1
|
Jiang Y, Cao K, Wang Q. Linear Radical Additions-Coupling Polymerization (LRAsCP): Model, Experiment and Application. Polymers (Basel) 2025; 17:741. [PMID: 40338283 PMCID: PMC11945175 DOI: 10.3390/polym17060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 05/09/2025] Open
Abstract
Exploring new polymerization strategies for currently available monomers is a challenge in polymer science. Herein, a bifunctional initiator (BFI) is introduced for the conventional radical polymerization of a vinyl monomer, resulting in linear radical additions-coupling polymerization (LRAsCP). In LRAsCP, the coupling reaction alongside the addition reaction of the radicals contributes to the construction of polymer chains, which leads to stepwise growth of the multiblock structure. Theoretical analysis of LRAsCP predicted variation of some structural parameters of the resulting multiblock polymer (MBP) with the extent of initiation of the BFI and the termination factor of the radicals. Simultaneous and cascade initiations of the BFI were compared. LRAsCP of styrene was conducted, and a kinetics study was carried out. The increment in Mn with polymerization time demonstrated the stepwise mechanism of the formation of the MBP. The variation of the structural parameters of MBP fitted well with the theoretical prediction. Two-step LRAsCP was conducted and multiblock copolymers (MBcP) were obtained either by in situ copolymerization of styrene and MMA or by a second copolymerization of styrene and BMA. The current results demonstrate that the introduction of a BFI to conventional radical polymerization generates a new polymerization strategy, leading to a new chain architecture, which can be extended to other radical polymerizable monomers.
Collapse
Affiliation(s)
- Yudian Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310058, China;
| | - Kun Cao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China;
| | - Qi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
2
|
Fan J, Ju C, Fan S, Li X, Zhang Z, Hadjichristidis N. Inverse Vulcanization of Aziridines: Enhancing Polysulfides for Superior Mechanical Strength and Adhesive Performance. Angew Chem Int Ed Engl 2025; 64:e202418764. [PMID: 39560162 DOI: 10.1002/anie.202418764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
This study introduces a novel approach to inverse vulcanization by utilizing a commercially available triaziridine crosslinker as an alternative to conventional olefin-based crosslinkers. The model reactions reveal a self-catalyzed ring-opening of "unactivated" aziridine with elemental sulfur, forming oligosulfide-functionalized diamines. The triaziridine-derived polysulfides exhibit impressive mechanical properties, achieving a maximum stress of ~8.3 MPa and an elongation at break of ~107 %. The incorporation of silicon dioxide (20 wt %) enhances the composite's rigidity, yielding a Young's modulus of ~0.94 GPa. Furthermore, these polysulfides display excellent adhesion strength on various substrates, such as aluminum (~7.0 MPa), walnut (~9.6 MPa), and steel (~11.0 MPa), with substantial retention of adhesion strength (~3.3 MPa on steel) at -196 °C. The straightforward synthetic process, combined with the accessibility of the triaziridine crosslinker, emphasizes the potential for further innovations in sulfur polymer chemistry.
Collapse
Affiliation(s)
- Jieai Fan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, China
| | - Changzheng Ju
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, China
| | - Songjie Fan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, China
| | - Xia Li
- Analysis and Test Center, Guangdong University of Technology, 510006, Guangzhou, China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, China
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Saudi Arabia
| |
Collapse
|
3
|
Gao T, Xia X, Watanabe T, Ke CY, Suzuki R, Yamamoto T, Li F, Isono T, Satoh T. Toward Fully Controllable Monomers Sequence: Binary Organocatalyzed Polymerization from Epoxide/Aziridine/Cyclic Anhydride Monomer Mixture. J Am Chem Soc 2024; 146:25067-25077. [PMID: 39086123 DOI: 10.1021/jacs.4c08009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The sequence of monomers within a polymer chain plays a pivotal role in determining the physicochemical properties of the polymer. In the copolymerization of two or more monomers, the arrangement of monomers within the resulting polymer is primarily dictated by the intrinsic reactivity of the monomers. Precisely controlling the monomer sequence in copolymerization, particularly through the manipulation of catalysts, is a subject of intense interest and poses significant challenges. In this study, we report the catalyst-controlled copolymerization of epoxides, N-tosyl aziridine (TAz), and cyclic anhydrides. To achieve this, a binary catalyst system comprising a Lewis acid, triethylborane, and Brønsted base, t-BuP1, was utilized. This system was utilized to regulate the selectivity between two catalytic reactions: ring-opening alternating copolymerization (ROAC) of epoxides/cyclic anhydrides and ROAC of TAz/cyclic anhydrides. Changing the catalyst ratio made it possible to continuously modulate the resulting poly(ester-amide ester) from ABA-type real block copolymers to gradient, random-like, reversed gradient, and reversed BAB-type block-like copolymers. A range of epoxides and anhydrides was investigated, demonstrating the versatility of this polymerization system. Additionally, density functional theory calculations were conducted to enhance our mechanistic understanding of the process. This synthetic method not only provides a versatile means for producing copolymers with comparable chemical compositions but also facilitates the exploration of the intricate relationship between monomer sequences and the resultant polymer properties, offering valuable insights for advancements in polymer science.
