topologies and folding pathways. Moreover, designed protein assemblies can implement symmetry similar to the viral capsids, while, on the other hand, single-chain pseudosymmetric designs can address each position independently. Recently, the design is expanding towards the introduction of new functions into designed proteins, and we may soon be able to design molecular machines.
Collapse
Affiliation(s)
- Weijun Zhou
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tamara Šmidlehner
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
19
|
Wisdom EC, Zhou Y, Chen C, Tamerler C, Snead ML. Mitigation of peri-implantitis by rational design of bifunctional peptides with antimicrobial properties. ACS Biomater Sci Eng 2019; 6:2682-2695. [PMID: 32467858 DOI: 10.1021/acsbiomaterials.9b01213] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The integration of molecular and cell biology with materials science has led to strategies to improve the interface between dental implants with the surrounding soft and hard tissues in order to replace missing teeth and restore mastication. More than 3 million implants have been placed in the US alone and this number is rising by 500,000/year. Peri-implantitis, an inflammatory response to oral pathogens growing on the implant surface threatens to reduce service life leading to eventual implant failure, and such an outcome will have adverse impact on public health and create significant health care costs. Here we report a predictive approach to peptide design, which enabled us to engineer a bifunctional peptide to combat bacterial colonization and biofilm formation, reducing the adverse host inflammatory immune response that destroys the tissue surrounding implants and shortens their lifespans. This bifunctional peptide contains a titanium-binding domain that recognizes and binds with high affinity to titanium implant surfaces, fused through a rigid spacer domain with an antimicrobial domain. By varying the antimicrobial peptide domain, we were able to predict the properties of the resulting bifunctional peptides in their entirety by analyzing the sequence-structure-function relationship. These bifunctional peptides achieve: 1) nearly 100% surface coverage within minutes, a timeframe suitable for their clinical application to existing implants; 2) nearly 100% binding to a titanium surface even in the presence of contaminating serum protein; 3) durability to brushing with a commercially available electric toothbrush; and 4) retention of antimicrobial activity on the implant surface following bacterial challenge. A bifunctional peptide film can be applied to both new implants and/or repeatedly applied to previously placed implants to control bacterial colonization mitigating peri-implant disease that threatens dental implant longevity.
Collapse
Affiliation(s)
- E Cate Wisdom
- Bioengineering Program, Institute for Bioengineering Research, University of Kansas, Lawrence, USA
| | - Yan Zhou
- Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Casey Chen
- Herman Ostrow School of Dentistry of USC, Division of Periodontology, Diagnostic Services, & Dental Hygiene University of Southern California, Los Angeles, USA
| | - Candan Tamerler
- Bioengineering Program, Institute for Bioengineering Research, University of Kansas, Lawrence, USA.,Mechanical Engineering Department, University of Kansas, Lawrence, USA
| | - Malcolm L Snead
- Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| |
Collapse
|
20
|
Zhu E, Yan X, Wang S, Xu M, Wang C, Liu H, Huang J, Xue W, Cai J, Heinz H, Li Y, Huang Y. Peptide-Assisted 2-D Assembly toward Free-Floating Ultrathin Platinum Nanoplates as Effective Electrocatalysts. NANO LETTERS 2019; 19:3730-3736. [PMID: 31038977 DOI: 10.1021/acs.nanolett.9b00867] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrate the 2-D anisotropic formation of ultrathin free-floating Pt nanoplates from the assembly of small nanocrystals using T7 peptide (Ac-TLTTLTN-CONH2). As-formed nanoplates are rich in grain boundaries that can promote their catalytic activities. Furthermore, we demonstrate that a minor number of Pd atoms can selectively deposit on and stabilize the grain boundaries, which leads to enhanced structure stability. The Pd-enhanced Pt polycrystal nanoplates show great oxygen reduction reaction activities with 15.5 times higher specific activity and 13.7 times higher mass activity than current state-of-the-art commercial Pt/C electrocatalysts as well as 2.5 times higher mass activity for hydrogen evolution reaction compared with Pt/C.
Collapse
Affiliation(s)
- Enbo Zhu
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | | | - Shiyi Wang
- Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Mingjie Xu
- Irvine Materials Research Institute , University of California , Irvine , California 92697 , United States
- Fok Ying Tung Research Institute , Hong Kong University of Science and Technology , Guangzhou 511458 , P. R. China
| | | | | | | | | | | | - Hendrik Heinz
- Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Yujing Li
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | | |
Collapse
|