Collapse
Affiliation(s)
- Tianle Gao
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Xiaochao Xia
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tomohisa Watanabe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Chun-Yao Ke
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Institute of Polymer Science and Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ryota Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Feng Li
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
- List Sustainable Digital Transformation Catalyst Collaboration Research Platform, Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
4
|
Huang H, Zheng S, Luo J, Gao L, Fang Y, Zhang Z, Dong J, Hadjichristidis N. Step-growth Polymerization of Aziridines with Elemental Sulfur: Easy Access to Linear Polysulfides and Their Use as Recyclable Adhesives. Angew Chem Int Ed Engl 2024; 63:e202318919. [PMID: 38169090 DOI: 10.1002/anie.202318919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
The bulk radical polymerization of bis(aziridine) with molten elemental sulfur resulted in brittle, cross-linked polymers. However, when the bis(aziridine) was treated with elemental sulfur in the presence of an organobase, the ring-opening reaction of aziridine with oligosulfide anions occurred, leading to the formation of linear polymers by step-growth polymerization. These newly synthesized polymers possess repeating units containing a sulfonamide or amide functional moiety and oligosulfide bonds with an average sulfur segment of about two. A small molecular model reaction confirmed the nucleophilic addition reaction of elemental sulfur to aziridine. It was verified that S-S dynamic bond exchange takes place in the presence of an organic base within the linear chains. The mixture of the synthesized polysulfides with pyridine exhibits exceptional adhesive properties when applied to steel, and aluminum substrates. Notably, these prepared adhesives displayed good reusability due to the dynamic S-S exchange and complete recyclability due to their solution processability. This elemental sulfur-involved polymerization approach represents an innovative method for the synthesis of advanced sulfur-containing polymers, demonstrating the potential for various applications in adhesives and beyond.
Collapse
Affiliation(s)
- Huishan Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shuojia Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jiye Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Liang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Yanxiong Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Jinxiang Dong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
5
|
Qu T, West KN, Rupar PA. Rapid synthesis of functional poly(ester amide)s through thiol-ene chemistry. RSC Adv 2023; 13:22928-22935. [PMID: 37520100 PMCID: PMC10375450 DOI: 10.1039/d3ra03478j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
Poly(ester amide)s (PEAs) bearing various side chains were synthesized by post-polymerization modification of PA-1, a vinylidene containing PEA. The thiols 1-dodecanethiol (1A-SH), 2-phenylethanethiol (1B-SH), 2-mercaptoethanol (1C-SH), thioglycolic acid (1D-SH), furfuryl mercaptan (1E-SH) and sodium-2-mercaptoethanesulfonate (1F-SH) were reacted with PA-1 to form PEAs PA-1A through PA-1F respectively. PEAs containing non-polar thiol side chains (PA-1A, PA-1B, PA-1E), showed little change in solubility compared to PA-1, while PEAs with more polar side chains improved solubility in more polar solvents. PA-1F, functionalized with sodium-2-mercaptoethanesulfonate, became water-soluble. The introduction of pendant functional groups impacted the thermal behaviors of PEAs in a wide range. The PEAs were thermally stable up to 368 °C, with glass transition temperatures (Tg) measured between 117 to 152 °C. Moreover, to demonstrate the versatility of the PEAs, thermal reprocessable networks and polyurethanes were successfully fabricated by reacting with a bismaleimide (1,6-bis(maleimido)hexane, 1,6-BMH) and a diisocyanate (4,4'-diphenylmethane diisocyanate, 4,4'-MDI), respectively. This study paves the way for the facile synthesis of functional poly(ester amide)s with great potential in many fields.
Collapse
Affiliation(s)
- Taoguang Qu
- Department of Chemistry & Biochemistry, The University of Alabama Tuscaloosa Alabama 35487-0336 USA
| | - Kevin N West
- Department of Chemical & Biomolecular Engineering, The University of South Alabama Mobile Alabama 36688-0001 USA
| | - Paul A Rupar
- Department of Chemistry & Biochemistry, The University of Alabama Tuscaloosa Alabama 35487-0336 USA
| |
Collapse
|
6
|
Gu GG, Yue TJ, Ren WM. Cationic ring-opening polymerization of N-benzylaziridines to polyamines via organic boron. Chem Commun (Camb) 2023; 59:2982-2985. [PMID: 36807693 DOI: 10.1039/d2cc06817f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
This communication reports the synthesis of cyclic polyamines via the cationic ring-opening polymerization (CROP) of N-benzylaziridines initiated by tris(pentafluorophenyl)borane. The debenzylation of these polyamines afforded water-soluble polyethylenimine derivatives. The electrospray ionization mass spectrometry and density functional theory results revealed that the CROP proceeded via the activated chain end intermediates.
Collapse
Affiliation(s)
- Ge-Ge Gu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
7
|
Wang X, Huo Z, Xie X, Shanaiah N, Tong R. Recent Advances in Sequence-Controlled Ring-Opening Copolymerizations of Monomer Mixtures. Chem Asian J 2023; 18:e202201147. [PMID: 36571563 DOI: 10.1002/asia.202201147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Transforming renewable resources into functional and degradable polymers is driven by the ever-increasing demand to replace unsustainable polyolefins. However, the utility of many degradable homopolymers remains limited due to their inferior properties compared to commodity polyolefins. Therefore, the synthesis of sequence-defined copolymers from one-pot monomer mixtures is not only conceptually appealing in chemistry, but also economically attractive by maximizing materials usage and improving polymers' performances. Among many polymerization strategies, ring-opening (co)polymerization of cyclic monomers enables efficient access to degradable polymers with high control on molecular weights and molecular weight distributions. Herein, we highlight recent advances in achieving one-pot, sequence-controlled polymerizations of cyclic monomer mixtures using a single catalytic system that combines multiple catalytic cycles. The scopes of cyclic monomers, catalysts, and polymerization mechanisms are presented for this type of sequence-controlled ring-opening copolymerization.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Xiaoyu Xie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Narasimhamurthy Shanaiah
- Department of Chemistry, Virginia Polytechnic Institute and State University, 1040 Drillfield Drive, 24061, Blacksburg, VA, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| |
Collapse
|
8
|
Lv W, Wang Y, Li M, Wang X, Tao Y. Precision Synthesis of Polypeptides via Living Anionic Ring-Opening Polymerization of N-Carboxyanhydrides by Tri-thiourea Catalysts. J Am Chem Soc 2022; 144:23622-23632. [PMID: 36533423 DOI: 10.1021/jacs.2c10950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The chemistry of α-amino acid N-carboxyanhydrides (NCAs) has a history of over 100 years, but precise and efficient ring-opening polymerization methods for NCAs remain highly needed to facilitate the studies of polypeptides─that is, mimics of natural proteins─in various disciplines. Moreover, the universally accepted NCA polymerization mechanisms are largely limited to the "amine" and the "activated monomer" mechanisms, and the anionic ring-opening polymerization of NCAs has so far not been invoked. Herein, we show an unprecedented anion-binding catalytic system combining tripodal tri-thiourea with sodium thiophenolate that enables the fast and selective anionic ring-opening polymerization of NCAs. This method leads to the precision construction of various polypeptides with living polymerization behavior and is evidenced by narrow molecular weight distributions (Mw/Mn < 1.2), chain extension experiments, and minimal "activated monomer" pathway. Calculations and experimental results elucidate a living anionic polymerization mechanism, and high selectivities for monomer propagation relative to other deleterious side reactions, such as the "activated monomer" pathway, are attributed to the enhanced stabilization of the propagating carbamate anion, which is enforced by an intramolecular hydrogen bond within the tri-thiourea structure.
Collapse
Affiliation(s)
- Wenxiu Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China.,University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yanchao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China.,University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China.,University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
9
|
Huang H, Wei H, Huang L, Fan T, Li X, Zhang Z, Shi T. Spontaneous Alternating Copolymerization of Aziridines with Tosyl Isocyanate toward Polyureas. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Chen Q, Ye J, Zhu L, Luo J, Cao X, Zhang Z. Organocatalytic multicomponent polymerization of bis(aziridine)s, diols, and tosyl isocyanate toward poly(sulfonamide urethane)s. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Qu T, Rupar PA. Carbonyl Aziridines: Strained Amides for Rapid Polyamide Synthesis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Taoguang Qu
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Paul A. Rupar
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
12
|
Zhang YY, Yang GW, Xie R, Zhu XF, Wu GP. Sequence-Reversible Construction of Oxygen-Rich Block Copolymers from Epoxide Mixtures by Organoboron Catalysts. J Am Chem Soc 2022; 144:19896-19909. [PMID: 36256447 DOI: 10.1021/jacs.2c07857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Switchable catalysis, in combination with epoxide-involved ring-opening (co)polymerization, is a powerful technique that can be used to synthesize various oxygen-rich block copolymers. Despite intense research in this field, the sequence-controlled polymerization from epoxide congeners has never been realized due to their similar ring-strain which exerts a decisive influence on the reaction process. Recently, quaternary ammonium (or phosphonium)-containing bifunctional organoboron catalysts have been developed by our group, showing high efficiency for various epoxide conversions. Herein, we, for the first time, report an operationally simple pathway to access well-defined polyether-block-polycarbonate copolymers from mixtures of epoxides by switchable catalysis, which was enabled through thermodynamically and kinetically preferential ring-opening of terminal epoxides or internal epoxides under different atmospheres (CO2 or N2) using one representative bifunctional organoboron catalyst. This strategy shows a broad substrate scope as it is suitable for various combinations of terminal epoxides and internal epoxides, delivering corresponding well-defined block copolymers. NMR, MALDI-TOF, and gel permeation chromatography analyses confirmed the successful construction of polyether-block-polycarbonate copolymers. Kinetic studies and density functional theory calculations elucidate the reversible selectivity between different epoxides in the presence/absence of CO2. Moreover, by replacing comonomer CO2 with cyclic anhydride, the well-defined polyether-block-polyester copolymers can also be synthesized. This work provides a rare example of sequence-controlled polymerization from epoxide mixtures, broadening the arsenal of switchable catalysis that can produce oxygen-rich polymers in a controlled manner.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Feng Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Sedlacek O, Bardoula V, Vuorimaa-Laukkanen E, Gedda L, Edwards K, Radulescu A, Mun GA, Guo Y, Zhou J, Zhang H, Nardello-Rataj V, Filippov S, Hoogenboom R. Influence of Chain Length of Gradient and Block Copoly(2-oxazoline)s on Self-Assembly and Drug Encapsulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106251. [PMID: 35212458 DOI: 10.1002/smll.202106251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Amphiphilic gradient copolymers represent a promising alternative to extensively used block copolymers due to their facile one-step synthesis by statistical copolymerization of monomers of different reactivity. Herein, an in-depth analysis is provided of micelles based on amphiphilic gradient poly(2-oxazoline)s with different chain lengths to evaluate their potential for micellar drug delivery systems and compare them to the analogous diblock copolymer micelles. Size, morphology, and stability of self-assembled nanoparticles, loading of hydrophobic drug curcumin, as well as cytotoxicities of the prepared nanoformulations are examined using copoly(2-oxazoline)s with varying chain lengths and comonomer ratios. In addition to several interesting differences between the two copolymer architecture classes, such as more compact self-assembled structures with faster exchange dynamics for the gradient copolymers, it is concluded that gradient copolymers provide stable curcumin nanoformulations with comparable drug loadings to block copolymer systems and benefit from more straightforward copolymer synthesis. The study demonstrates the potential of amphiphilic gradient copolymers as a versatile platform for the synthesis of new polymer therapeutics.
Collapse
Affiliation(s)
- Ondrej Sedlacek
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, B-9000, Belgium
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova, 2030, Prague 2, 128 40, Czech Republic
| | - Valentin Bardoula
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, B-9000, Belgium
- Centrale Lille, Université de Lille, CNRS, Université Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, Lille, F-59000, France
| | | | - Lars Gedda
- Department of Chemistry -Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, Uppsala, Sweden
| | - Katarina Edwards
- Department of Chemistry -Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, Uppsala, Sweden
| | - Aurel Radulescu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Grigoriy A Mun
- Department of Chemistry & Technology of Organic Materials, Polymers and Natural Compounds, al Faraby Kazakh National University, 71, al-Faraby av., Almaty, 050040, Republic of Kazakhstan
| | - Yong Guo
- Department of Endocrinology, Key Laboratory of National Health & Family Planning Commission for Male Reproductive Health, National Research Institute for Family Planning, Beijing, 100081, China
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, of Åbo Akademi University and Turku Bioscience, Turku, 20520, Finland
| | - Junnian Zhou
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, of Åbo Akademi University and Turku Bioscience, Turku, 20520, Finland
- Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, of Åbo Akademi University and Turku Bioscience, Turku, 20520, Finland
| | - Véronique Nardello-Rataj
- Centrale Lille, Université de Lille, CNRS, Université Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, Lille, F-59000, France
| | - Sergey Filippov
- Department of Chemistry & Technology of Organic Materials, Polymers and Natural Compounds, al Faraby Kazakh National University, 71, al-Faraby av., Almaty, 050040, Republic of Kazakhstan
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6DX, UK
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, B-9000, Belgium
| |
Collapse
|
14
|
Pal S, Mandal A, Hong L, Ortuso RD, Petri-Fink A, Salentinig S, Kilbinger AFM. Native Chemical Ligation: Ultrafast Synthesis of Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Subhajit Pal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Ankita Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Linda Hong
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Roberto D. Ortuso
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Andreas F. M. Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
15
|
Hu C, Pang X, Chen X. Self-Switchable Polymerization: A Smart Approach to Sequence-Controlled Degradable Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
16
|
|
17
|
Chidara VK, Gnanou Y, Feng X. Using Triethylborane to Manipulate Reactivity Ratios in Epoxide-Anhydride Copolymerization: Application to the Synthesis of Polyethers with Degradable Ester Functions. Molecules 2022; 27:466. [PMID: 35056781 PMCID: PMC8780197 DOI: 10.3390/molecules27020466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
The anionic ring-opening copolymerization (ROCOP) of epoxides, namely of ethylene oxide (EO), with anhydrides (AH) generally produces strictly alternating copolymers. With triethylborane (TEB)-assisted ROCOP of EO with AH, statistical copolymers of high molar mass including ether and ester units could be obtained. In the presence of TEB, the reactivity ratio of EO (rEO), which is normally equal to 0 in its absence, could be progressively raised to values lower than 1 or higher than 1. Conditions were even found to obtain rEO equal or close to 1. Samples of P(EO-co-ester) with minimal compositional drift could be synthesized; upon basic degradation of their ester linkages, these samples afforded poly(ethylene oxide) (PEO) diol samples of narrow molar mass distribution. In other cases where rEO were lower or higher than 1, the PEO diol samples eventually isolated after degradation exhibited a broader distribution of molar masses because of the compositional drift of initial P(EO-co-ester) samples.
Collapse
Affiliation(s)
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
18
|
Archer WR, Dinges GE, MacNicol PL, Schulz MD. Synthesis of bottlebrush polymers based on poly( N-sulfonyl aziridine) macromonomers. Polym Chem 2022. [DOI: 10.1039/d2py01125e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We synthesized bottlebrush polymers with polyaziridine brushes and a polynorbornene backbone by a grafting-through approach. The polyaziridine macromonomer aggregates in solution, but these aggregates disperse over the course of the polymerization.
Collapse
Affiliation(s)
- William R. Archer
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Grace E. Dinges
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Piper L. MacNicol
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michael D. Schulz
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
19
|
Zhou Z, Wang Y, Zhu L, Dang D, Zhang Z. Tributylphosphine-catalyzed aziridine-based cycloaddition polymerization toward thiacyclic polymers. Polym Chem 2022. [DOI: 10.1039/d2py00569g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cycloaddition polymerization of bis(N-sulfonyl aziridine)s with diisocyanates in the presence of tributylphosphine allows the facile synthesis of poly(thiazolidin-2-imine)s.
Collapse
Affiliation(s)
- Zhi Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Ying Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Linlin Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dai Dang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou 510641, P. R. China
| |
Collapse
|
20
|
Li JW, Chen M, Zhang Z, Pan CY, Zhang WJ, Hong CY. Hybrid copolymerization of acrylate and thiirane monomers mediated by trithiocarbonate. Polym Chem 2022. [DOI: 10.1039/d1py01031j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The composition and structure of polymers have great influence on their performances.
Collapse
Affiliation(s)
- Jia-Wei Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Miao Chen
- Xi'an Modern Chemistry Research Institute, Xi'an, Shanxi 710065, China
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, P. R. China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
21
|
Chen S, Zhu L, Zhang Z. Catalyst-free aziridine-based step-growth polymerization: a facile approach to optically active poly(sulfonamide amine)s and poly(sulfonamide dithiocarbamate)s. Polym Chem 2022. [DOI: 10.1039/d2py00771a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Step-growth polymerization of chiral bis(N-sulfonyl aziridine)s with diamines or bis(dialkyldithiocarbamate) in the absence of a catalyst allows the facile synthesis of optically active polysulfonamide derivatives.
Collapse
Affiliation(s)
- Shibin Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Linlin Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou 510641, P. R. China
| |
Collapse
|
22
|
Xu J, Wang X, Hadjichristidis N. Diblock dialternating terpolymers by one-step/one-pot highly selective organocatalytic multimonomer polymerization. Nat Commun 2021; 12:7124. [PMID: 34880211 PMCID: PMC8655074 DOI: 10.1038/s41467-021-27377-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
The synthesis of well-defined block copolymers from a mixture of monomers without additional actions ("one-pot/one-step") is an ideal and industrially valuable method. In addition, the presence of controlled alternating sequences in one or both blocks increases the structural diversity of polymeric materials, but, at the same time, the synthetic difficulty. Here we show that the "one-pot/one-step" ring-opening terpolymerization of a mixture of three monomers (N-sulfonyl aziridines; cyclic anhydrides and epoxides), with tert-butylimino-tris(dimethylamino)phosphorene (t-BuP1) as a catalyst, results in perfect diblock dialternating terpolymers having a sharp junction between the two blocks, with highly-controllable molecular weights and narrow molecular weight distributions (Ð < 1.08). The organocatalyst switches between two distinct polymerization cycles without any external stimulus, showing high monomer selectivity and kinetic control. The proposed mechanism is based on NMR, in-situ FTIR, SEC, MALDI-ToF, reactivity ratios, and kinetics studies.
Collapse
Affiliation(s)
- Jiaxi Xu
- Polymer Synthesis Laboratory, Physical Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Xin Wang
- Polymer Synthesis Laboratory, Physical Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Physical Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
23
|
Chen R, Wang Y, Zhu L, Zhang Z. Ultrafast organocatalytic
ring‐opening
polymerization of
N
‐sulfonyl
aziridine in the melt. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rui Chen
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Ying Wang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Linlin Zhu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
- Key Laboratory of Polymer Processing Engineering (South China University of Technology) Ministry of Education Guangzhou China
| |
Collapse
|
24
|
He G, Li H, Zhao J. One‐Step Sequence‐Selective Synthesis of Block Copolyester from Mixed Phthalic Anhydride, Cyclohexene Oxide, and
δ
‐Valerolactone. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guanchen He
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Heng Li
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| |
Collapse
|
25
|
Huo M, Bian Y, Yu C, Tong G, Zhang C, Zhu X. Sulfanion-initiated open-vessel anionic ring-opening polymerization (AROP) of N-sulfonyl aziridines. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Zhu L, Huang H, Wang Y, Zhang Z, Hadjichristidis N. Organocatalytic Synthesis of Polysulfonamides with Well-Defined Linear and Brush Architectures from a Designed/Synthesized Bis( N-sulfonyl aziridine). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linlin Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Huishan Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ying Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510641, P. R. China
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
27
|
Somuncuoğlu B, Lee YL, Constantinou AP, Poussin DL, Georgiou TK. Ethyl methacrylate diblock copolymers as polymeric surfactants: Effect of molar mass and composition. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Grafting polysulfonamide from cellulose paper through organocatalytic ring-opening polymerization of N-sulfonyl aziridines. Carbohydr Polym 2021; 261:117903. [PMID: 33766381 DOI: 10.1016/j.carbpol.2021.117903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/23/2022]
Abstract
A facile and effective "grafting from" method by ROP of N-sulfonyl aziridines toward cellulose-g-polysulfonamides has been developed for efficient oil/water separation. The cellulose paper was initially succinylated to transform the hydroxyl to carboxyl acid groups, which act as the initiating sites for the ring-opening copolymerization of fluorescent 2-methyl-1-dansylaziridine and 2-methyl-1-tosylaziridine (TsMAz) towards the grafted cellulose. Both steps are catalyzed by the same compound, 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD). The grafted polysulfonamide ratio was up to 136 wt%, and the surface contact angle up to 147°. A one-pot tandem strategy was applied to produce the grafted cellulose paper with a grafting ratio ranging from 96 to 150 % and a contact angle over 127°. The modified cellulose paper material showed promising properties for efficient oil/water separations.
Collapse
|
29
|
Li Z, Chen R, Wang Y, Zhu L, Luo W, Zhang Z, Hadjichristidis N. Solvent and catalyst-free modification of hyperbranched polyethyleneimines by ring-opening-addition or ring-opening-polymerization of N-sulfonyl aziridines. Polym Chem 2021. [DOI: 10.1039/d1py00125f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ring-opening (polymerization) of N-sulfonyl aziridines with PEI under solvent/catalyst-free conditions allows the atom-economic synthesis of amphiphilic alkylated PEIs and luminescent PEI-graft-polysulfonamide.
Collapse
Affiliation(s)
- Zhunxuan Li
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- P. R. China
| | - Rui Chen
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- P. R. China
| | - Ying Wang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- P. R. China
| | - Linlin Zhu
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- P. R. China
| | - Wenyi Luo
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- P. R. China
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division
- KAUST Catalysis Center
- Polymer Synthesis Laboratory
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955
| |
Collapse
|
30
|
Huang H, Luo W, Zhu L, Wang Y, Zhang Z. Organocatalytic sequential ring-opening polymerization of cyclic ester/epoxide and N-sulfonyl aziridine: metal-free and easy access to block copolymers. Polym Chem 2021. [DOI: 10.1039/d1py00890k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential ring-opening polymerization of ε-caprolactone (ε-CL)/propylene oxide (PO) and N-sulfonyl aziridine switched by tosyl isocyanate (TSI) allows the metal-free synthesis of polysulfonamide-based copolymers.
Collapse
Affiliation(s)
- Huishan Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wenyi Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Linlin Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Ying Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou 510641, P. R. China
| |
Collapse
|
31
|
Zhou L, Wang Z, Xu G, Yang R, Yan H, Hao XQ, Wang Q. N-heterocyclic olefins catalyzed ring-opening polymerization of N-tosyl aziridines. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Tetrabutylammonium fluoride initiated anionic ring-opening polymerizations of N–sulfonyl aziridines. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Luo W, Wang Y, Jin Y, Zhang Z, Wu C. One‐pot
tandem
ring‐opening
polymerization of
N
‐sulfonyl
aziridines and “click” chemistry to produce
well‐defined star‐shaped
polyaziridines. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wenyi Luo
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou China
| | - Ying Wang
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou China
| | - Yaocheng Jin
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou China
| | - Zhen Zhang
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou China
| | - Chuande Wu
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou China
- State Key Laboratory of Silicon Materials, Department of ChemistryZhejiang University Hangzhou China
| |
Collapse
|
34
|
Yasir M, Liu P, Markwart JC, Suraeva O, Wurm FR, Smart J, Lattuada M, Kilbinger AFM. One‐Step Ring Opening Metathesis Block‐Like Copolymers and their Compositional Analysis by a Novel Retardation Technique. Angew Chem Int Ed Engl 2020; 59:13597-13601. [DOI: 10.1002/anie.202005366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Mohammad Yasir
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Peng Liu
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Jens C. Markwart
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Oksana Suraeva
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Frederik R. Wurm
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Jansie Smart
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Marco Lattuada
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | | |
Collapse
|
35
|
Yasir M, Liu P, Markwart JC, Suraeva O, Wurm FR, Smart J, Lattuada M, Kilbinger AFM. One‐Step Ring Opening Metathesis Block‐Like Copolymers and their Compositional Analysis by a Novel Retardation Technique. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mohammad Yasir
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Peng Liu
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Jens C. Markwart
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Oksana Suraeva
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Frederik R. Wurm
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Jansie Smart
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Marco Lattuada
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | | |
Collapse
|
36
|
Bai Y, Wang H, He J, Zhang Y. Rapid and Scalable Access to Sequence‐Controlled DHDM Multiblock Copolymers by FLP Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yun Bai
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Huaiyu Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| |
Collapse
|
37
|
Bai Y, Wang H, He J, Zhang Y. Rapid and Scalable Access to Sequence-Controlled DHDM Multiblock Copolymers by FLP Polymerization. Angew Chem Int Ed Engl 2020; 59:11613-11619. [PMID: 32237265 DOI: 10.1002/anie.202004013] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/26/2020] [Indexed: 12/25/2022]
Abstract
An immortal N-(diphenylphosphanyl)-1,3-diisopropyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2-imine/diisobutyl (2,6-di-tert-butyl-4-methylphenoxy) aluminum (P(NIi Pr)Ph2 /(BHT)Ali Bu2 )-based frustrated Lewis pair (FLP) polymerization strategy is presented for rapid and scalable synthesis of the sequence-controlled multiblock copolymers at room temperature. Without addition of extra initiator or catalyst and complex synthetic procedure, this method enabled a tripentacontablock copolymer (n=53, k=4, dpn =50) to be achieved with the highest reported block number (n=53) and molecular weight (Mn =310 kg mol-1 ) within 30 min. More importantly, this FLP polymerization strategy provided access to the multiblock copolymers with tailored properties by precisely adjusting the monomer sequence and block numbers.
Collapse
Affiliation(s)
- Yun Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Huaiyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
38
|
Reisman L, Rowe EA, Jefcoat JA, Rupar PA. Activated Monomer Polymerization of an N-Sulfonylazetidine. ACS Macro Lett 2020; 9:334-338. [PMID: 35648542 DOI: 10.1021/acsmacrolett.0c00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Previously, N-(methanesulfonyl)azetidine (MsAzet) was found to polymerize anionically via ring-opening at temperatures >100 °C to form p(MsAzet) in the presence of an anionic initiator. In the current report, potassium(azetidin-1-ylsulfonyl) methanide (KMsAzet), formed from deprotonation of the methanesulfonyl group of MsAzet by KHMDS, is shown to undergo spontaneous AROP at room temperature to form p(N-K-MsAzet). The structure of p(N-K-MsAzet) differs from that of p(MsAzet), as the sulfonyl groups are incorporated into the polymer backbone of p(N-K-MsAzet). Reaction of p(N-K-MsAzet) with MeOH produces p(N-H-MsAzet), a semicrystalline polymer with a structure like that of polyamides, but with sulfonylamides in place of the carboxamides found in polyamides. Reaction of p(N-K-MsAzet) with benzyl bromide results in the formation of amorphous p(N-Bn-MsAzet). P(N-K-MsAzet) is hypothesized to form via an activated monomer anionic polymerization; this is supported by polymerization kinetic data and structural characterization of the resulting polymers.
Collapse
Affiliation(s)
- Louis Reisman
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Elizabeth A. Rowe
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Jennifer A. Jefcoat
- U.S. Army Engineer Research and Development Center (ERDC), 3909 Halls Ferry Road, Vicksburg, Mississippi 39180, United States
| | - Paul A. Rupar
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
39
|
Gleede T, Yu F, Luo YL, Yuan Y, Wang J, Wurm FR. Linear Well-Defined Polyamines via Anionic Ring-Opening Polymerization of Activated Aziridines: From Mild Desulfonylation to Cell Transfection. ACS Macro Lett 2020; 9:20-25. [PMID: 35638659 DOI: 10.1021/acsmacrolett.9b00792] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Linear polyethylenimine (L-PEI), a standard for nonviral gene delivery, is usually prepared by hydrolysis from poly(2-oxazoline)s. Lately, anionic polymerization of sulfonamide-activated aziridines had been reported as an alternative pathway toward well-defined L-PEI and linear polyamines. However, desulfonylation of the poly(sulfonyl aziridine)s typically relied on harsh conditions (acid, microwave) or used a toxic solvent (e.g., hexamethylphosphoramide). In addition, the drastic change of polarity requires solvents, which keep poly(sulfonyl aziridine)s as well as L-PEI in solution, and only a limited number of strategies were reported. Herein, we prepared 1-(4-cyanobenzenesulfonyl) 2-methyl-aziridine (1) as a monomer for the anionic ring-opening polymerization. It was polymerized to well-defined and linear poly(sulfonyl aziridine)s. The 4-cyanobenzenesulfonyl-activating groups were removed under mild conditions to linear polypropylenimine (L-PPI). Using dodecanethiol and diazabicyclo-undecene (DBU) allowed ≥98% desulfonylation and a reliable purification toward polyamines with high purity and avoiding main-chain scission. This method represents a fast approach in comparison to previous methods used for postpolymerization desulfonylation and produces linear well-defined polyamines. The high control over molecular weight and dispersities achieved by living anionic polymerization are the key advantages of our strategy, especially if used for biomedical applications, in which molecular weight might correlate with toxicity. The synthesized polypropylenimine was further tested as a cell-transfection agent and proved, with 16.1% transfection efficiency of the cationic nanoparticles, to be an alternative to L-PEI obtained from the 2-oxazoline route. This general strategy will allow the preparation of complex macromolecular architectures containing polyamine segments, which were not accessible before.
Collapse
Affiliation(s)
- Tassilo Gleede
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, D-55128 Mainz, Germany
| | - Fangzhou Yu
- National Engineering Research Center for Tissue Restoration and Reconstruction, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Ying-Li Luo
- National Engineering Research Center for Tissue Restoration and Reconstruction, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Youyong Yuan
- National Engineering Research Center for Tissue Restoration and Reconstruction, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Jun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Frederik R. Wurm
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
40
|
Abstract
Multiblock copolymers (MBCs) are an emerging class of synthetic polymers that exhibit different macromolecular architectures and behaviours to those of homopolymers or di/triblock copolymers.
Collapse
Affiliation(s)
- Valentin P. Beyer
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Polymer Chemistry Laboratory
| | - Jungyeon Kim
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | |
Collapse
|
41
|
Beyer VP, Kim J, Becer CR. Correction: Synthetic approaches for multiblock copolymers. Polym Chem 2020. [DOI: 10.1039/d0py90036b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correction for ‘Synthetic approaches for multiblock copolymers’ by Valentin P. Beyer et al., Polym. Chem., 2020, 11, 1271–1291.
Collapse
Affiliation(s)
- Valentin P. Beyer
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Polymer Chemistry Laboratory
| | - Jungyeon Kim
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | |
Collapse
|
42
|
Gleede T, Markwart JC, Huber N, Rieger E, Wurm FR. Competitive Copolymerization: Access to Aziridine Copolymers with Adjustable Gradient Strengths. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01623] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tassilo Gleede
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| | - Jens C. Markwart
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| | - Niklas Huber
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| | - Elisabeth Rieger
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| | - Frederik R. Wurm
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
43
|
Anionic ring-opening copolymerization of styrene oxide with monosubstituted oxiranes: analysis of composition of prepared new copolyether-diols by MALDI-TOF mass spectrometry. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Yang R, Wang Y, Luo W, Jin Y, Zhang Z, Wu C, Hadjichristidis N. Carboxylic Acid Initiated Organocatalytic Ring-Opening Polymerization of N-Sulfonyl Aziridines: An Easy Access to Well-Controlled Polyaziridine-Based Architectural and Functionalized Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01716] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruhan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ying Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wenyi Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yaocheng Jin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chuande Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
45
|
Affiliation(s)
- Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael G. Hyatt
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Susannah A. Miller
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Rowe EA, Reisman L, Jefcoat JA, Rupar PA. Comparison of the Anionic Ring-Opening Polymerizations of N-(Alkylsulfonyl)azetidines. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Elizabeth A. Rowe
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Louis Reisman
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Jennifer A. Jefcoat
- U.S. Army Engineer Research and Development Center (ERDC), 3909 Halls Ferry Road Vicksburg, Mississippi 39180, United States
| | - Paul A. Rupar
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
47
|
Liu S, Bai T, Ni K, Chen Y, Zhao J, Ling J, Ye X, Zhang G. Biased Lewis Pairs: A General Catalytic Approach to Ether‐Ester Block Copolymers with Unlimited Ordering of Sequences. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shan Liu
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Kang Ni
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Ye Chen
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xiaodong Ye
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
48
|
Liu S, Bai T, Ni K, Chen Y, Zhao J, Ling J, Ye X, Zhang G. Biased Lewis Pairs: A General Catalytic Approach to Ether-Ester Block Copolymers with Unlimited Ordering of Sequences. Angew Chem Int Ed Engl 2019; 58:15478-15487. [PMID: 31464086 DOI: 10.1002/anie.201908904] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/13/2019] [Indexed: 12/12/2022]
Abstract
Polymerizing epoxides after cyclic esters remains a major challenge, though their block copolymers have been extensively studied and used for decades. Reported here is a simple catalytic approach based on a metal-free Lewis pair that addresses the challenge. When the Lewis acid is used in excess of a base, selective (transesterification-free) polymerization of epoxides occurs in the presence of esters, while selectivity toward cyclic esters is achieved by an oppositely biased catalyst. Hence, one-pot block copolymerization can be performed in both ester-first and ether-first orders with selectivity being switchable at any stage, yielding ether-ester-type block copolymers with unlimited ordering of sequences as well as widely variable compositions and architectures. The selectivity can also be switched back and forth several times to generate a multiblock copolymer. Experimental and calculational results indicate that the selectivity originates mainly from the state of catalyst-activated hydroxy species.
Collapse
Affiliation(s)
- Shan Liu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kang Ni
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Ye Chen
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaodong Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
49
|
Li H, He G, Chen Y, Zhao J, Zhang G. One-Step Approach to Polyester-Polyether Block Copolymers Using Highly Tunable Bicomponent Catalyst. ACS Macro Lett 2019; 8:973-978. [PMID: 35619475 DOI: 10.1021/acsmacrolett.9b00439] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phthalic anhydride and propylene/ethylene oxide are copolymerized at room temperature by a bicomponent metal-free catalyst comprising a mild phosphazene base and triethylborane. Provided with proper loadings of the two catalytic components, block copolymers with strict (AB)nBm type sequence structures and controlled molar mass (up to 60 kg mol-1) can be generated in one synthetic step, and the block architecture can be enriched by the use of mono-, di-, or tetrahydroxy initiators. The obtained polyester-polyether block copolymers readily undergo microphase-separation in bulk and nanoaggregation in selective (aqueous and alcoholic) solvents.
Collapse
Affiliation(s)
- Heng Li
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guanchen He
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ye Chen
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
50
|
Raeskinet B, Moins S, Harvey L, De Winter J, Henoumont C, Laurent S, Coulembier O. Simultaneous “O–Alkyl” and “O–Acyl” Lactone Cleavages from Hydroxy–Carboxylic Acid Initiators: Direct Access to Multiblock Architectures. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Luke Harvey
- ENSICAEN, UNICAEN, Normandy University, 14000 Caen, France
| | | | | | - Sophie Laurent
- Center for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | | |
Collapse
|